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INTRODUCTION

This book of problems in higher algebra grew out of a course
of instruction at the Leningrad State University and the Herzen
Pedagogical Institute. It is designed for students of universities
and teacher’s colleges as a problem book in higher algebra.

The problems included here are of two radically different ty-
pes. On the one hand, there are a large number of numerical
examples aimed at developing computational skills and illustra-
ting the basic propositions of the theory. The authors believe that
the number of problems is sufficient to cover work in class, at
home and for tests.

On the other hand, there are a rather large number of problems
of medium difficulty and many which will demand all the ini-
tiative and ingenuity of the student. Many of the problems of
this category are accompanied by hints and suggestions to be
found in Part 11. These problems are starred.

Answers are given to all problems, some of the problems are
supplied with detailed solutions.

The authors






PART I. PROBLEMS

CHAPTER 1

COMPLEX
NUMBERS

Sec. 1. Operations on Complex Numbers

1. (1 +2)x+@B—5i)y=1-3i.
Find x and y, taking them to be real.
2. Solve the following system of equations; x, y, z, ¢ are real:

(+)x+A +20)y+(1+30) z+ (1 +4)t=1+5i,
B-Dx+@-20)y+{ +i)z+4it=2—1.

3. Evaluate i", where # is an integer.

4. Verify the identity

xttd=(x—1—-0)(x—14+) x+14+i) (x+1-10).

5. Evaluate:

(a) (14205, (b) 2+)"+2—i)", (c) (1+20)°—(1 —2i)".

6. Determine under what conditions the product of two com-
plex numbers is a pure imaginary.
7. Perform the indicated operations:

l4itana a+bi (14202 = (1 —i)®
(a) l—itana ° (b) a—bi ’ (c) (B+2P=(2%iE

(1—ipE—1 (Y40
(d) T (C) (=77 *

(I+ip+1 2
8. Evaluate d—-1 where & is a positive integer.

(144"

9. Solve the following systems of equations:

(a) B—Dx+@+2))y=2+6i, (4+2i)x—(2+3))y=5+4i;
b) C+i)x+2—-1Dy=6, 3+2)x+(3—-2i)y=8;

(©) x+yi—2z=10, x—y+2iz=20, ix+3iy— (1 +i)z=30.
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10. Evaluate 3 v

3
(a) ( 2 . _2‘ ) )
®) (-1+ ]é ).
*11. Let o= —-2— +
(a) (a+bw+co? (a+bo?+cw),
(b) (a+b) (a+bw) (a+bw?),
(©) (@+bo+ce??+(a+bu?+cw)?,
(@) (aw?+bo) (bw?+ aw).

12. Find the conjugates of:

(a) a square, (b) a cube.

*13. Prove the following theorem:

If as a result of a finite number of rational operations (i. e.,
addition, subtraction, etc.) on the numbers x;, Xs,..., x,, we
get the number u, then the same operations on the conjugates X,
Xg,..., X, yield the number #, which is conjugate to u.

14. Prove that x%+ p*=(s2+ %" if x+ yi=(s+ )"

15. Evaluate:

(a) V2, (b) V=8i, (c) V3—4i, (d) V—-15+8i,
Y V=3—4i, (f) /—11+60i, (g) V—-8+6i,
(h) Y=8=6i, (i) /8-6i, (j) I/8+6i, (k) |/2-3i,

(k)
I Vé+i+Vi—i, (m) ]/1-;-V§; 4V

4

) V2—iy12.

16. Va+bi= + («x+8i). Find |V —a—bi.

17. Solve the following equations:

(a) *—C+Dx+(—1+7)=0,

(b) x2—(8—~2i)x+(5-5i)=0,

©) C+Hx*—(B-Dx+(2—-20)=0.

*18. Solve the equations and factor the left-hand members
into factors with real coefficients:

(a) x*+6x3+9x2+100=0,
(b) x*+2x?—24x+72=0.

iV3
)

. Evaluate:
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19. Solve the equations:
(a) x*—3x2+4=0, (b) x*—30x2+289=0.

20. Develop a formula for solving the biquadratic equation

x*+px?+g=0 with real coefficients that is convenient for the
2
case when 54—; —g<0.

Sec. 2. Complex Numbers in Trigonometric Form

21. Construct points depicting the following complex num-
bers:

I, =1, =V2,i —i, i//2, —1+i, 2-3i

22. Represent the following numbers in trigonometric form:
(@ 1, () —1, ) i, (d) —i, (&) 1+i,

() =1+i, (g —=1—i, (W) 1—i, () 1+i /3,

G ~1+ilV/3, & —1-i)/3, W1—il/3, (m)2i

(@) —3, () V3 ~i, (p) 2+ 1/ 3 +i.

23. Use tables to represent the following numbers in trigono-
metric form:

(a) 3+, (b)4—1, (c) —2+i,(d) —1-2i.

24, Find the loci of points depicting the complex numbers
whose:

(a) modulus is 1, (b) argument is %

25. Find the loci of points depicting the numbers z that satis-
fy the inequalities:

@ [z]<2, ®) |z—i|<], ()| z—1—i]|<]1.
26. Solve the equations:
(@ |x|—x=142i, (b) | x|+x=2+i.
*27. Prove the identity
| x+y P+l x—y P=2(x +]y ).

What geometrical meaning does it have?
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*28. Prove that any complex number z different from -1,
. . l+4
whose modulus is 1, can be represented in the form z= L

| —¢i
where ¢ is real.

29. Under what conditions is the modulus of the sum of two
complex numbers equal to the difference of the moduli of the
summands?

30. Under what conditions is the modulus of the sum of two
complex numbers equal to the sum of the moduli of the summands?

*31, z and z’ are two complex numbers, u=]/zz". Prove that

Izl 42| = 2—12-2 —ui+!‘z;—z+ui‘

32. Demonstrate that if | z |< &, then

(i) 2 +iz] <5 .
33. Prove that
(14i1/3) (14i) (cos p+isingp)=
Y 7 .. (7
=212 [cos(]%+<p)+zsm(l—g+cp)].

. . 0s @ + i sin
34. Simplify -Eg;ffﬁﬁ '

35. Evaluate (12—:' VE) (cos g —!-Iisin ®)
(1 —7¢) (cos ¢ —isin @)

36. Evaluate:
20
@ (L+ipe, ) (L)

V3 —i (=1+iV3)ys  (=1-il/3)®
(C) <1 9 > ’ (d) *‘(]_I-)zo + T+ T

*37. Prove that
a) (1+l)"_22 (COS +lSln 4)

(V3 —iyr=2n (cos »"g —isin —'%3) ,

r an integer,
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*38. Simplify (1 +w)"?, where ow=cos %ﬂ +isin %ﬂ .

. 3 1 . V3
39. Assuming o)1=— +1i- V L y= — g = VT ,
determine wi+ of, where nis an integer.
*40. Evalvate (1 +cos a+isin o).

*4]. Prove that ifz+%=2 cos ©, then

1
"+ z—m=200sm®.

T+it n L+it
42. Prove that ( titana ) = titann
l—itan o | —itan no

43, Extract the roots:

AV, 0 VIZE © VI @ VI @ VI
44, Use tables to extract the following roots:
3 3 5
(@ Ve+i, ®)V3—i (O 2+3i
45, Compute:

6

(2) | ]/3+1 l’ i/-l?;l—l ]/ 1+11_‘|/[/

46. Write all the values of /o if you know that Bis one of the
values.

47. Express the following in terms of cos x and sin x:
(a) cos bx, (b) cos 8x, (¢) sin 6x, (d) sin 7x.

48. Express tan 6 ¢ in terms of tan ¢.

49. Develop formulas expressing cos nx and sin #x in terms of
cos x and sin x.
50. Represent the following in the form of a first-degree poly-

nomial in the trigonometric functions of angles that are multi-
ples of x:

(a) sin® x, (b) sin® x, (c) cos® x, (d) cos® x.
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*51. Prove that
m—1

(a) 22" cos?" x=2 Z Ck, cos2(m—k)x+Cg,,
k=0

(b) 22mcogim+1 x = Z Ck,iicos(Cm—2k+1)x,
k=0
m—1

(c) 22msin®" x=2 Z (= Ly+* Ck cos 2 (m—k)x+ Cg,,
k=0

(d) 22msin®+ix= " (— 1)k Ck, . sin (2m—2k+ 1) x.
k=0

*52. Prove that 2 cos mx=(2 cos x)™

- % (2 cos x)m~2 +ﬂ(lm.;3) (2 cos x)m—*

1) m(m—p—1)(m—p—2) ... (m—2p+1)
p!

x(2cosx)m% 4+ ..,

i (—

sin mx .
in terms of cos x.

*53. Express
*54. Find the sums:

(@) 1-C24+Ci—C8+ ...,
(b) CL—C34+C3—-Cl+ ...
*55, Prove that

n
(a) 1+Ci+Cff+...=--l2— (2"'1+22003 nf)
1 5 9 __l n— PR
(b) cn+cn+cn+..._é(2 149 sm_4-),
(<) Cﬁ+C§+C,‘,°+...:21—(2"‘1—25003 —'—?),

(d) C3+Cl+Cl+... =
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*56. Find the sum
1 1 |
Cr—3 Citg Gl o= Cl+
57. Prove that (x + @)™ + (x + aw)” + (x + ae’)™ = Jx"+
+3C3xm % a®+ ... +3ChLx™ "a", where o =cos %TC +isin %TC

and n is the largest integral multiple of 3 not exceeding m.
58. Prove that

3 6 _ 1o, nr
(a) 1+C,,+C,,+..._§(2 +2cos?),
(b) C,I1+Cﬁ+C',7,+ ';;_(Qn‘i'QCOs (n—32)rc) ’
(C) Cn2+C,§+C3+ %(2'7“'2(:08 (l’l—34)_7_c) .

59. Compute the sums:
(a) 14a cosp+a?cos2p+...+a* cos ko,
(b) sin ¢ +asin (p+h)+a? sin (p+2h)+ ... +a* sin (¢ +kh),

© —; +cos x+cos2x+ ...+ cos nx.

60. Demonstrate that

. on+1 . onx
S]n—Q—X'S]n_Q‘
sinx+sin2x+...+sinax = —
SIDE
61. Find
. 1 o 1
lim (1+§COSA+ZC052X+...+7COSHX).
n—0

62. Prove thatif n is a positive integer and ® is an angle satis-

. .. N 1
fying the condition sin o = o, then

® 30 2n—1 .
oS 5 + ¢0s 5~ + ... +COs n2 ® =pnsinn0O.

63. Show that

5 T 9
(a) cos l+ cos 3i+ cos ilr+cos + cos IT ;
6m 8n 0
(b) cos +cos ~+cos +cos“+ cos 111”:_,12_,
11 I

(c) cos -3 +cos +cos5 +cos—+cos9 + cos —3"=,2__
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64. Find the sums
(a) cosa—cos (a@a+h)+cos (a+2h)—...+(—1)""1 cos [a+(n
— DAl
(b) sin a—sin (@a+h)+sin (@+2h)—...+(—1)""1sin [a
+(n—1)A]

65. Prove that if x is less than unity in absolute value, then
the series

(a) cos a+x cos (x+ B)+x? cos (a+2B)+ ... +x" cos («
+nB)+...,
(b) sin a+x sin (x4 B)+x%sin (e +2B)+ ... +x" sin (x+#B)+. ..
converge and the sums are respectively equal to

cos oo —x cos (a—B) sin a—x sin (e —B)
1—2xcosB+x* 1 —2x cos B+ x?

66. Find the sums of:

(a) cosx+ Chcos2x+...+Clicos(n+1)x,

(b) sinx+ Clsin2x+...+Clsin(n+1) x.

67. Find the sums of:

(a) cosx—Clcos2x+ C2cos3x —. ..+ (=1 Clcos(n+1)x,
(b) sinx—Clsin2x+C2sin3x—...+(— 1)y Clsin(n+ 1) x.

— —

*68. OA, and OB are vectors depicting | and i respectively.
From O drop a perpendicular OA4, on A,B; from A, drop a per-
pendicular 4,45 on OA,; from Aj a perpendicular A;4, on
A, A4,, etc. in accordance with the rule: from A4, a perpendicular
ApA,+q 18 dropped on A, _.A,_;. Find the limit of the sum

— > >
OAy+ Ay Ay + AgAs + . . .
*69. Find the sum
sin?x +sin%3x+ ... +sin?(2n— x.

70. Show that:

n cos (n+1) xsin nx
(@) cos?x+cos?2x+...+cosnx= 5 + cos(nt1) xsinnx ,
2 2sinx
n cos (n+ 1) x sin nx

Y s 9 (e} — T TN
(b) sin®x+sin?2x+ ... +sin*nx=3 9 sin x
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*71. Find the sums of:

(a) cos® x+cos® 2x+ ... +cos® nx,

(b) sin® x+sin® 2x+ ... +sin3 nx.

*72. Find the sums of:

(a) cosx+2 cos 2x+3 cos 3x+ ...+ r cos nx,
(b) sinx+2 sin 2x+3 sin 3x+ ... +# sin nx.

73. Find lim(l + %)" for a=a+bi.

R—>00

74. Definition: e*=Ilim (I + %)" Prove that

@ =1, (b) ev=—1,

(c) extB=e%.eB,  (d) (eX)*=e% for integral k.

Sec. 3. Equations of Third and Fourth Degree

75. Solve the following equations using Cardan’s formula:

(a) x*—6x+9=0, (b) x*+12x+63=0,

(©) x*4+9x%+ 18x+28=0, (d) x*+6x2+30x+25=0,
(e) x*—6x+4=0, (f) x*+6x+2=0,

(g) x*+18x+15=0, (h) x®*—3x2—3x+11=0,
(i) x®+3x2—6x+4=0, (j) x*+9x—26=0,

(k) x*+24x—56=0, (D) x*+45x—98=0,

(m) x*+3x*—3x—1=0, (n) x®*-6x2+57x—196=0,
(0) x*+3x—2i=0, (p) x®*—6ix+4(1—1i)=0,

(@) x®—3abx+a®+b3=0,
(r) x?—3abfgx+f3ga®+fg?b*=0,
(s) x*—4x—1=0; (t) x*—4x+2=0.
*76. Using Cardan’s formula, prove that
(1 —x2)® (X1 —x3)? (X2 —x3)2 = —4p®— 2742

if x;, x,, x5 are roots of the equation x3+px+¢g=0.
(The expression —4p3—274% is called the discriminant of the
equation x*+px+¢=0.)
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*77. Solve the equation
(x3—3gx+p—3pg)?—4(px+q)*=0.

*78. Derive a formula for solving the equation

x5 —5ax3+5a*x —2b=0.

79. Solve the following equations:

(a) x*—2x%+2x2+4x—8=0,

(b) x*+2x®—2x%24+6x—15=0,

(c) xt—x8—-x2+2x—-2=0,

(d) x4—4x3+3x2+2x—1=0,

(e) x*—3x3+x2+4x—6=0,

(f) x4—6x3+6x2+27x—56=0,

(g) x*—2x3+4x2—2x+3=0,

(h) x2—x3—-3x2+5x—-10=0,

(i) x*+2x34+8x24+2x+7=0,

(j) x*+6x3+6x2—-8=0,

(k) x*=6x3+10x%>—2x—-3=0,

(1) x*—2x34+4x?+2x-5=0,

(m) x*—x*—3x%+x+1=0,

(n) x*—x*—4x?+4x+1=0,

(0) xt—2x34+x2+2x—1=0,

(p) x*—4x>—2x?—8x+4=0,

(@) x*—2x*+3x2—2x—-2=0,

(r) x*—x3+2x—1=0,

(s) 4x*—4x3+3x2—2x+1=0,

(t) 4x?1—4x®—6x%+2x+1=0.

80. Ferrari’s method for solving the quartic equation x*+

+ax?+bx?+cx+d=0 consists in representing the left member
in the form

(o G x5 ) = [(F +2=b) 2 (F-c)x+ (3 -d)].
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Then A is chosen so that the expression in the square brackets is
the square of a first-degree binomial. For this purpose it is neces-
sary and sufficient that

(%)\—0)2—4(ﬁ*+7\ b) (4 —d)=0.

that is, A must be a root of some auxiliary cubic equation. Ha-
ving found 2, factor the left member.

Express the roots of the auxiliary equation in terms of the
roots of the fourth-degree equation.

Sec. 4. Roots of Unity

81. Write the following roots of unity of degree
() 2,(b) 3, (9) 4, (d) 6, () & (F) 12, (g) 24.
'82. Write the primitive roots of degree

(@) 2, (b) 3, (c) 4, (d) 6, (¢) 8, (f) 12, (g) 24.
83. To what exponent do the following belong:

(@) z =cos X" 4 isin 2T for k=27, 99, 137;

1807

(b) z,=cos e

i +isin1—M— for k=10, 35, 607

84. Write out all the 28th roots of unity belonging to the ex-
ponent 7.

85. For each of the roots of unity: (a) 16th, (b) 20th, (c) 24th,
indicate the exponent it belongs to.

86. Write out the ‘‘cyclotomic polynomials” X, (x) for n equal
to:

@ 1,(0)2,(0)3,(d)4,(©5,()6,(8) 7, (h) 8, (D9, (5) 10, (k) 11,
(1) 12, (m) 15, (n) 105.

*87. Let ¢ be a primitive 2n-th root of unity. Compute the sum
l+e+e?+...+e" L

*88. Find the sum of all the nth roots of unity.

*89. Find the sum of the kth powers of all nth roots of unity.

90. In the expression (x+a)™ substitute in succession, for a,

the m mth roots of unity, then add the results.

*91. Compute 1+2e+3e*+...+ne""!, where ¢ is an nth
root of unity.
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*92, Compute 1+4e+9e%+...4+n%e""1, where ¢ is an nth
root of unity.
93. Find the sums:
n—0m

(a) cos 2~ +2cosﬂ+. . .+(n—1)cos2*,
n n n

(b) sin 24 2sin Tt (a—D)sin 200D

*94, Determine the sum of the following primitive roots of
unity: (a) 15th, (b) 24th, (c) 30th.

95. Find the fifth roots of unity by solving the equation x°—
—1=0 algebraically.

96. Using the result of Problem 95, write sin 18° and cos 18°.

*97. Write the simplest kind of algebraic equation whose
root is the length of the side of a regular 14-sided polygon in-
scribed in a circle of radius unity.

*98, Decompose x"—1 into linear and quadratic factors with
real coefficients.

*99, Use the result of Problem 98 to prove the formulas:

.oom . 2% . (m=bhr V' m
(a) sin 5 —-sin 5— ... sin - =0

. 7 . 2r . mm V2m+1
(b) sin o1 S gy o S g =

n—1
*100. Prove that | | (a+bey)=an+(—1y-15n
k=0

where

2kre ., . 2w
€,=C08 — +isin-——-.
n n

*101. Prove that

n—1
(e#—2¢, cos O@+1)=2 (1 —cos n0®),
=0

x

if
2k . . 2kmw
€, =COS T +18in T .
102. Prove that

n—1

[1-2=0 ~ [T (e 1y

k=0 =1

S
!

Ead
il

2kr . . 2knm
where ¢, =cos — - Tisin e
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*103. Find all the complex numbers that satisfy the condition

¥=x""1 where X is the conjugate of x,

104, Show that the roots of the equation A (z—a)*+u (z—b)"=
=0, where A, i, a, b are complex, lie on one circle, which in a parti-
cular case can degenerate into a straight line (» 1s a natural number).

*105. Solve the equations:

@ (x+D"—(x—=1)"=0, (b) (x+i)"—(x—i)"=0,
(c) x"—nax"~1—Cla®x"2—...—a"=0.

106. Prove that if 4 is a complex number with modulus 1,
then the equation
( I4ix )m
=4

[—ix

has all roots real and distinct.
*¥107. Solve the equation

cos ¢ + C! cos (¢ +a)x + C2cos (¢ +2x) x*
+ ...+ C,cos (¢ +no) x"=0,

Prove the following theorems:

108. The product of an ath root of unity by a bth root of unity
is an abth root of unity.

109. If @ and b are relatively prime, then x*— | and x?— 1 have
a unique root in common.

110. If a and b are relatively prime, then all the abth roots of
unity are obtained by multiplying the ath roots of unity by the
bth roots of unity.

111. If a and b are relatively prime, then the product of a pri-
mitive ath root of unity by a primitive bth root of unity is a pri-
mitive abth root of unity, and conversely.

112. Denoting by ¢ (n) the number of primitive nth roots of
unity, prove that ¢(ab)=¢(a)p(d) if a and b are relatively prime.

*113. Prove that ifn=p{ pj!‘,’...p:k, where py, ps, ..., D, are

distinct primes, then

=i L)1- 1) o 1-4).

114, Show that the number of primitive nth roots of unity is
even if n>2.

115. Write the polynomial X, (x) where p is prime.

*116, Write the polynomial X (x) where p is prime,
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*117. Prove that for n odd and greater than unity, X,,(x)=
= X, (—x).

118. Prove that if d is made up of prime divisors which enter
into n, then each primitive ndth root of unity is a dth root of a
primitive nth root of unity, and conversely.

*119. Prove that if n=)p} p$: ...p:" where py, par -, Dk

are distinct primes, then X, (x)= X, (x"") where

’ " n
R=pbPy - P W=7 -

*120. Denoting by w(n) the sum of the primitive nth roots of
unity, prove that p(n)=0 if n is divisible by the square of at least
one prime number; w(n)=1 if n is the product of an even number
of distinct prime numbers; w(m)= —1 if n is the product of an
odd number of distinct prime numbers.

121. Prove that Zp(d)=0 if 4 runs through all divisors of
the number n, n #1.

*122. Prove that X, (x)=1II (x%— l)u (d) where d runs through
all divisors of n.

*123. Find X,(1).

*124. Find X, (—1).

*125. Determine the sum of the products of the primitive
nth roots of unity taken two at a time.

*126. S=1+4+e+e*+e’+...+em D" where ¢ is a primitive
nth root of unity. Find | S |.



CHAPTER 2

EVALUATION
OF DETERMINANTS

Sec, 1, Determinants of Second and Third Order

Compute the determinants:

2 3 2 1 sino cosa
127. (2) 1 40 (b)’—l 2" —cosa sina
a c+di a+PBi v+
(d) c—di b | vy—98i a—pi|’
sinoa cosa cosa sina
)] sing cosg” @ lsing cosp |
tana -1 |

1472 2_1/3‘,

® 1 tan« |’ (i)|2+]/§ I-V2

. 1 log, a ‘a+b b+d |
(1) log, b 1 la+c c+d)’
a+b a-b| x—1 1
M a—b a+b| (m) X x4+ x+1 ‘
W °
-1 o

2

2r ..
where w=cos & +ising,

e |1
—-1 =

(0)

T . e TT
where €=¢cos z Hisin 7.
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1 1 1 0 1 1
128, (a) | -1 0O Ly, b)!1 0 1],
-1 -1 0 1 1 0
a a a 1 1 1
()| —~a x|, (d)|1 2 3],
-a —-a x 1 3 6
1 i 1 +i
(e)y| —¢ 1 0 |,
[-i 0 1
1 cosg+ising cos %+isin%
(f) | cos »g—ising— 1 0052—;+isin% ,
cos %—isin % cos %»—isin % 1
1 1 1]
2)|!] o m2| where o =cos 2§Tr+isin —375
1 o o
1 1 o
(hy| 1 1 w?{ where w=cos 233+isin 233
o o |1

Sec. 2. Permutations

129. Write out the transpositions enabling one to go from the
permutation 1, 2, 4, 3, 5 to the permutation 2, 5, 3, 4, 1.

130. Assuming that 1, 2, 3, 4, 5, 6, 7, 8, 9 is the initial arran-
gement, determine the number of inversions in the permutations:

(@ 1,3,4,7,8,2,6,95;, 02,1,7,9,8,6, 3,5, 4;

() 9,8,7,6,5,4, 3,2, 1.

131. Assuming 1, 2, 3,4, 5,6, 7, 8,9 to be the initial ordering,
choose i and k so that:

(a) the permutation 1, 2, 7, 4, i, 5, 6, k, 9 is even;

(b) the permutation 1, i, 2, 5, k, 4, 8,9, 7 is odd.

*132. Determine the number of inversions in the permutation
n,n—1, ..., 2, 1if the initial permutation is 1, 2, .... n.
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*133, There are [ inversions in the permutation oy, o, ..., o,.
How many inversions are there in the permutation «,, «,_q, ...,
az, al? . . . . .

134. Determine the number of inversions in the permutations:

(@ 1,3,57, ...,2n—1,2,4,6, ..., 2n,
(b) 2,4,6,8, ...,2n,1,3,5, ..., 2n—1

if the initial permutation is 1, 2, ..., 2a.
135. Determine the number of inversions in the permutations:

(@ 3,6,9,...,3n,1,4,7, ...,3n—2,2,5, ..., 3n—1,
b) 1,4,7,...,3n—2,2,5, ...,3n—1,3,6, ..., 3n

if the initial permutationis 1, 2, 3, ..., 3n.

136. Prove that if a,, a,, ..., a, is a permutation with I the
number of inversions, then, when returned to its original orde-
ring, the numbers 1, 2, ..., n form a permutation with the same
number of inversions I.

137. Determine the parity of the permutation of the letters 4,
r, m, i, a, g, o, | if for the original ordering we take the words (a)
logarithm, (b) algorithm.

Compare and explain the results.

Sec. 3. Definition of a Determinant

138. Indicate the signs of the following products that enter
into a sixth-order determinant:

(2) A29031845056014965, (D) Q3204301 4051066025

139. Do the following products enter into a 5th-order deter-
minant:

(2) G13024053001855, (D) G310130348550457

140. Choose i and k so that the product a;a5,a4.455a55 enters
into a fifth-order determinant with the plus sign.

141. Write out all the summands that enter into a fourth-or-
der determinant with the plus sign and contain the factor g,,.

142. Write out all the summands that enter into a fifth-order
determinant and are of the form a;,ds405,,804,35,,. What will
happen if a,,a,4 is taken outside the parentheses?
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143. With what sign does the product of the elements of the
principal diagonal enter an nth-order determinant?

144. What sign does the product of elements of the secondary
diagonal have in an nth-order determinant?

*145. Guided solely by the definition of a determinant, prove
that the determinant

oy o oy oy o
Br B Bs Bs Bs
aq a 0 0 O
b, b, 0 0 O
g ¢ 0 0 0

is zero.
146. Using only the definition of a determinant, evaluate the
coefficients of x* and x® in the expression

2x x 1 2
1 x 1 =1
fB=l3 9 » 1
1 I 1 x
147. Evaluate the determinants:
1 00 . 0 0 0 0...0 1
0 2 0 .0 (b) 0 0 0 10!
(a) ..............
0930 100..00|
0 0 O n
I a a
0 2 a
©]o 0 3
0 0 0 n

Note: In all problems, determinants are taken to be of order n
unless otherwise stated or unless it follows from the conditions
of the problem.
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148. F(x)=x(x—1)(x—2)...(x—n+1).
Compute the determinants:

F(O)  F(1) F(2) F(n)
@) | F(1) F(2) F(3) ... F(n+1).
Fr) F(n+1) F(nt2) ... F(2n)]
F(a)  F'(a) F(a) F (a)
(by| F'(a) F" (a) F"(a) ... F»*D(a)
| F(n) (a) F(Il+1) (a) F(n+2) (a) . F(Zﬂ) (a) i

Sec. 4. Basic Properties of Determinants

*149, Prove that an sth-order determinant, each element a;,
of which is a complex conjugate of a;, is equal to a real number.

*150. Prove that a determinant of odd order is zero if all its
elements satisfy the condition

ay+a,;=0
(skew-symmetric determinant).
he d . i Gz - Gin | Lio A
151. The determinant Gy Gy ... Gy, 1s equal to A.
Aui pz o .. Gy,

To what is the following determinant equal

l Aoy dgy ... dg,

; Q3 G3p ... Qg

T ?
anl an2 ann
a1 dye iy

152. How is a determinant affected if all columns are written
in reversed order?
*153. What is the sum of

Aa, Gray - .. i,
T | Gex  Goa, Ao,
a"al a"aﬂ a"an

if the summation is taken over all permutations of &y, «,, ..., &,?
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*154, Solve the equations:

| x2 xn=1
1 a  a ai~!
(a) | | a, a3 aj~! =0
2 n—1
l dp—1 Qp_1 .. 4p_|

where ay, a,, ..., a,_, are all distinct;

] 1 1 |
Il 1—x 1 ]
®l 1 2-x ... 1 =0;
I 1 1 (n—1)—x
a; ds as a,
a4 ayta,—x as a,
(c) a, a, aytas—x ... a, =0.
! a, a, as I I /g 4

*155. The numbers 204, 527 and 255 are divisible by 17. Prove
that 17 divides

2 0 4 }
5 2 7
2 5 5

*156. Compute the determinant
!oc2 (x+1)2 (x+2)2 (a+3)
B @D B2 (B43)
v+ (v+27 (v+3P
P32 (B+1)2 (3+2?2 (B3+3)
157. Prove that
b+c c¢c+a a+b ra b ¢
bi+e¢ c+a a+b |=2 |a by o
by+cy, cota, a,+b,
158. Simplify the determinant

2 2

2

az by ¢
am+bp an+bg ‘ by expan-
em+dp cn+dg

ding it into summands.
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159. Find the sum of the cofactors of all elements of the de-
terminants:

160. Expand the following determinant by the elements of
the third row and evaluate:

1 0 -1 -1
0 -1 -1 1
a b ¢ d
-1 -1 0

|
I
|

161. Expand the determinant

2 1 1 x
1 2 1 y
11 2 =z
1 1 1 ¢

by the elements of the last column and evaluate.
162. Expand the determinant

QU O o9

1 1
0 1
1 1
1 0

—_— O =

by the elements of the first column and evaluate.

Sec. 5. Computing Determinants
Compute the determinants:

*163. | 13547 13647 164.\ 246 427 327’
28423 28523 | ‘ 1014 543 443 |.
—342 791 621’
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<+ — N ™ N
™M = — N —_ = = |
AN M~ N AN~ N
— M < _ : —_—
- oo o IoNP -
g R pllalie v
= S O © - x - - —
. N~ n O O o A N
- e © 1O — o = a.w
= — |
— o o <
— M © O | n — o o ~ L2
= At 2 8
—_— N M <N A - = a“ . Q O
o ~ - "
—_— ot o — D — . o T NN
- © =% O
oMM
. - oo -~ — R _ I+
& ® ==
T e o)
- — < © < — —_ — O R O 8 3
—_ O AN AN —_ (5 TN
—_— — — —_— — D
11111
— —~
—_— = ™ L _ - 5 o [ %L I
—_ — o - = = ™ 1+
— N O — N — = O RO — — N RSRCH
—_ D — — - o
Q O
o I e T T R T o B — O = = Mot et OO e e N 3 O
0 ) = ~ - 9 ~
& ] = =~ ~ = =~
- — — — —( — —

sin(b+c¢) sin{c+a)

| sin (a+b)
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178. 0 a b ¢
—a 0 d e
—b —d 0 f|
—c —e —f 0

*179. 1 2

----------------

*180. |1 @  a

1 a1+b1 as n

1 a  aytb, "

l a as a,+b,
*181. | 1 x; X3 ... Xpo1 X,

I x Xy Xp—1 n

1 x5 x Xp—1 Xn

1 % x x X,

1 x5 x Xpi X
*182. 11 2 3. n—1

1 3 3. n—1

1 2 5. n—1

1 2 3 2n—3 n

1 2 3 n—1 2p-1
“183.11 2 2 ... 2

2 2 2...2

2 2 3...2)

2 2 2 n

2. 1215
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*184.

*185.

*186.

*187.

*188.

*189.

PART 1. PROBLEMS

1 b, 0 0 0 0
-1 1-4 b O0 ... O 0
0 -1 1-by b,... O 0
0 o0 0 0 ... 1-0,4 b,
0 o 0 0 -1 1-b,
a a+h a+2h ... a+(n=1)h
—a a 0 0
0 -a a 0
0 0 0 cen a
a —(a+h) ... (—1yta+(@n—1)h]
a a 0
0 a 0
0 0 .. a
1 ¢ ¢ ¢ cr2 cr-locn
1 ¢, Ci., Ci, S ¢l BV
1 ¢, ci_, Ci, cr=g 0 0
1 ¢} C3 0 0 0 0
1 Cl 0 0 0 0 0
a4 & a ag ... Qug Guy Gy
a -1 0...0 0
a x -1 . 0 0
a, 0 x...0 0
ey 0 0...x -1
a, 0 0...0 x
n n—1 n-2 3 2 1
-1 x 0 0 0 0
0 -1 0 0 0.
0 0 0 -1 x 0
0 0 0 0 -1 «x
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*¥190. Compute the difference f{x+1) —f(x), where
1 0 0 0 .. 0 x
1 2 0 0 0 X2
3
re= L 200 R
1 n cz cs . Comloxn
1 n+l C2., C3.y ... Cogl xn¥?
Compute the determinants:
*191. | x a ay ... Gy 1 *192.
a x a a,_, |
a a Xx a,_, 1 a
a, a as x 1 a aa...x
a; dz 4 a, 1
193. x a a a
—a a a
—a —a a a
—-a —a -—a —-a x
*194. | — a, 0 0 0
0 -—aqa a, 0 0
0 0 —a 0 0
0 0 0 ... —a, a,
1 1 P ... 11
*195. |a;, —a, 0 .0 0
0 a, —a; ... 0 0
0 0 a, 0 0
0 0 0 ... a., —a,
1 1 | I l+4a,

35
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*196.

*197.

*198.

*199.

*200.

*201.

PART 1. PROBLEMS

h -1 0 0 0
hx h -1 0 0
hx*  hx h -1 0
hxt hx*~1 pxnm? pxnd h
011 1
| x
1 0.
1 x .0 x
1 x...x 0
0 1 1 1
1 0 a+a, a;+a,
1 ay+a 0 a,+a,
1 a,+a, a,+a, 0
1 2 3...n-1 n
1 1 1 1 l—n
1 1 | S R 1
1 1—-n 1 1 1
2 LI 11
n n n
L ) 11 11
n n n
QLIS DU I B 2
n n n

(order n+1).
1l a a & ...a
X 1 a & ... a7t

n—2 | *
Xy X 1 @ ... a

...................
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*202. | 1 2 3 4 n
2 1 2 3 n—1
3 2 1 2 n—2 1,
4 3 2 1 n—-3
n n—1 n—2n-3 1
#203. | a, by 0 0 0 0
a; —b, b, O 0 0
a, 0 -5, b, 0 0
ay—3 0 0 0 —bn—z bn
a, 0 0 0 0 —b,_4
*204,
|a @ 0 0 0 0
1 2a+b (a+b)* 0 0 0
0 1 2a+3b (a+20)2 ... 0 0
0 0 0 0 veo 2a4+(2n-1)b (a+nbp?
0 0 0 0 1 2a4+(2n+1)b
*205. *206.
xy 0...00 I+xy l+xp, ... 1+xy,
0 x yp...00 l+xp T+xp, 1+, p,
0 0 O e X Y ‘ 1'l'xnyl l+xny2 1+xnyn
y 0 0.,,..0 x
207. al—bl al—bz al—b”
ay—by ay—b, a,—b,
a,—by a,—by ... a,—b,
*208. 1+al+x1 AG+Xy oae as+ x,
ay+ X l‘+az+x2 . as+ x, .
a,+ Xy a,+x, V+a,+x,

37
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209. at—ao atl—a ... gt l—q
an+p —a an+p+1 - . an+2p—1 —a
an+p (- o an+p (p—1)41 _ o .. an+p“—1 —

210. Prove that the determinant
Hla) fi@) ... fila,)
fala) fa(as) ... fa(ay)

Jal@) fa(a) ... fu(a)

is equal to zero if f;(x), fo(x), ..., f,(x) are polynomials in x, each
of degree not exceeding n—2, and the numbers a,, a,, ..., a, are
arbitrary.

Compute the determinants:

*211. 1 2 3 4...0n-1 n
-1 x 0 0. 0 0
0 0 0 0. x 0
0 0 0 0. -1 x
*212- a1+ xl (12 aa “ e an—] all
—x x 0 0 0
0 —X; Xy 0 0
0 0 0 —Xp—1 X
*213. *214
ay a, a, a,_, a, 0 1 1 .1
- X1 0 0 0 1 ay 0 0
0 —Ys X 0 0 1 0 as 0
0 0 0 - X, 1 0 0 a,
*215. | pla, (n—1)a, (n—2)la, ... a,)
—n x 0 . 0
0 —(n-1) X . 0
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216. |1 O O O 1
l ¢ 0 0 O :
it.
11 o 0 0
1 0 1 a O
1 0 0 1 gq
Compute the determinants:
217.
a+fB  of 0 0 0
1 a+f  of 0 0
0 1 a+p 0 0

.......................

*219. | 2cos 0 1 0...0
1 2c080 1 ... 0
0 0 0 1
220. | cos® 1 0
1 2cos0 1
0 1 2cosf ...
0 0 0
*221 *222
x 1 0 0 X Y1 XY
I x 1 0 X1Ys X2 )2
0 1 x 0 X1Vs X)s
00 0...x X1¥n X2 ¥n
*223 ]+a1 1 1
1 1+a, 1
1 1 l+a,
1 1 1

218.

ooooo

...................

39

Write an nth-order determinant
of this structure and compute
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224. 1 1 1 g+l
1 1 a,+ 1 1
1 a,_,+1 | 1
a,+1 1 | 1
*25. | g, x x ... x
a, x x
X ag
x x x a,
*226. *227
X1 Gy a3 ... 4y, 4, x;  aghy azb, ...
4, Xy as Ap-1 Gy arby, x, azb,
a, a4 X, Ap_1 ay arby ay by  x,
a, a; a, Xp-1 @y ab, ayb, ayb,
a4 4 43 ... Gy n
*228. | x;—m  x, Xg Xn
X1 Xg—m X, Xy
Xy Xy Xy —m Xy
X1 Xa Xy ... Xy—m
229. Solve the equation
a, a ... a,_, ap— oy X
I a, Apo1— &Xpy X a, =0
ay— e X ay ... a,_, a,

*230. |a O O ... 0 O b
0 a O 0 b 0
0 0 a...5 00
IR (of order 2n).
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*231.

*232.

*233.

*234.

*235.

CH. 2. EVALUATION OF DETERMINANTS

1 -b -b —-b —b
1 na -2 -3 ... —(n=-1)>d
i1 (n—1a a -3 ... —-(n=1)b
i1 (n-2)a a a... —(n=1)b
1 2a a a a
(x—a)* a a;
a (x —ay)? az
a a3 (x —a,)
(x— a) a,d, a; a,
a; ds (x — ay)? aq ay
a, a, a, a, (x—a,)
l—'bl b2 O 0 0
-1 l-b, b, 0 . 0
0 -1 1-b, b, 0
0 0 0 0 1-5,
0 a a a y-1 4,
b 0 a3 a a,., a,
by by 0 aq, a, ., a,
b, by, by b, 0 a,
b, by by by . b,., O
*237,
3 4 5 n 1 2 3 4., n
2 3 4 n—1 x 1 2 3. -1
1 2 3 -2, |x x 1 2.
x 1 2 -3 x x x 1. n—-3
X x x 1 X X x x 1

41
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*238. | a,.." a, A" @ x"t? Ll a,_ x a,
Qg X by 0 0 0
ay X2 a, x b, 0 0
Qy X" gy X"t gy xt3 b,., O
ay x" a; x*1 gy xt? au_1Xx b,
*239, Prove that the determinant
Qog X" Aoy X" @ X" L. a4y, ] Qoo gy s - - - Gon |
Q1o X an 0 0 a1 911 0
Qoo X g X Qo2 0= Qg Qg Gy - 0
Ano X" @y X" @y X2 Ay Ano Ay Q2 .+ -+ Qyy
Compute the determinants:
*240. ' *241,
1 1 1 1 1 1 1
1 ¢y i C, Crn Chi Chntn
1 3 Ci Ciil| Ciyi Chio Clnt
1 cit i Csly Chin Chn o Chipon
*242, *243,
1 1 0 0 0 Ch CiH Chtr
1 ¢, ¢c3 0 0 Chyr CHHY Crin
| ) , N
UG SO OSN B K T
1 ¢, ¢ ¢ ... cr
*244. C?+m CZ’-l-m-I-l CZI+2m
Civm+1 Clymye Cliomt
Cliom Cliomer - Clyam
*45.11 0 0 ...0 1
1 ¢} 0...0 x
1 ¢cicg...0 x2 |°

LR I S A IR TN S P S

1 ¢ ci...Ctxm
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*246. |1 O 0
1 It 0
1 2 21
1 3 3.2
l » nn-1

*247,

o o493 o423

o 20438 Jo 433

o doutd 604438

................

*248.

-------------

0 1
0 x
0 x%
3! x3
) ni=D)(a-2) ... x|
a+ 33 a+(m—1)3
4+ 63 Cle+C23
100("‘108 . C,21+105+C2+18 )

..........................

*249.

.............

0 b b
251.
¢ a a 1
b ¢ a 1
b b ¢ 1
b b b ...c, 1
1 1 1 ...1 0]
253,
1 2 3... n |
234.1{
3 45..2 |
n 1 2 ... n—1]
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*254. a at+th a+2h ... at+(n—1)h
a+h a+2h  a+3h ... a
a-+2h a+3h  a+4h ... a+h )
a+(m—1)h a a+h a+(n——2)h’
255. 1 x  xF ... xn1 *256. |a b ¢ d
x-t 1 x xn—2 b a d c
----------------- c d a b
X x2 X3 1 d c b a
257. *258.
a b ¢c de f g h X a; a, a,
b ad c f e h g a, X a n
c d a b g h e f 4 a a «
d ¢ b a h g [ e
e fgh ab c d|
f e h g b a d c
g h e fcd ad
h g f e d c b a
*259, | cos""lg; cos""%¢; ... cosgp, 1
cos" 1o, cos”™2q, ... cosg, |
cos" to, cos""Zo cosg, 1
260. 1 1 1
sin ¢, sing, ... sing,
sinfg, sin®g, ... sin%g,
sin""te; sin®e, sin"~l¢

261. | g»  (a—1y ... (a—n)y
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262. | (ay+x)" (@ +xp? a+x 1
(ay+ x) (@ +xy~t ... at+x 1

..............................

(an+l+ X)" (an+1+ x)n—l eve Guia +x 1
263. | (2n—1) 2n=-2y ... n» (2n)y

..............................

2n—1 2n—-2 n 2n
1 1 1 1
*264. | wy, a; af at~!
wy a, a3 ag™!
w, a, a a;~!
*2685.
1 1 1 |
x+1 Xp+ 1 xg+1 x,+1
X7+ X, x5+ x, X3+ x4 x2+x,

AR T xg? xRy L T X

1 1 1
1 +sin ¢ l +sing, ... 1 4-sin g,
sin ¢ -+ sin® ¢, sin@, +sin®¢, ... sing,+sin¢,

sin" 2@, + sin""t¢, sin"~2@,+sin""l¢, ... sin""2q, +sin* 1o,
267. 1 1 eee 1

?1 (1) @1 (xs) ... P1(xn)
@s (x1) @a(xa) ... Pa(x)

Pp1(X1) Ppa (%2) «.. Ppo1(x)
where @, (x) =x*+ay X+ ... +ay.
268. 1 1 e 1

F,(cos¢y) Fy(cospy) ... Fi(cose,)
Fy(cos ¢y) Fy(cosg;) ... Fy(coseqy,)

Fn-—l (COS (Pl) Fn—-l (COS (PZ) e F,,_l’(COS (Pn)
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where F, (x)=aq, x*+ay, x*~

*269. 1 1

I. PROBLEMS

1+"'+akk‘

where z :3‘.(1—_;)..2-- (x—k+1)
*270. Prove that the value of the determinant
1 al a%
1 02 a%
1 a n a%

is divisible by 1771272 .., (n—1) for integral ay, g, ..., 4,

Compute the determinants:

*271. *272.
1 2 3 .. R X Xg _*n
1 93 33 n? X —1 Xp— 1 Xp—1
.................. : X Xy X,
an—1 2n—1 2n—1 2 9 )
1 2 3 ... B X1 x5 Xx;
xpmt xgd xi-l
*273. | a} ai~'b; a—2b? a, b1 ?
a;  as7'bhy,  a3T?h} a; by~ 2
n—1 n—2 12 —1 :
@y @by anyd b1 ap+1 b71+1 bhi
274.

sin"~ o, sin" 2oy cosay ...

in"lo,sin®""2a,co80, ...

.............

o,
sin*~t o, sin"" 2 o, cos %, ...

sin o, cos® 2o, cos?"loy
sin oy cos” 2o, oSy
sin o, cos” 2o, cos*lo,



*275.
a"+1  alrl'+a, " +at catl tap!
a@'+1 a'+a, ad"%+a} . ajti gyt
ai+1 a'i'ta, @ tany ... afl+arl aly
*276. | 1 cosq, cos 2, . cos(n—1)q,
1 cosop, cos 2, . cos(n—1)op,
1 coseq,; cos2p,.y ... cos(n—1)e,_,
*277. | sin(n+ 1) oy sinne, ... sin g
sin(p+1)oy sinme; ... siney
sin(n+1)a, sinne, ... sinw,
*278. | 1 |
X (a—1)  x(x—1) ... x,(x—1)
qn—1)  %0u-1) X (x,— 1)
=1 BT e—1) ... a7 (x,— 1)
*279. 1 1 | 11 *280. 1 1
X x§ ... x2 Xy Xp
x X3 ... %8 x? x5
X X3 ... xP xp7? xg?
xf x3
281. *282,
1 1 1 T+x 145 ... 1457
Xy X Xn T4x L% ... 1+x8
9 0 I R R
LR " L+, 1+ ... L4
xlv—l x§—l Xf,_l
x7+l x§+l x;v’+l
S Xn

CH. 2. EVALUATION OF DETERMINANTS
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283. 284.
1 x x2? x3 1 x x? x3 x2
x3 x? x 1 1 2x 3x2 4x* bxt
1 2x  3x2 43| I 4x 9x* 16x3 25xt
4x* 3x?  2x 1 1y » » »
1 2y 3y* 4° 5
*285, | 1 x X2 ... X"
1 2x 3x2 ... (m+D)x
1 22x 3Ex ... (m+1)Ex
l 2n-—1 x 3n-1 x2 .. (n+ ])n—lxn
Iy » ... y
*286. | | x x ... x?
1 2x 3x2 nxn—1
1 22x 32 x2 n? xr~1
| . .2.k._; x .3.k;£ ,.Cz ..... n.k._l. ).cn._.l
L » i !
1 Y2 Y 5!
1 Yot yz—k yﬁzlir
*287. | 1 x x® xr-1
0 1 Cix Cl_ xm—2
0 0 1 C2_ x3
0 0 Ck=| xn—k
1 ¥y y2 . yn—-l
0 I Ciy ... Ci_,y?
00 O . Crzk-lyk
288.

(a) Write the expansion of a fourth-order determinant in terms
of the minors of the first two rows.
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(b) Compute the determinant

1 2 2 1,
‘0 1 0 2
12 0 1 1
‘0 2 0 1

usin » the expansion by minors of the second order.
(¢) Compute the determinait

12 0
e
| 0 2
0 0 1

N = O C

1
2
1
0

via an expansion by second-order minors.
(d) Compute the determinant of Problem 145,
Compute the determinants:

(e) [ 1 1 1 0 0 O f)]ag 0 b O J
2 3 4 0 0 0 0 ¢ 0 4
3 6 10 0 0 O bb 0 a, O 7
4 9 141 1 1Y} 0 d 0 ¢
5 15 24 1 5 9
|9 24 38 1 25 8l
(g)ll I 0 0 0 1 Mjr 0 0...0 a
% x 00 0 x x o B B »n
la, b, 1 1 1 ¢ ixz B « B ..
a, by x; Xy X3 €y x, B B ...«
@ by %X oa a 0 0...0 A
[x} x3 0 0 0 x3

(i) Compute the determinant of Problem 230 using the Lap-

lace theorem.
(i) Compute the determinant of Problem 171 using the Lap-

lace theorem.
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(k) Compute the determinant

1 1
2 3
1 1

- O O
- O ©

1
1
0
0 x3 x X3 X
0 x} x3 x3 x3

() Let 4, B, C and D be third-order determinants formed
from the array
a by ¢ 4
(az by ¢ dz)
a; by ¢y d

by deleting the first, second, third and fourth columns, respec-
tively. Prove that

a b ¢ d
a, by, ¢, dy
as by c¢3 ds
0 0 o b ¢ 4
0 0 a by, ¢ 4,
0 0 a3 by ¢y dy

o O O
o O ©

=A4D —BC.

(*m) Compute the fifteenth-order determinant

A A A
A, A A
A, A A

formed (as indicated) from the following blocks:

a x x —x —x 1

x 2a a 0 0 0

A= x a 22« O 0f, A,={0
—x 0 0 2a 0

—x 0 0 a 2a 0

o O = N O
O O N — O
— N O O O
N — O O O
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Sec. 6. Multiplication of Determinants

289. Using the rule for multiplying matrices, represent the
following products of determinants in the form of a determinant:

4 3“ 1 -2
@)y 3| -3 ol
3 2 5;]-2 3 4
®| -1 3 6[]-1 -3 5],
1 -1 2 2 1 -1
2 1 11
-1 2 1 1|13 1]]-21
©F_y —1 2 1"1 3*‘_1 2*
-1 -1 -1 2

290. Compute the determinant A by multiplying it by the
determinant 3:

1 2 3 4
1 0 -3 -8
@ A= 1 1 o —13]
23 5 I5
1 -2 -3 —11
0o 1 0 2
=10 0 1 1]
0 0 0 I
~1 -9 -2 3 1 00 0
-5 5 3 —2 —2 100
A=l 19 6 1 1] %] 3921 0]
9 0 -2 1 _3 4 2 1
a b c d 1111
b a d c 1 1 -1 -1
@A=1 ;2 %=1 -1 1 4
d ¢ b a 1 -1 =1 1



52 PART .

291. Compute the square of the determinant:

PROBLEMS

1 1 1 1 1 -1 1 -1
1 1 -1 -1 2 2 1 1
@ 1 oy 2 0 -3 -1
1 -1 -1 | 3 -7 -1 9
a b c d
—b a —d c
() —c d a =b|
-d - b a
292, The determinant
Ggo ap, Qo Gy, n—1
1o an 1z Q,n-1 | =D,
qn-1,0 Gn-1,1 On-1,2 Gp—1,n-1
What is
o (1) o (X2) o (%)
1 (1) @1 (X2) @1 (%)
Pu-1(X1) @1 (32) oo Puo1 ()

where @; (X)=ay;+ayx+...+a,-1,; x""1?
Use the result obtained to find the solution of Problems 265,

267, 268.
Compute the determinants:
*293,
(botaoy (bytap) ... (bytay)
(a) (bota)” (brta) ... (b+a) ,
(bO + a")n (bl + an) (bn + an)
I —onps l—ui'B;' 1——%;'@;‘,
I— B - -0y By
l—onpn l—ocnﬁg l—oc;'BZ
®) | Top T-ab [0 Bn
L L I
1—e, By 1—o, By l_o‘an—
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sin 2, sin (o + o) ... sin (o + )
294, | Sin (oz+ o) sin2ay ... sin(oap+a,)
sin (o, + 0y) sin(o, +og) ...  sin2aq,
*295. | 5, 1 S ee. Spoq 1]
8 S 83 Sp x
Sp—1  Sn Spt1 Sop-g X"T1
Sn Spt1 Sptz ... S X7

where s;=xF+ x5+ ... +xk
*296. | a b c d

I
b —a —-d -c m -1 p —n
d —a -—b n
—c b —a )4 n —m -l
-m —n —p —a b ¢ d

-p l m —c¢ —d -—a b

¢
d
l
m l p —n =—=b -—a d -—c¢
n
P

n —-m I —d ¢ —-b —a
*297. | cosep sing  cos¢g sin ¢

cos2p sin2p 2cos2¢ 2sin2e

cos3p sin3p 3cos3p 3sin3e

cos4p sinde 4cosde 4sinde
*298.
COS nep 1 .Ccos nY sin np n sin ne

cos(n+ 1)o (n+ cos(n+1)esin(n+ 1) (n+ 1)sin(n+1)¢
cos(n+2)e (n+2)cos(n+2)psin(n+2)p (n+2)sin(n+2)¢ '
cos (n+3)¢p (n+3)cos(n+3)psin(n+3)¢ (n+3)sin(n+3)¢

*299, *300.

1 1 | R Gy Gy Qg ... Gy
1 ¢ g? gn! AGy—1 Gp 4 A2
| “ T e e R ELEEEEEEE

day a; dz ... O

1 en-1 gD gn-Db? (cyclic determinant).

T . . T
where ¢=-cos ’—1+ZSIH *’—1-'
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301. Apply the result of Problem 300 to the determinant
'x u z y
y x u z
z y x ul|
U z y x

302. Apply the result of Problem 300 to Problems 192, 205,
and 255.
Compute the determinants:

303. 1 cl,ci, ... Cz? 1
1 L Gy --- G} G

304. 1 2a 3aq% ... na1

2a 3a® 4a® 1
305. (| s—a; s—a, -+« s—a,

S—a, S—ay S§—ap-q

S—a, S—ag sS—a ‘

where s=a;+a,+ ...+ a,

306. -1 C’llzn—2 CrQ‘tn—li P CZ—ZZ Cz—l
Gt Gt .. O O
o N R e A ot LR

Cur—® Cu =% Cym—t cmr ot
P n—p
307.] -1 -1 -1 -1 1 1 1
1 -1 -1 -1 -1 1 1
1 1 -1 -1 -1 -1 1

..................................



CH. 2. EVALUATION OF DETERMINANTS 55

*308. 1 oo " cosZE ... -1
n 1
—1 cos — cos =)
n n
(n-—l_)Tr 1 cos '(n =-2)n
...... -5371'
cos - cos —— cos —
n
309.} cos® cos20 ... cos nf
cosnd cos0 cos(n—1)0
cos 20 cos 30 cos 9
3190.
sina sin(a+h) sin(a+2h) - - - sinfa+(n~1)A]
sin[a+(n—1)h] sina sin(a+h) --- sin[a+(n—2)h]
sin(a+h) sin(a+2h) sin(a+3h) - - - sina l
*311.| 12 22 32 ... p?
n? 12 22 . (n—1)
R
| 22 32 42 12|

312. Prove that

a4y a; 4, 4y a; ay ay
a a, a; @ a; a d,
as 4 Gy a4 a4 a; a
a a 4y 4 a; a a
a4 4 Ay 4y Gy G a
a a, a, ay a, ay a;
a a Gy a 43 Gy G

=(ao+ 3a, + 3a,) (a§ — aga, — aya, + 24} + 245 — 3a,a,)°.
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313. Compute the determinant

a a, as a,
—a, & ) p-1
—ay_1 —a, a, Qy—2
—Qap —aq; —aq a,

(skew-symmetric determinant).

*314, Prove that a cyclic determinant of order 2n may be re-
presented as a product of a cyclic determinant of order » and
a skew-cyclic determinant of order ».

315. Compute the determinant

a, a, a4 a,
Wan 4G a; n-1
wa@p-1 W4, a4 Ap—2
Uay Was  ua, a |

Sec. 7. Miscellaneous Problems

316. Prove that if

Gy (x) ap (x) ... ay(x)
A(x)= Qg1 (x) Qg9 (%) ... Gy(X)
1 (X) @pz (%) @y (x)
then
aj; (x)  ajs(x) ai, (x)

an (X) () (X) pn (X)
ay (%) @ (x) a3, (%)
ag (x)  ag (x) az, (%)

al’l!(x) a;ﬂ(x) e ann(x)
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317. Prove that

ap+Xx Gptx ... G,tXx TR OT a4,
A +X GputX ... Gut+X| |Gy 4 a3n
Ay +Xx Gut+Xx ... GytTX ‘anl Qg - -+ Qpp
n n

+x Z A
k=1 i=1

where A, is the cofactor of the element a;;.

318. Using the result of Problem 317, compute the determi-
nants of Problems 200, 223, 224, 225, 226, 227, 228, 232, 233,
248, 249, 250.

319. Prove that the sum of the cofactors of all the elements
of the determinant

all alz L aln
g1 Az Aoy
anl an2 ann
is equal to
1 1 1
a1 —an A — Gy Qop— Q1p
Oy —0y11 A2 —Cqy12 " Quy—CQp_1,p

Prove the following theorems:

320. The sum of the cofactors of all elements of a determinant
remains unaltered if the same number is added to all elements.

321. If all the elements of one row (column) of a determinant
are equal to unity, the sum”of the cofactors of all elements of the
determinant is equal to the determinant itself.

322. Compute the sum of the cofactors of all the elements of
the determinant of Problem 250.

*323. Compute the determinant

(@ +b)7" (ay+bg)™t -+ (ay+b,)!
(ag+b)™Y (ap+by)™' -« (ag+b,)" .
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324. Denote by P, and , the determinants

aq 1 0... 0 0
-1 g 1 0 0
00 0 Qyy 1
00 O -1 a,_1
and
a 1 0. 0 0
-1 a 1 - 0 0
0 0 O Apy 1
00 0. -1 a,_1
respectively, and prove that
Eil ag+ 1
0. = T
@t az+
1
ap_1

Compute the determinants

*325. 326.
lca0 ... 00 pg0...00
bca ---00 2pq---00

......................

*327. Represent the determinant
au+x @ - ay

Qg Agt+Xx - 4y

am Ayt Gppt X
in the form of a polynomial in powers of x.
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*328. Compute a determinant of order (2n—1) in which the
first n—1 elements of the principal diagonal are equal to unity
and the other elements of the principal diagonal are equal to .
In each of the first n—1 rows, the #n elements to the right of the
principal diagonal are equal to unity and in each of the last n
rows, the elements to the left of the principal diagonal are n—1,
n—2, ..., 1. The other elements of the determinant are zero.

Forexample, |1 1110 1111100
01111 0111110
12300]; 0011111
0123090 1234000
00123 0123400
001234090
00012314
Compute the determinants:
*329. x 1 0 0..- 0 0
—n x—2 2 0 0 0
0 —(n-1) x—4 3 0 O
0 0 0 0 -..—-1x—2n
330. x 1 00-.-.-.00
n—1 x 290 00
0 n—-2x 3 00
0 0 00 I x
331.
x a 0 0 . 0 0
n(a—1) x—1 2¢ 0 ... O 0
0 @m-1){a~-1) x—-2 3a 0 0
0 0 0 0 - a—-1 x—n
332, ! [n-1 on—~1 e pn—1
9n-1 3n-1 (n+ 1)1

------------------------

”n—l (n+ 1)/1—1 . (2n_ l)n—l
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333. ;11 1
2 3 n

11 1 R

2 3 4 nt+l

r o1

n n+l nt2 2n—1

334. Find the coefficient of the lowest power of x in the deter<
minant
(1 + x 8.5, (1 +X)a1b2 ‘e (1 +x 2t
(1 +x)“zb1 (1 -l-x)aaba e (1 + x)aabn



CHAPTER 3

SYSTEMS
OF LINEAR
EQUATIONS

Sec. 1. Cramer’s Theorem

Solve the following systems of equations:

335, 2%, — x;— x3=4, 336, x4+ xp+2x5=-—1,
3xy+ 4xy— 2xy= 11, 2%y — Xy +2x5= —4,
3x,—2x, +4x3=11. 4%+ Xp+4xz=—2.

337, 3x;4+2x,+ x3= 5, 338, x;+2x,+4x5=3l,
2%+ 3%+ x3= 1, Ox+ x,+2x5=29,
2%+ X5+3x3=11. 3%, — x4+ x;=10.

339. x4+ Xo+2x3+3x,=1,
3x;— Xo— Xg—2x,= —4,
2% +3x,— X3— X,= —6,
X, +2x,+3x3— x,=—4.

340. x;+2x,4+3x3—2x,=6,
2xy— X3—2x5—3x,=8,
3%y +2x,— x5+2x,=4,
2%, —3x;+2x5+ x,=—8.

341, x;+2x,+3x5+4%,=5,
2%+ xp+2x5+3x,=1,
3x,+2x5+ x3+4+2x,=1,
4%, 4+ 3%, +2x3+ x,=—5.

342. X2—3X3+4X4= —‘5,
Xy —2x:;+3x,1= '—'4,
3x1+2X2 _SX4= 12,

4, +3x5—5x, =b.
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343,

34.

345,

346.

347.

348.

349,

PART 1. PROBLEMS

2%, — Xy+3x35+2x,=4,
3x,+3x,+3x5+2x, =6,
3x;— Xx3—x3+2x,=6,
3x,— Xx,+3x;— x,=6.

X1+ X+ x3+ x,=0,
X1 +2x%,+ 3x;+ 4x,=0,
X3 +3x,+ 6xg+10x,=0,
x1+4x, + 10x5+20x,=0.

X+ 3%, +5x3+Tx,=12,
3x;+8x,+ Txs+ x,= 0,
5%, +7x,+ X3+3x,= 4,
Tx1+ Xxa+3x3+5x,=16.

Xi+Xe+ Xg+ xa+  x3=0,
Xy —Xg+ 2x3— 2x,+43x;=0,
Xy +X+ 4xa+ 4dxg+ 9x;=0,
X1—Xo+ 8x;— 8x,+27x;=0,
X3+, + 16x5+ 1634+ 81x;=0.

X1+ 2%, +3x5+4x,=0,
X+ Xo+2x5+3x,=0,
X1 +5x,+ x3+2x,=0,
X1 +5x, +5x5+2x,=0.

X1+ Xo+ x5+ x4 =0,
X;+ X3+ x4+ x;=0,

X1+ 2%, +3x, =2,
Xy +2x5+3x, =-—2,

X3+2x4+3x;3=2.

Xy 4%, +06x5+4x,+ x,=0,
X1+ Xg+4x;+6x,+4x,=0,
4%+ xo+ xz3+4x,+6x;=0,
6%y +4x,+ X3+ x,+4%5=0,
4%, +6x,+4x5+ x4+ x5=0,
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350, 2x,+ x5+ x5+ x4+ x5=2,
X1 +2x,+ x3+ x4+ x5;=0,
X1+ X +3x3+ x5+ x;=3,
X1+ X+ xg+Hdxg+ x;=-~2,
X3+ X+ xz+ x4+5x5=5.

351, x,+2x,+3x5+4x,+5x;=13,
2%+ Xg+2x5+3x,+4x;=10,
2x,+2x5+ X5+2x,+3x5=11,
2%, + 2%+ 2%+ X4+2x5= 6,
2%+ 2%, +2x5+2x,+ x5= 3.

352, x3+42x,—3x5+4x,— x;=—1,
2% — Xo+3x3—4x,+2x;=8,
3%+ Xp— Xg+2x,— X5=3,
4, +3xy+4x5+2x,+ 2x,= —2,
X1— Xp— Xg+2x,—3x5=—-3.

353. 2x,— 3x,+ 4x;— 3x,=0,
31~ X+ 11x3—13x,=0,
4x,+ Bxg— Txz— 2x4=0,
13x;—26x,+ x5+ 11x,=0.

Verify that the system has the solution x;=x,=x,=x,=1 and
compute the determinant of the system.

354. Prove that the system
ax+by+cz+dt=0,
bx—ay+dz—ct=0,
cx—dy—az+bt=0,
dx+cy—bz~at=0

has a unique solution if a, b, ¢, d are real and not all zero.
Solve the following systems of equations:
355, axytaxy+ ... +ox, 1+ Bx,=a,
oxy+oxg+ ..+ Bx, 1 Fax,=a,_;,

Bxy+axy+ .. X,y tax,=a,
where o #.
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X1 X2 Xn
356. ——+—+"'+b1—[3.._1

where by, by, ..., b, By, B, ..., B, are all distinct.

357. x, +x, +...+x, =1,
X104 +x20L2 +... +x,,ot,, =

X0 b xpod T L x el = pd
where a4, oy, ..., &, are all distinct.

358, x;+ X0+ - - - Fx00 =0y,
Xy Xgoa+ ¢ X087 =y,

where oy, oy, ..., o, are all distinct.

359. x, + x4 +.oitx, =,
X103 FX0y  d.. X0, =Ug

a)

X0 T x0T L X T =0,

where o4, o, ..., «, are all distinct,

360. 1+ x;+ Xo+...+ x,=0,
1+2x +22x,+ ... +27 x,=0,

1 +nxy+n%x+...+0" x,=0.

Sec. 2. Rank of a Matrix

361. How many kth-order determinants can be formed from a
matrix with m rows and »n columns?
362. Form a matrix with rank equal to (a) 2, (b) 3.
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363. Prove that the rank of a matrix remains unaltered if:

(a) rows and columns are interchanged;

(b) the elements of a row or column are multiplied by a non-
zero number;

(c) two rows or two columns are interchanged;

(d) multiples of the elements of one row (column) are added
to elements of another row (column).

364. The sum of two matrices having the same number of rows
and columns is a matrix whose elements are the sums of the
corresponding elements of the matrices being added. Prove that
the rank of the sum of two matrices does not exceed the sum of
the ranks of the matrices added.

365. How is the rank of a matrix affected by adjoining (a)
one column, (b) two columns?

Compute the rank of the following matrices:

366. 367.

-0 410 1 75 0116 39 0
4 818 7 171 —69 402 123 45
10 18 40 17 |~ 301 0 87 —417 —169
1 717 3 114 —46 268 82 30
368. 369.

2 111 2 14 12 6 8 2

1 0 4 —1 6 104 21 9 17

11 45 5/ 7 6 3 4 1

2 -1 5 —6° 35 301520 5

370. 371.

100 1 4 ] -2 3 -1 =1 =29
010 2 5 2 -1 1 0 -2 -2
001 3 6 -2 -5 8 —4 3 -1
1231432 6 0 -1 2 -7 -5
4563277 -1 -1 1 -1 2 1
372. 373.

2111 1 -1 2 3 4
1311 2 1 -1 2 0
1141 -1 2 1 1 3
1115 1 5 —8 -5 —12
123 4 3 -7 8 9 13
1111

3. 1215
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374. 375.

2 13 -1 3 2 -1 2 0 1

3 -12 0 4 1 0-3 0 2

1 34 -2/ 2 -1 -2 1 1 -3

4 -3 1 1 3 1 3-9-1 &6
3 -1 -5 7 2 _7

376. 377

00100 1 -1 20 01

01000 0 1 -12 01

00010 1 0-10 21

11111 1 -1 00 12

13451 2 0 01-11

12345 -1 1 01 12

23456

378. 379

10100 20202

11000 01010

01100 21021

00110 01010

0101 1

380.

2 11 3 4

2 ~-12 1 =2

2 -31 2 -2

1 01 -2 -6

1 21 -1 0

4 -13 -1 -8

Sec. 3. Systems of Linear Forms

381. (a) Write two independent linear forms.
(b) Write three independent linear forms.
382. Form a system of four linear forms in five variables so that
two of them are independent and the others are linear combinati-
ons of them,
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Find the basic dependences between the forms of the system:

383, yy=2x,+2x,+Tx5— Xy,
Voa=3x;—~ X5+2x3+4x,,
V3= X1+ Xxp+3x3+ X4

384- y1:3xl+QX2—' SX3+ 4X4,
y2=3x1_‘ x?+ SX3_ SX4,
Ya=3x;+bx;— 13x3+ 11x,.

385. y,=2x;+3x,—4x3— X,
Vo= X1—2x,+ Xg-+3x4,
Y3=0x;—3x,— x3+8x,,
Ya=3x1+8x5—9x3 —5x,.

386- y1=2x1+ xZ_‘ X3+X4,
Vo= X1+2xs+ Xg—Xg,
Y3= X1+ Xp+2x5+x,

387. 388.

P1= X 2% +3x5+ X4 Y1=2X1+ X
y2=2x1+3x2+ X3+2.X4, y2=3x1+2x2,
Y3=3x1+ x3+2x5—2x4, V3= X1+X,
y4= 4x2+2.X3+5.X4. y4=2x1+3x2.

389. yi=x1+ xp+ xgt+  xgt+xs
Yo=X1+2x5+ 3x3+ dxy+X;,
ya=x;+3x,+ 6x3+ 10x,4x5,
Ya=x1+4%,+ 10x3+20x, + x5.

390. 391.

V1= Xy+2%,+3x5—4%4,  y1=2x1+ x3—3X3,
Ya=2x;— Xg+2x3+5x,, yo=3x1+ Xx3—5x3,
Ya=2x1— Xo+bxs—4x, ys=4x+2x,— X3,
Va=2x+3x3—4x3+ x4 y4=X —7x3
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392. y;=2x,+3x,+5x3— 4x,+ x;,
Vo= Xy— Xy+2x3+ 3x,+5x;,
Ya=03%, +7xy+8x3— | lxg—3x;,
Vo= X1— Xot Xg— 2x4+3%s.

393, y;=2x;— x,+ 3x3+ 4xa— X,
Vo= X1+ 2x,— 3x3+  x4+2x;,
Ya=50x1—bxp+ 12x5+ 1 1x,—5x5,
Vo= X3—3x+ 6x3+ 3x,—3x;.

394, y;= x;+2x,+ X3—2x4+ X5,
Y2a=2x1— Xat+ X3+3x,+2x5,
V3= X3— Xp+2x3— x4+3x;,
Ya=2x1+ xp—3x3+ x4—2x5,
Vs= X1— Xa+3x3— x4+ 7x;.

395, yy=4x,+3x,— x3+ x4— X5
Vo=2x1+ x3—3x3+2x,—bx;,
V3= X1 —3x, + X4—2x;,
Vo= X3 +5x5+2x5—2x,+6x;5.

396. y;= x;+2x3— x3+ 3xs— x5+2x,
Yo=2x,— Xy+3x3— 4x4+ X5— X,
Va=3x,+ x3— Xz+ x4+ x5+3x,
Ya=4x,—Tx,+8x3— 15x 4 +6x; —Bxg,
ys=bx1+5x,—6x5+ 1 1x, +9x,.

397. yi= x;+2x,+ x3— 3x4+2x;,
Yo=2x1+ xo+ X3+ x3—3x5,
Y3= X3+ xp+2x5+ 2x,—2x;,
Y4=2x1+3x,—5x3— 1 7x,+ Ax;.

Choose A so that the fourth form is a linear combination of the
other three.

Sec. 4. Systems of Linear Equations
398. Solve the system of equations

x1—2x2+x3+ X4=1,
X]_—‘QX2+X3_ X4=_1,
xl—QX2 +X3+5X4=5.
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399, Choose X so that the following system of equations has a
solution:
2x3— X+ xg+  x,=1,
X1 +2xs— x3+ 4xy=2,
X1+ Txs—4xs+ lx,=n

Solve the systems of equations:

400. 401.

X1+ X,—3x3=-—1, 2%+ X+ x3=2,
2%+ Xo—2x5=1, Xy +3x,4+ x53=0,
X1+ X+ x3=3, X1+ Xp+5bxs= -7,
X1+2x,—3x5=1. 2x;+ 3%, —3x,=14.
402. 403.

2x,— X3+ 3x3=3, X1+ 3x,+2x5=0,
3x;+ x,— bxz=0, 2%, —  Xg+3x3=0,
4x,— X3+ Xx3=3, 3x;— bxy+4x,=0,
X1+ 3x,—13x;=—6. X1+ 17x, +4x3=0.

404. 2x,+ x5— xg+ x4=1,
3x; —2x5+2x3—3x4=2,
5%+ Xo— X3+2x,=—1,
2% — Xp+ x3—3x,=4.

405, 2x,— X+ X3— x4=1,

2X1— Xo —3x4:2,
3x1 - X3+ x4='—3,
2X1+2x2—~2)C3+5X4= _6.
406. 407.
X1 —2x,+3x;—4x,=4, X1+ 2%+ 3x5 +4x, =11,
Xg— Xgt+ x4=—3, 2x;+3x+4x3+ x,=12,
x1+3x2 ‘—3X4:1, 3x1+4xZ+ X3+2x4=135
—Tx%,4+3x3+ x4=—3. 4x;+ x,+2x3+3x,=14.
408. 409.

2% +3x,— x3+5x,=0, 3x+ 4xo— Sxz+ Tx,=0,
3x;— X +2x3—7x,=0, 2x;— 3x,+ 3x;— 2x,=0,
dx;4+ x53—3x3+6x,=0,  4x;+11x,—13x3416x,=0,
Xy — 2%+ 4x,—Tx,=0.  7x;— 2%+ x5+ 3x,=0.
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410.

411.

412.

413.

414.

415.

416.

417,

PART 1. PROBLEMS

x1+ X —3x,— x5=0,
X1~ Xo+2x5— X, =0,
4x; —2x5+6x5+3x,— 45 =0,
2%y +4x, — 2x4+4x,—Tx5=0.

X1+ Xot xat+ x4t x5=7,

3x1+2x5+ x5+ X,—3x5=—2,
Xo+2x54+2x,+6x;=23,

5x1+4x,+3x3+3x,— x5=12.

X1 —2xs+%x5 —x3+ x5=0,
2x;+ X9—x3+2x,—3x;=0,
3%, —2x,—x3+ x3—2x5=0,
2y —5xg+ x5 —2x,+2x;=0.

x1—2x3+ x5+ x,— x5=0,
2%+ Xo— Xg— Xz+ x5=0,
X1+ 7x3—5x3—5x,+5x5=0,
3x,— x,—2x5+ x4— x5=0.

2x,+ Xo— Xg— X4+ X5=1,
X1— Xo+ Xzt x,—2x5=0,
3x1+3x,—3x3—3x,+4x5=2,
4%, +5x,—5x5—5x 4+ Tx5=3.

2x1— 2%+ x3— X4+ x5=1,
Xp+ 2xp— x5+ x,— 2x5=1,
4x;— 10x,+5x3—0x4+ Txs=1,
2%~ x,+Tx3—Tx+ 1 lxg=—1.

3x14+ Xo—2xs+ x4— x5=1,
2x1— Xo+Tx5—3x,+5x5=2,
X1+ 3%y —2x43+5x,—7x5=23,
3x1—2x5+7x3—5x4+8x5=3.

X1+ 2x, — 3x,+2x5=1,
X — Xp—3x3+ x,—3x;=2,
2xy—=3xs+4x5— 5x,4+2x5=7,
9x; —9xy +6x5— 16x 4+ 2x5 =25,
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418, x; +3x,+5x3—4x, =1,
X1 +3%+2x5— 2%, +x5= —1,
X1 —2X,+ Xg— Xy4—Xs5= 3,
Xy —4x,+ X3+ x4—X5= 3,
X1+ 2x4+ Xg— X4+x5=—1,

419, x,+2x,+3x3—x,=1,
3x;4+2x,+ x5—x4=1,
2%+ 3%+ x3+x,a=1,
2x; +2x54+2x3—x4= 1,

5x1+5)C2+2X3 =2,

420. x1—2x2+3x3—4X4+2x5=—2,
X1+ 2x,— X3 - X5= -3,
X — Xo+2x3—3x, = 10,

Xo— Xzt X4—2x5=—5,
2x1+3x2—' X3+ X4+4x5= 1.

421. The system of equations

ay+bx=c,
cx+az=h,
bz+cy=a

has a unique solution. Prove that abc#0 and find the solution.
Solve the following systems of equations:

422, )x+ y+ z=1, 423. ax+ y+ z+ t=1,
X4+Ay+4 z=A, X4+ z4 t=A,
X+ y+rz=»2A% X+ y+rz4 =2
x4+ y+ z+r=2\.
424, x+ay+a*z=ad’, 425. x4+ y+ z=lI,
X+ by+b%z=03, ax+b y+cz=d,
X+cy+ciz=c> a*x+ b2y + ctz=d>.
426. ax+ y+z=4, 427, ax+ by+ z=1,
x+ by+z=3, x+aby+ z=b,

x+2by+z=4. x+ by+az=1.
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28, ox+ y+ z=m, 429. x+ ay+ a’z=1,
x+toy+ z=n, X+ ay+ abz=a,
x+ y+oz=p. bx+a*y+abz=a?b.

430. (A+3)x+ y+ 2z=1,

am+(=-Dy+ z=2M,
30+ Dx+ W+ +3) z=3.

431. A+ 4+ (A 1Dz=A,

M4+ (A=1z=2,
O+ x+2y+©@n+3)z=1.

432. 3kx+2k+1) y+(k+1) z=k,
Qk—-1) x+@2k—1) y+(k-2) z=k+1,
(k-1 x+ 3ky+ 2kz=1.

433. ax+ by+ 2z=1,
ax+@2b—-1) y+ 3z=1,
ax+ by+(b+3) z=2b-1.

434. (a) 3mx+@Bm—-T)y+(m—->5) z=m—1,
@Cm—-1)x+{@Em—1)y+ 2m z=m+1,
dmx+GBm—T)y+(2m—5)z=0.
b) Cm+1)x— my+ (m+1Dz=m—1,
m-2x+(m—1) y+ (m—2z=m,
Cm—Dx+(m—1) y+Q@Cm—1z=m.
©) Gr+Dx+ 20 +@Er+Dz=1+2,
@r—Dx+(—=1D y+(@r—-1)z=-1,
2B8A+ x4+ 20+ (BA+2)z=2—-2.

435, (a) Qc+1) x— cy— (c+Dz=2c,
3cx—@2c—1) y—@c—~1z=c+1,

(c+2) x— y— 2cz=2,
(b)) 20+ Dx+ 3y+ Az= A+4,

(4r—Dx+A+1) y+@r—1) z=2142,
Gr—Dx+(A+1) y+@r—4) z= r—1.
©) dx+@d—)y+ (d+2)z=1,
(@d-1y+ (d—3)z=1+d,
dx+(3d—2)y+Bd+1)z=2—d.
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(@ Ba—-1) x+ 2ay+ (Ba+1)z=1,
2ax+ 2ay+ (Ba+1)z=a,
(a+1) x+(a+1) y+ 2(a+1)z=a2

436. Find the equation of a straight line passing through the
points My (xq, 31), Ms(xs, ¥a)-

437, Under what condition do the three points M,(x,, y,),
My(xs5, ¥5), Ms(xs, ys) lie on a straight line?

438. Under what condition do the three straight lines a;x+
+by+c¢;=0, ayx+byy+c;=0, agx+bsy+cy3=0 pass through
one point?

439. Under what condition do the four points My(x, ¥o),
M; (x4, Y1), My(xs, ¥5), M3(xs, y5) lie on one circle?

440, Write the equation of a circle passing through the points
Ml (25 1)5 M2 (15 2)5 M3 (0’ 1)

441. Find the equation of a quadric curve passing through the
points M, (0, 0), M, (1,0), M3 (—1,0), M, (1, 1) and M; (-1, ).

442. Find the equation of a third-degree parabola passing
through the points M, (1, 0), M, (0, —1), M;(—1, —2) and
M @2, 7).

443, Form the equation of a parabola of degree n y=a,x"+
+a;x" "1+ ...+ a, passing through the n+1 points My (x,, ¥o),
Ml (x1’ y1)7 M2 (x25 y2)5 (S 5s] Mn (xm yn)

444. Under what condition do the four points M, (xy, ¥, z4),
M, (xs, Yo, 22), M3 (X3, V3, 23), My (X4, Y4, 24) lie in a single plane?

445. Form the equation of a sphere passing through the points
M, (1,0,0), M, (1, 1, 0), M5 (1, 1, 1), M, (0, 1, 1).

446. Under what condition do the n points M, (x;, ),
My (xs, ¥2), Ms(x5,3), ..., M,(x,, y,) lie on a single straight line?

447. Under what condition are the n straight lines a,x+b,y+
+e,=0, apx+by+c;=0, ..., ax+b,y+c,=0 concurrent?

448. Under what condition do the »n points M, (x;, 1, Zy),
M, (x3, Yo, 2Z2)y «+vy M, (X, Vus 2,) lie in one plane and under what
condition do they lie on one straight line?

449. Under what condition do the » planes A,x+B,;y+Cz+
+D;=0 (i=1, 2, ..., n) pass through one point and under what
condition do all these planes pass through a single straight line?

450. Eliminate x,, x,, ..., X,_, from the system of n equations:
a11x1+alzx2+ P +a1’ n_lxn_1+aln =0,
AgsXy+ AoeXo+ ..o+ o, y_1Xy—1+ ey =0,

an1x1+a"2x2+ voe +a", n_lx,,_1+a,,,, =0
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451, Let
XE;) = 03, x%; = Oqg; ’ 7‘%; = Uy
xP = oy x5 = o ;XD =y, (1)
x{m = Ll x{™ = Fmay ’ xStm) = Xy

be m solutions of some system of homogeneous linear equa-
tions. These solutions are termed linearly dependent if there
exist constants ¢, ¢z, ..., ¢, Dot all zero, such that

Cla1i+6‘20(2i+ N +Cmami=0 (2)
(i=1,2, ..., n).
If the equations (2) are only possible when ¢;=c,= ... =¢,=0,

then the solutions are termed linearly independent.
Let us agree to write the solutions as rows of a matrix.
Thus, the system of solutions of (1) is written in matrix form as

01 %2 1n
%1 o2 Xap =A
0(ml L2 0(mn

Prove that if the rank of matrix A4 is r, then the system (1) has r
linearly independent solutions and all other solutions of (1) are
linear combinations of them.

452. Prove that if the rank of a system of m homogeneous
linear equations in » unknowns is equal to r, then there exist n—r
linearly independent solutions of the system, and all other solu-
tions of the system are linear combinations of them.

Such a system of #n— r solutions is termed a fundamental system
of solutions.

43.Is /1 -2 1 0 0

1 -2 0 1 0

0 0 1 -1 0

1 -2 3 -2 0

system of solutions of the system of equations
X1+ Xo+ X3+ X4+ x5=0,
3x1+2x2+ x3+ x4—3X5=0,
x2+2x3+2x4+6x5=0,
5x;+4x,+3x;3+3x,— x;=0?

a fundamental
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454. Write a fundamental system of solutions of the system of
equations of Problem 453.

455. Is /| =9 1 0 0\ a fundamental
0 0 —1 1 0
4 0 0 -6 2

system of solutions of the system of Problem 453?

456. Prove that if 4 is a rank 7 matrix that forms a fundamental
system of solutions of a system of homogeneous linear equations,
and B is an arbitrary nonsingular matrix of order r, then the
matrix BA also forms a fundamental system of solutions of the
same system of equations.

457. Prove that if two matrices 4 and C of rank r form funda-
mental systems of solutions of some system of homogeneous
linear equations, then one of them is the product of some non-
singular matrix B of order r by the other; that is, A =BC.

458. Let /oq; g9 ... o5,\ bea fundamental system of so-
Koy Cag Kop
*,q Hpo v e e Otm

lutions of some system of homogeneous linear equations.
Prove that

X1 :C1a11+ C2a21+ et C0y s
x2=CIOL12 + Collagg + ...+ [, N

...................

X, = Cyly,+ Collgy+ ...+ C Ly

is the general solution of this system of equations, i.e., that any
solution of the system may be obtained from it for certain values
of ¢4, ¢, ..., ¢,, and conversely.

459. Write the general solution to the system of Problem 453.

460. Verify that (11 1—7) is a fundamental system of solu-
tions of the system of Problem 403, and write the general solution.

461. Write the general solutions of the systems of Problems
408, 409, 410, 412, 413.

462. Knowing the general solution of the system of Problem
453 (see the answer to Problem 459) and the fact that x,= —16,
X, =23, xa3=x,=x;=0 is a particular solution of the system of
Problem 411, find the general solution of the system of 411.

463. Write the general solutions of the systems of Problems
406, 414, 415.



CHAPTER 4
MATRICES

Sec. 1. Operations on Square Matrices

464. Multiply the matrices:

@520 ) el ) ()
( |
2
2 3
(d)( 4 6)-
6 9
2
]
]
b ¢ 1
(f) (c b a)- I
111 1

) (
465. Perform the following operations:
a1 o) e e
a , » A€ )
01 9 1 3 —4 -2
1 n cosg —sing\”
(d) <O > <sin @  cos cp> '

*466. Find lim (

WO — WK~ = DNWw

Q
S OV

h—>

e\ n
n .
| ) , where « is a real number.

xR
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467. Prove that if AB=BA, then
(a) (A+By¥?=A*+2AB+ B2,
(b) A2*—B?*=(A+B) (4—B),

(c) (A+By'=A"+% A" B+ ...+ B

468. Compute AB—BA if:

12 1 41 1
(a) 4={2 1 2), B=[-4 2 0}
1 2 3 12 1
2 1 0 31 -2
A= 1 1 2) B=| 3 -2 4).
“1 21 -3 5 -1

469. Find all matrices that commute with the matrix A4:

wa=(_, ) wa=(y )

1 0 0
(c) 4={0 1 0}
3 1 2

470. Find f (4):

2 1 1
(@ f(x)=x?—x—1, A=|3 1 2}
1 -1 0

2 1
(b) f (x)=x*—5x+3, A=<_3 3>.

a b
471. Prove that every second-order matrix A=<c d> satis-

fies the equation
x:—(a+d)x+ (ad—bc)=0.

472, Prove that for any given matrix A there is a polynemial
J(x) such that f(4)=0, and that all polynomials with this proper-
ty are divisible by one of them.

*473. Prove that the equation AB—BA=E is impossible.

474, Let A*=0. Prove that (E—A) 1=E+ A+ A2+...+ A%,
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475, Find all second-order matrices whose squares are equal
to the zero matrix.

476. Find all second-order matrices whose cubes are equal to
the zero matrix.

477. Find all second-order matrices whose squares are equal to
the unit matrix.

478. Solve and investigate the equation X4 =0, where A4 is the
given matrix and X is the second-order matrix sought.

479. Solve and investigate the equation X?= A4, where 4 is the
given matrix and X is the desired second-order matrix.

480. Find the inverse of the matrix 4:

el wae(t )

13 -5 7
L2z -3 01 2 -3
00 1 00 0 I

—1 2 1 1 |
2 100 0 11 1
3 9 0 0 1 0 1 1
(&) A={ 4 [ 3 4] ®A4=1 1.0 1,
2 -tz 11 1...0
I 1 | L1
1 ¢ g2 gn—1
(i) A={1 g et gn-2
1 en=1  Z2n-2 . 8("—:1)2

2 .. 2r
where e=cos £+zsm{,
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2 -1 0. 0
-1 2 -1 0
Gy A= 0 -1 2 0],
0 0 0..-12
1 3 5 7... 211

2n—1 1 3 5 ... 213

3 5 7 9 1
1 00 .0 ¢
01 0 .0 ¢
... 0 e
oa=|? " “.
0 0 0O .1 oe,
by, by by ... b, a
1 —x 0 . 0
0 1 —x . 0
M) A=|[ oo, ,
0 0 0. I —x
ay ay a, a,
1
1+W 1 1 1
1
1 1+72- 1 1
m) A=| | R T i
A
1
1 1 l l—{—-)\—'l

(0) Knowing the matrix B~1, find the inverse of the bordered

/B U>
matrix v oal)

481. Find the desired matrix X from the equations:

2 5 4 —6
() <1 3>'X=<2 1>’
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S 1ol 1 -1 0...0
-1 1 0 0 I 1 -1...0
©) ~1 1 0 0f-x-|1 1...0
0 0 0..—-11 1 0 0.. 1
10 0... 0 0
0 ~1... 0 0
jo -1t 2.0 0 0
0o 0 0.. 2 -1
0o 0 0..-1 2

2 1 2 1 <2 1 1 0
(£) <2 1>'X:<2 1>’ (8) Xy 1>=<0 1>'
482. Prove that if AB=BA, then A~1B=BA"1.

1 2
483. Compute ¢ (A4), where ¢ (x)= S ot A= <2 1>.

484, Find all the second-order real matrices whose cubes are
equal to the unit matrix.

485. Find all the second-order real matrices whose fourth
powers are equal to the unit matrix.

486. Establish that there is an isomorphism between the field
of complex numbers and the set of matrices of the form

a b
< > for real a, b.
—-b a
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487. Establish that for real a, b, ¢, d, the matrices of the form

at+bi c+di

< —c+di a-bi

488. Represent (ai+bi+cl+dd) (@3+b5+ci+d3) asasum of
four squares of bilinear expressions.

489. Prove that the following operations involving matrices
are accomplished by premultiplication of the matrix by certain
nonsingular matrices:

(a) interchanging two rows,

(b) adding, to elements of one row, numbers proportional
to the elements of another row,

(c) multiplying elements of a row by a nonzero scalar.

The same operations involving columns are performed via
postmultiplication.

490. Prove that every matrix can be represented as PRQ,
where P and Q are nonsingular matrices and R is a diagonal mat-
rix of the form

> constitute a ring without zero divisors.

*491. Prove that every matrix may be represented as a product
of the matrices E+ae;, where e;, is a matrix whose element of
the ith row and kth column is unity, and all other elements are
Zero.

*492. Prove that the rank of a product of two square matrices
of order n is not less than r; +r, —n, where r; and r, are the ranks
of the factors.



82 PART [. PROBLEMS

493. Prove that every square matrix of rank 1 is of the form

Mt Mps oo My,
Ata My o Aoy
7‘:1 Mg 7‘11 Mo 7\n Mo

*494, Find all third-order matrices whose squares are 0.

*495, Find all third-order matrices whose squares are equal to
the unit matrix.

*496. Let the rectangular matrices 4 and B have the same
number of rows. By (4, B) denote the matrix obtained by adjoining
to A all the columns of B. P:ove that the rank of (4, B)<rank of
A+rank of B.

*497, Prove that if A2=E, then therank of (E+ A)+the rank
of (E—A)=n, where n is the order of the matrix 4.

*498. Prove that the matrix 4 with the property 4*=E can be
represented in the form PBP~1, where P is a nonsingular matrix
and B is a diagonal matrix, all elements of which are equal to +1.

499, Find the condition which a matrix with integral elements
must satisfy so that all the elements of the inverse are also integral.

500. Prove that every nonsingular integral matrix can be repre-
sented as PR, where P is an integral unimodular matrix, and R is
an integral triangular matrix all the elements of which below the
principal diagonal are zero, the diagonal elements are positive,
and the elements above the principal diagonal are nonnegative
and less than the diagonal elements of that column,

*501. Combine into a single class all integral matrices which
are obtained one from the other by premultiplication by integral
unimodular matrices. Compute the number of classes of nth-or-
der matrices with a given determinant k.

502, Prove that every integral matrix can be represented as
PRQ, where P and Q are integral unimodular matrices and R
is an integral diagonal matrix.

503. Prove that every integral unimodular matrix of second or-
der with determinant 1 can be represented as a product of powers
(positive and negative) of the matrices

1 1 1 0
A=<0 | and B:<l ]>.
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504. Prove that every second-order integral unimodular mat-
rix can be represented in the form of a product of the powers of

the matrices
1 1 0 1
A= <0 | and C= <1 0/

505. Prove that every third-order integral matrix, different
from unit matrix, with positive determinant and satisfying the
condition A?=FE can be represented in the form QCQ~1, where
Q is an integral unimodular matrix and C is one of the matrices

1 0 0 | 0
0 -1 0 or 0 -1 0
0 0 -1 0 0 -1

Sec. 2. Rectangular Matrices. Some Inequalities

506. Multiply the matrices:

wC ) w2 1) w2 L) (2)
a an 5 an ’
3 0 1 10 0 1 2 3
2 2

4

l

@ (1) and (123); (@ (123 and
3

507. Find the determinant of the product of the matrix

3 2 1 2 )
<4 11 3 by its transpose.
b

. A1
508. Multiply the matrix <a2 b, ¢,

apply the theorem on the determinant of a product.

509. Express the mth-order minor of the product of two mat-
rices in terms of the minors of the factors.

510. Prove that all the principal (diagonal) minors of the mat-
rix A4 are nonnegative. Here, 4 is a real matrix, and A is the
transpose of A.

511. Prove that if all the principal kth-order minors of the
matrix A4 are zero, then the ranks of the matrices 44 and A4
are less than k. Here, A is a real matrix and A4 is its transpose.

512, Prove that the sums of all diagonal minors of a given
order k computed for the matrices 44 and A4 are the same.

> by its transpose and
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513. Using multiplication of rectangular matrices, prove the
identity

(@ +ad+ ... +a)(b}+b3+ ... +b2)
—(ay by +ayby+ ... +a,b,) Z (a;be— a,b)? .

<k

514. Prove the identity

B

Z|%WZfM2

i=1 i=1

ab’

i= 1

=Z la,b—a, b2

i<k

Here, a;, b; are complex numbers and b; are the conjugates of b,.
515. Prove the Bunyakovsky inequality

(S o) <5 a5 o

i=1 i=1
for real a;, b; by proceeding from the identity of Problem 513.
516. Prove the inequality

’Zab ZmPZ\bi‘z

It=l = i=1

for complex a;, b;.
*517. Let B and C be two real rectangular matrices such that
(B, C)=A4 is a square matrix [the symbol (B, C) has the same

meaning as in Problem 496]. Prove that | A |2<|BB]|-| cC|.
*518. Let A=(B, C) be a rectangular matrix with real elements.
Prove that

| A4 |<|BB|-| CC]|.

519. Let A be the rectangular real matrix

ayy Qi ... Qqy

Ay Qg ... Qg
4= "

A1 T2 Qn

Hn

I3 n
Prove that | 44| < Z al- Z as, ... Z azy.

k=1 k=1 k=1
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520. Let A be a rectangular matrix with complex elements and
A* the transpose of the complex conjugate of 4. Prove that the
determinant of the matrix A*4 is a nonnegative real number and
that this determinant is zero if and only if the rank of A is less
than the number of columns.

521. Let A=(B, C) be a complex rectangular matrix. Prove
that |{4*4|<|B*B| - |C*C|.

522. Prove that if |a,] <M, then the modulus of the determi-
nant

all a12 . v aln
dgy Qg ... Qg
Ap Gp A

does not exceed M"n"/2,

*523. Prove that if a;, are real and lie in the interval 0<a; <

< M, then the absolute value of the determinant made up of the
n+1
numbers a; does not exceed M"27"x(n+1) 2 .

524. Prove that for determinants with complex elements the
estimate given in Problem 522 is exact and cannot be improved.

525. Prove that for determinants with real elements the esti-
mate given in Problem 522 is exact for n=2"

526. Prove that the maximum of the absolute value of the de-
terminants of order » having real elements which do not exceed 1 in
absolute value is an integer divisible by 27-1,

*527. Find the maximum of the absolute value of the determi-
nants of orders 3 and 5 made up of real numbers that do not
exceed ] in absolute value.

*528. The adjoint of the matrix A4 is a matrix whose elements
are minors of order n—1 of the original matrix in the natural
order. Prove that the adjoint of the adjoint is equal to the origi-
nal matrix multiplied by its determinant to the power n—2.

*529. Prove that the mth-order minors of an adjoint matrix
are equal to the complementary minors of the appropriate minors
of the original matrix multiplied by A"-1,

530. Prove that the adjoint of a product of two matrices is
equal to the product of the adjoint matrices in that order.

531. Let all combinations of numbers 1, 2, ..., n taken m at a
time be labelled in some fashion.
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Given an nxn matrix 4={(a;). Let 4,4 be the mth-order minor
of A, the row indices of which form a combination with the index
o, the column indices, a combination with the index B. Then,
using all such minors, we can construct a matrix A4,,=(4,s) of
order C/”. In particular, A] =4, A;,_, is the adjoint of A4.

Prove that (4B),,=4, B,, E,=E, (47Y),=(4,)""

532. Prove that if 4 is a “triangular” matrix of the form

fdy dyg ... Oy
4= 0 @y ... a,
0 0 App

then under an appropriate labelling of the combinations, the
matrix A, will also be triangular.

533, Prove that the determinant of the matrix A,
Rt
‘Al n—1,

534. Let the pairs (i, k), i=1,2, ...,n; k=1, 2, ..., m, be label-
led in some fashion. The Kronecker product of two square mat-
rices 4 and B of orders n and m, respectively, is the matrix C=
=A x B of order nm with elements ¢y, «,=ai, 1, bk, x,, Where oy is
the index of the pair (i;, k,), o, the index of the pair (i5, k,). Prove
that

(@) (A1 £ A45)xB=(4,xB)+(4,%B),
(b) Ax(BytBy)=(AxB)x(4%By),
(©) (4'xB')-(A"xB")=(A4'- A")x (B’ -B").

i1s equal to

*535. Prove that the determinant 4 x B is equalto |4|™-|B|".
536. Let the matrices 4 and B of order mn be partitioned into
n? square submatrices so that they are of the form

/By B ... By,
| An A Ag,,> p_| Ba Bu ... By

......................

where 4, and B, are square matrices of order m. Let their pro-
duct be C and let it be partitioned in the same way into submat-
rices C;. Prove that

CiszilBlk+Ai2B2k+ s +Afn Bnk'
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Thus, multiplication of submatrices is performed by the same
formal rule as when numbers take the place of submatrices.

*537. Let the matrix C of order mn be partitioned into #2 equal
square submatrices. Let the matrices 4;; formed from the elements
of the separate submatrices commute in pairs under multiplica-

tion. Form the ‘“determinant” Z + A1y, Aoy, ...A,,an=B from the

matrices 4;,. This *“determinant” is a certain matrix of order m,
Prove that the determinant of the matrix C is equal to the deter-
minant of the matrix B,



CHAPTER 5
POLYNOMIALS
AND RATIONAL

FUNCTIONS

OF ONE VARIABLE

Sec. 1. Operations on Polynomials,
Taylor’s Formula. Multiple Roots
538. Multiply the polynomials:
(a) @x*—x3+x2+x+1)(x2—3x+1),
) (F+x2—x—1)(x2-2x—1).
539. Perform the division (with remainder):
(a) 2x*—3x3+4x*—5x+6by x?—3x+1,
(b) x®*—3x2—x—1by 3x2—2x+1.
540. Under what condition is the polynomial x®+px+g di-
visible by a polynomial of the form xZ4mx—1?
541. Under what condition is the polynomial x*+px*+g di-
visible by a polynomial of the form x%4+mx+1?
542, Simplify the polynomial

x x(x=1) "
L )

x(x=1) ... (x—n+1)
n! )

543. Perform the division (with remainder):
(a) x*—2x34+4x2—6x+8 by x—1,

(b) 2x°—5x®—8x by x+3,
(©) 4x°+ x? by x+1+i,
(d) x3—x2—x by x—142i.

544. Using Horner’s scheme, compute f(x,):
(@) f(x)=xt—3x34+6x2—10x+16, x,=4,
() f)=x+(1+2)x*— (1 +3D)x*+7, xo=—2—1i.

545. Use the Horner scheme to expand the polynomial f(x) in
powers of x—x,:

(a) f(X)=x*+2x>—3x*—4x +1, Xo=—1;
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(b) f(x)=x%, xo=1;
(©) f(x)=x*—8x%+24x2—50x+90, Xe=2;
(@) f()=x+2ix3—(1 +Dx2=3x+T+i, xo=—1;
() f(X)=x*+(3-8)x*— (21 +18)x*
—(33-20i)x+7 +18i, Xo=—14+21.
546. Use the Horner scheme to decompose into partial frac-
tions:
x3—x+1 xt—2x2+43
(a) Tx=3F ' (b) T
*547. Use the Horner scheme to expand in powers of x:

(a) f(x+3) where f(x)=x%—-x%+1,

(b) (x—2)*+4(x—2)*+6(x —2)*+10(x —2) +20.

548. Find the values of the polynomial f(x) and its derivatives
when x=x,:

(a) f(x)=x%—4x3+6x2—-8x+10, Xo=2,

(b) flx)=x*—3ix®—4x*+bix—1, xo=1+42i.

549. Give the multiplicity of the root:

(a) 2 for the polynomial x®—5x*+7x%—2x24+4x—8,

(b) —2 for the polynomial x5+47x*+16x34+8x%—16x— 16.

550. Determine the coefficient @ so that the polynomial x®—
—ax?—ax+1 has —1 for a root of multiplicity not lower than

two.

551. Determine 4 and B so that the trinomial Ax*+Bx3+1 is
divisible by (x— 1)

552. Determine 4 and B so that the trinomial Ax**1+Bx"+1
is divisible by (x—1)2.

*553. Prove that the following polynomials have 1 as a triple
root:

(a) x2n_nxn+1+nxn—1_ 1’
(b) x2+1—(2n+ x4+ n+ 1)x"— 1,

©) (n—2m)x"—nx"—"+nx"—(n—2m).
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554. Prove that the polynomial

xeme1_ n(nt1) @nt 1) (n=1)(n+ 2 @n+1) 4y

n+2
6 Xt 2

_‘_(n—- l)(n+22) (2n +1_) o n{n+ 1)6(2n+1) wn=1_ 1
is divisible by (x—1)% and is not divisible by (x— 1)5.
*555, Prove that (x—1)¥+1 divides the polynomial

f(x)=ayx"+ay x4, . +a,

if and only if

aqt ap+ ag+...+ a,=0
a+2a3+ ... +n a,=0,
a,+4as+...+n a,=0

a+2%as 4.+ a,=0.

556. Determine the multiplicity of the root ¢ of the polyno-
mial

S+ (@1 —f(x) +f(a)

where f(x) is a polynomial.

557. Find the condition under which the polynomial x®+ax®+b
has a double root different from zero.

558. Find the condition under which the polynomial x°+ 10ax®
+5bx+ ¢ has a triple root different from zero.

559. Prove that the trinomial x"+ax"~"+b cannot have non-
zero 1oots above multiplicity two.

560. Find the condition under which the trinomial
x"+4ax"~ ™+ b has a nonzero double root.

*561. Prove that the k-term polynomial

p
B Xt Ay Xl a x

does not have nonzero roots above multiplicity (k—1).
*562. Prove that every nonzero root of multiplicity k—1 of
the polynomial

14
QX F A XP L Fax K
satisfies the equations

ayxPr g (p)=a, xP ¢ (po)= ... =a, X% ¢’ (py)
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where
¢(O=0—p) (t—p2) (t—ps) ... (1—py)
and conversely.
*563. Prove that a polynomial is divisible by its derivative if
and only if it is equal to aq(x —x,)"
564. Prove that the polynomial
x x? x"
1+ 1 + 1\—2 +..0+ ur
does not have multiple roots.
565. Prove that for x, to be a root of multiplicity k of the nu-

merator of the fractional rational function f(x)= ;’;g;, the de-

nominator w(x) of which does not vanish for x =x,, it is necessary
and sufficient that
fGo)=f"(xo)="...=f* D (x0)=0, f*(x0)#0.

566. Prove that the fractional rational function f (x)=fpﬁ

w(x)
can be represented in the form
“(xo )
f(x) =f(x0)+ !: (lx ) (x— x0)+ R 'l:*;l"(*xo* (X— XO)"
F
+ wE—)xC; (x_ Xo)n+1

where F(x) is a polynomial. It is assumed that w(x,)#0 (Taylor’s
formula for a fractional rational function).

*567. Prove that if x, is a root of multiplicity k of the polyno-
mial f (%) f5 (x)—f2 () f{ (x), then x, is a root of multiplicity
k+1 of the polynomial f; (x) 13 (x,) —f2 (x) f1 (x,) if this latter
polynomial is not identically zero, and conversely.

*568. Prove that if f(x) does not have multiple roots, then
[f'(X)]2—f(x)f"(x) does not have roots of multiplicity higher than
n—1, where n is the degree of f(x).

*569. Construct a polynomial f(x) of degree n, for which
[f'(e)—f(x)f"'(x) has a root x, of multiplicity n— 1, which is not
a root of f(x).
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Sec. 2. Proof of the Fundamental Theorem
of Higher Algebra and Allied Questions
570. Define & so that for x| <3 the polynomial
x®—4x%+2x

is less than 0.1 in absolute value.

571. Define 3 so that |f(x)—f(2)| <0.01 for all x satisfying the
inequality |x—2|<3; f(x)=x*—3x*+4x+5.

5§72. Define M so that for |x|> M
| xt—4x3+4x2+2 | > 100.

573. Find x so that | f{x)| < |A0)| where

(@) f(x)=x5—-3ix® +4, (b) f(x)=x*—3x3+4.
574. Find x so that | f(x)| <|f(1)| where

(a) f(x)=x*—4x3+2,

(b) f(x)=x*—4x*+6x2—4x+5,

(©) f(x)=x*—4x+5.

575. Prove that if z—i=a (1-1), O<a<—1- then

2
1f@)I<V5
where
f@=(14+i)28+(@3—-5i) z*—(9+5i) 28
70 -D22+2(1 +3i) z+4—1i.

*576. Prove that if f(z) is a polynomial different from a con-
stant, then, in arbitrarily small neighbourhood z,, there is a z
such that | f(zy) | > f(2) |-

577. Prove the d'Alembert lemma for a fractional rational
function.

578. Prove that the modulus of a fractional rational function
reaches its greatest lower bound as the independent variable
varies in a closed rectangular domain.

579. It is obvious that the theorem on the existence of a root
does not hold for a fractional rational function. Thus, the func-

tion % has no root. What prevents ‘proving’ this theorem by
the scheme of that for a polynomial?
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*580. Let f(x) be a polynomial or a fractional rational function.
Prove that if ais a root of f(z) — f(@) of multiplicity k and f(a)#0,
then for a sufficiently small p there will be, on the circle | z—a |=p,
2k points at which | f(z) |=]f(a)|.

*581. Prove that if a is a root of f(z) —f(a) of multiplicity k,
then for a sufficiently small p there will be, on the circle | z—a |=

— o, 2k points at which Re ( f (z)) —Re ( f(a)) and 2k points at which

Im (f (z))=1m ( f (a)). Here, f(z) is a polynomial or a fracti-
onal rational function.

Sec. 3. Factorization into Linear Factors.
Factorization into Irreducible Factors
in the Field of Reals.
Relationships Between Coefficients and Roots
582. Factor the following polynomials into linear factors:
(a) x*—-6x2+11x—6, (b) x*+4, (c) x*+4x3+4x*+1,
(d) x*—10x2+1.

*583. Factor the following polynomials into linear factors:

(a) cos (n arc cos x),

(b) (x+cos O+isin @) + (x+cos ®—1i sin Q)

(€) x"—C3, xm 1+ Ch, x"2— . . +(=1y"C3.

584. Factor the following polynomials into irreducible real
factors:

(@) x*+4, (b) x*+27, (c) x*+4x*+4x2+1,

(d) x¥"—2x"+2, (e) x*—ax?+1, —2<a<?2,

) x¥+x+1.

585. Construct polynomials of lowest degree using the follo-
wing roots:

(a) double root 1, simple roots 2, 3, and 1 +1,
(b) triple root —], simple roots 3 and 4,

(c) double root i, simple root —1—1.

586. Find a polynomial of lowest degree whose roots are all
roots of unity, the degrees of which do not exceed .
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587. Construct a polynomial of lowest degree with real coef-
ficients, using the roots:

(a) double root 1, simple roots 2, 3 and 1+,

(b) triple root 2—3i,

(c) double root i, simple root —1 —i.

588. Find the greatest common divisor of the polynomials:

(@) (x—1)° (x+2)® (x—3) (x—4) and (x—1)*(x+2) (x+5),

() x=1) (x*=1) (x*—1) (x*=1) and (x+1) ®+1) (x*+1)-
S(x+1),

(©) (x*—=1) (x2—2x+1) and (x2—1)3.

*589. Find the greatest common divisor of the polynomials

xm—1 and x"—1I.
590. Find the greatest common divisor of the polynomials
x"+a™ and x"4-a"

591. Find the greatest common divisor of the polynomial
and its derivative:

@) fl)=0x—1)* (x+1)* (x—3),

(b) f)=(x—-1) x*—1) (x*=1) (x*~1),

() flx)=xmtn—xm—x"+1.

592. The polynomial f{x) has no multiple roots. Prove that

if x, is a root of multiplicity k>1 of the equation f(;-g%)z 0,
then the equation f ( Z 8 )=0 has x, as a root of multiplicity

k—1. It is assumed that v (xg) #0, v’ (x,) #0.

593. Prove that x2+x+1 divides x3"+ x*+1 4 x3p+2,

594. When is x3"—x3+14-x%+2 divisible by x2—x+1?

595. What condition is necessary for x*+x2+1 to divide x3" +
+x3n+l+x3p+2?

596. What condition is necessary for x2+x+1 to divide x2"+
+xm41?

597. Prove that

kap+k—1

xkaq xkaoAl 44 x
is divisible by x*~14xk—24, 41,
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598. For what values of m does x*+x+1 divide (x+1)"—
—xm—1?

599. For what values of m does x*+x+1 divide (x+1)"+
+xm4+1?

600. For what values of m does (x2+x+1)? divide (x+1)"—
—x"—1?

601. For what values of m does (x2+x+1)? divide (x+1)"+
+xm4+1?

602. Can (x*+x+1)® divide the polynomials (x+ 1)"+xm 1
and (x+1)"—xm—1?

603. Transform the polynomial

x x(x—1) L X(x=1) ... (x=n+1)
=7+ -5 =+ (=D 3.7

by assigning to x the values 1, 2,..., n in succession. (Compare
with Problem 542.)

604. For what values of m does X, (x) divide X,(x™)? (X, is a
cyclotomic polynomial.)

Prove the following theorems:

605. If f(x") is divisible by x— 1, then it is also divisible by
x"—1.

606. If f(x") is divisible by (x—a)*, then it is also divisible by
(x"—a")* for a+#0.

607. If F(x)=f; (x> +xf; (x?) is divisible by x*+x+1, then
Jf1(x) and £, (x) are divisible by x~1.

*068. If the polynomial f{x) with real coefficients satisfies
the inequality f(x) >0 for all real values of x, then f(x)=[p,(x)]*+
+ [pa(x)]? where ¢;1(x) and @,(x) are polynomials with real coeffi-
cients.

609. The polynomial f(x)=agx"+a;x"~*+...4+a, has the
roots x4, . .., x,. What roots do the following polynomials have:

(a) ggra"—a; x" 14a,x""%— . +(=1)a,

(b) a,x"+a,_y x" 14+ ... +ay,

(c) f(a) + fﬁ x+ fl_(;)_ aig 4 A2

(d) agx"+a; bx" 1+ a, b2 x" 24 ... +a,b"?

610. Find a relationship between the coefficients of the cubic
equation x3+ px2+gx+r=0 under which one root is equal to the
sum of the other two.
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611. Verify that one of the roots of the equation 36x%— 12x2—
—5x+1=0is equal to the sum of the other two, and solve the
equation.

612. Find a relationship among the coefficients of the quartic
equation x*+ax®+bx2+cx+d=0 under which the sum of two
roots is equal to the sum of the other two.

613. Prove that the equation which satisfies the condition of
Problem 612 can be reduced to a biquadratic equation by the sub-
stitution x=y+ea for an appropriate choice of «.

614. Find a relationship among the coefficients of the quartic
equation x*+ax®*+bx?*+cx+d=0 under which the product of
two roots is equal to the product of the other two.

615. Prove that the equation which satisfies the hypothesis of
Problem 614 may be solved by dividing by x* and substituting

y=x+ ;c; (for a#0).
616. Using Problems 612 to 615, solve the following equations:
(a) x*—4x%+ bx*— 2x— 6=0,

(b) x*+2x*+ 2x%+4 10x+25=0,

() x*+2x*+ 3x2+ 2x— 3=0,

(d) x*+ x*—10x2— 2x+ 4=0.

617. Define A so that one of the roots of the equation x*—7x +

+A=0 is equal to twice the other root.

618. Define a, b, ¢ so that they are roots of the equation
x}—ax®+bx—c¢=0.

619. Define a, b, ¢ so that they are roots of the equation
x3+ax?+bx+c=0.

620. The sum of two roots of the equation

2x3—x2—-7x+r=0

is equal to 1. Determine A.
621. Determine the relationship between the coefficients of
1
"-_x: .
622. Find the sum of the squares of the roots of the polynomial

the equation x3+4px+g=0 under which x;= ?] +
1

xX"+a x" 4+ .. +a,
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*623. Solve the equation
Xt ax" 4 a, x4+ ... +a,=0
knowing the coefficients a; and a, and that its roots form an

arithmetic progression.
624. Do the roots of the equations

(a) 8x*—12x2—2x + 3 =0,
(b) 2x*+ 8x*+7x2— 2x—-2=0
form arithmetic progressions?
625. Given the curve
y=x*+ax3+bx?+cx+d.
Find a straight line whose points M,, M,, M,, M, of intersection

with the curve intercept three equal segments M M,=M,M,=
=MyM,. Under what condition does this problem have a solu-
tion?
*626. Form a quartic equation whose roots are o, é, —o, —
*627. Form a sextic equation with the roots
o, _1'1 1_“’ —1_1 1_-1" L .
o l—oa L 1,
o

628. Let f(x)=(x—x)) (x—x,) ... (x—x,).
Find /" (x)), f'' (x;) and prove that

of’ i 1 "
) ().

0xi
629. Prove that if £ (x))=f"" (,)=0 but f’ (x;) #0, then

n
Y
X1 —Xi

i=2

630. The roots of the polynomial x"+a,x"~14...4+a, form an
arithmetic progression. Determine f'(x)).

Rl

Sec. 4. Euclid’s Algorithm

631. Determine the greatest common divisor of the following
polynomuials:

(a) x*+ x*—3x2—4x—1 and x®+x?—x—1;

(®) x5+ x*—x*—2x—1 and 3x*+2x%+x%24+2x—2;

4, 1215
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(©) x8—Txt+8x3—7x+7 and 3x5—7x%+3x2—7;
(d) x5—2x44+x*4+7x*—12x+10

and 3x%1—6x3+5x%+2x—2;
(€) x®+2x4—4x3—3x?+8x—5 and x5+x2—x+1;
() x¥+3x%—12x3—-52x*—52x—12

and x*+3x3—6x2—22x—12;
(g) x5+x*—x*—3x2—3x—1

and x*—2x%—x2~-2x+1;
(h) x*—10x2+1 and x*—4)/ 2 x*+6x2+4)/2 x+1;
(i) x*+7x2+19x2+23x+10

and x*+7x®+ 18x24+22x+12;
() x*—4x*+1 and x*—3x%+1;
(k) 2x®—5x%— 14x*+36x°+86x%+12x — 31

and 2x5 —9x*+2x%+37x%2+10x— 14;

(1) 3x8—x%—9x4—14x3—1[x2—3x—1 and

3x%+8x4+9x%+ 15x2+10x+9.
632. Using Euclid’s algorithm, choose polynomials M, (x)
and M, (x) so that f; (x) My (x)+f5 (x) M, (x)=38 (x) where 3§ (x)
is the greatest common divisor of f; (x) and £, (x):
(a) fr()=xt+2x3—x*—4x -2,
fo (0)=x*+x3—x*~2x—2;

®) f1(x)=x"+3x*+x*+x2+3x+1,
Lo ()=x*+2x*+x+2;

©) fi (x)=xt—4x5+11x*—27x3+37x2—35x+ 35,
Jo () =x%—3x%+7x>—20x*+ 10x—25;

(d) fi (x)=3x7+6x®—3x5+4x*+ 14x*—6x2—4x+4,
Jo () =3x8 —3x*+7x*—6x+2;

©) f1 (x)=3x5+5x*— [6x®—6x%—5x—6,
Sfo(X)=3x*~4x®—x2—x—2;

) f1(x)=4x4—2x*—16x%2+5x+9,
Jfo () =2x3—x2—5x+4.
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633. Using Euclid’s algorithm, choose polynomials M, (x)
and M, (x) so that f; (x) My (x)+f3 (x) My (x)=1:

() Ai(X)=3x-2x2+x+2, fo(x)=x2—x+1;
(b) i H)=xt=x3—dxP+4x+1, fo(N)=x2—x—1;
(©) fi (x)=x5—5x*—2x*+12x2—2x+12,
f2 ()=x®—bx2—3x+17;
(d) fi (x)=2x%+3x*—3x2—5x+2,
So () =2x34+x2—x—1;
(€ fo (x)=3x*—5x>+4x*—2x+1,
fo ()=3x3—-2x2+x—1;
) fi (xX)=x5+5x*+9x®+7x2+5x+3,
fo () =x242x3+ 253 +x+ 1.
634. Use the method of undetermined coefficients to choose
M, (x) and M, (x) so that f; (x) My (x)+/f5 (x) My (x)=1:
@ A@=x x>+ 1, fo()=x=3x2+1;
(b) fi ()=, fo ()=(1-x)%;
(© fi (x)=x*, S ()=(1—x)".

635. Choose polynomials of lowest degree, M, (x), M, (x),
so that

(@) (x*—2x3—4x2+6x+1) My (x)
+(x3—bx—3) M, (x)=x*,
(b) (x*+2x%+x+1) M, (x)
+ (x4 +x3—2x2+2x— 1) M,y (x)=x3—2x.

636. Determine the polynomial of lowest degree that yields a
remainder of:

(a) 2x when divided by (x—1)? and 3x when divided by (x—2)3;

(b) x2+x+1 when divided by x*—2x*—2x2+410x—7 and 2x*—
—3 when divided by x*—2x%—3x2+13x—10.

*637. Find polynomials M (x) and N (x) such that

xm* M (x)+(1—x)" N(x)=1.

638. Let fi(x) M (x)+f; (x) N(x)=8(x) where 3(x) is the
greatest common divisor of f; (x) and f; (x). What is the greatest
common divisor of M (x) and N (x)?

4.
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639. Separate the multiple factors of the polynomials:
(a) x8—6x%—4x3+9x2+12x 14,

(b) x*—10x*—20x2—15x—4,

(c) x®—1b6x4+8x3+51x2—72x+27,

(d) x5—6x%+16x%—24x%4+20x—8,

(e) x8—2x5—x%—2x34+5x%+4x+4,

(f) x"—3x8+5x5 —7x*+7x®—~bx2+3x—1,

(8) x®+2x"+5x5+6x5+8x*+6x3+5x2 +2x+1.

Sec. 5. The Interpolation Problem
and Fractional Rational Functions

640. Use Newton’s method to construct a polynomial of lo-
west degree by means of the given table of values:

x 101234 x 1-10123 |
@ rmr1esass ® rmres032
x—’]§424_5 x 123 4 6
(C)H;)IIQTE’ find 72 (4 r56T =210 -
2 2

641. Use Lagrange’s formula to construct a polynomial by
the given table of values:

x11234
@ o173 ® i3 7

*642. Find f(x) from the following table of values:
2nk
Pt

x J1le
f) 12

1€ --- €1

€.
3 ...n

2nk . .
, &=cos = —+isin

643. A polynomial f(x), whose degree does not exceed n—1,
takes on values yy, ¥,, ..., ¥, in the nth roots of unity. Find f (0).
*644. Prove the following theorem: so that

F@= L) +f () + - .+ ()]

for any polynomial f(x) whose degree does not exceed n—1 it
is necessary and sufficient that the points x;, x,, ..., x, be located
on 3 circle with centre at x, and that they divide it into equal parts,
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*645. Prove that if the roots x;, X5, ..., X, of a polynomial
@ (x) are all distinct, then

Z =0 for O<s<n—-2.
— CP(X:)

=

646. Find the sum Z

(notatlons are the same as in

Problem 645).
647. Derive the Lagrange interpolation formula by solving the
following system of equations:

Ayt a;xi+ ...+ a,_ Xt 1=y,

aytay X+ ... +a,_ 1 X5 =Y,,

.....................

A+ Ay Xyt .o A X I=Y,.

*648. Use the following table of values to construct a poly-
nomial of lowest degree:
x1012.
yil24. 2" :
*649. Use the following table of values to comstruct a poly-
nomial of lowest degree:

x|012...n

llaa...a"’

*650. Find a polynomial of degree 2n which upon division by
x(x—2)...(x—2n) yields a remainder of 1, and upon division
by (x—1) (x—3)...[x—(@n—1)] yields a remainder of —1.

*651. Construct a polynomial of lowest degree, using the
table of values

x|1 2 3 ...n
llli i
Y 2 3 n

*652. Find a polynomial of degree not exceeding n— 1 that

1 .
——, the points x;, Xxp ...,

satisfies the condition f(x)=
X X; %4, i=1,2, ..., 1

*653. Prove that a polynomial of degree k£ <n which assumes
integral values for n+1 successive integral values of the inde-
pendent variable, takes on integral values for all integral values

of the independent variable.
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*654. Prove that a polynomial of degree », which takes on
integral values for x=0,1,4,9, ..., n%, assumes integral values
for all squares of the natural numbers.

*655. Decompose into partial fractions of the first type:
x? 1
@ tohees . © oy e—ge=9

3+4x X2 1
(C) (x=D)(x2+1) °* (d) “—1" (e) x3—1 "

1 1 1
(f)x“—+4’ (2) P (h)m,

. nl
@) x(x—1)(x=2) ... (x—n) ’

. (2n)! 1
) x(x2=1) (x2—4) ... (x*—n?) ’ (k) cos (n arc cos x)

*656. Decompose into real partial fractions of the first and
second types:

| O X2 1 x?

(a) Fo1 (b) “16 ° (© 4’ (d) 407

(C) —x”""Tl' m<2n+1;

xm
1)) P m<2n+1;
1 xﬁm

(2) Sn_1 (h) Syl M

. 1
(@) x (1) (x244) ... (24n?) °

*657. Decompose into partial fractions of the first type:

x . 1 . 5x+6x 23 .
@ oy O @y © eoyerrey

L. 1 . 1 .
@ oy O wamg s O @y 470

1 . g{x)
(g) W: () (x5

where f(x)=(x—x;) (x—xp) ... (x—x,) is a polynomial with
no multiple roots and g (x) is a polynomial of degree less than 2n.
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658. Decompose into real partial fractions of the first and

second type:
2x—1

(a) (x+l) x2+1)2 4 (b) (x+1)2 (x2+x+])2 ’
(©) W ,» (d) in—)z .

659. Let ¢ (x)=(x—x;) (x—x3) ... (x—x,).
Express the following sums in terms of ¢ (x):

(a) Z x—lx,-; (b) Z xf.ixi; ) Z (x—lx,-)z ‘

*660. Compute the following sums, knowing that x;, x,, ...
are roots of the polynomial ¢ (x):
1 1 1 '
(a) 5o, T oo T 20w o(x)=x*~3x—1,
(b) 1 + 1 + 1
x2—3x,+2 x3—3xy+2 —3x;+2
P(x)=x*+x2—-4x+1;
1 1 1
(C) x3—2x,+1 + x3—2x;+1 + x2—2x,41

P () =x+x-1

661. Determine the first-degree polynomial which approxi-
mately assumes the following table of values:
x|0 1 2 3 4
y 1212530 36 4.1
so that the sum of the squares of the errors is a minimum.
662. Determine the second-degree polynomial which appro-
ximately assumes the table of values
x1 01 2 3 4
y1 1142 2736

so that the sum of the squares of the errors is a minimum.

Sec. 6. Rational Roots of Polynomials.
Reducibility and Irreducibility
over the Field of Rationals

663. Prove that if % is a simplified rational fraction that

is a root of the polynomial f(x)=ayx"+ax" '+ ... +a, with
integral coefficients, then
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(1) g is a divisor of a,,

(2) pis a divisor of a,,

(3) p—mgq is a divisor of f(m) for any integral m. In particu-
lar, p—g is a divisor of f(1), p+gq is a divisor of f(—1).

664. Find the rational roots .of the following polynomials:

(a) x®—6x2+16x—14,

(b) x*—2x>—8x%+13x—24,

() x5—7x3—12x2+6x+36,

(d) 6x2+19x3—7x2—-26x+12,

(e) 24x*—42x®—T77x2+56x+60,

(f) x°—2x%—4x3+4x%—5x+6,

(g) 24x5+ 10x%—x3—19x2—5x+6,

(h) 10x*—13x%+16x2—18x—24,

(i) x*+2x3—13x2—38x—24,

() 2x3+3x2+6x—4, (k) 4x*—7x2—bx—1,
(D) x*+4x*—2x2—12x+9,

(m) x5+x*—6x%—14x2—11x-3,

(n) x®—6x5+11x%—x*—18x2+20x—8.

*665. Prove that a polynomial f(x) with integral coefficients
has no integral roots if f{0) and f (1) are odd numbers.

*666. Prove that if a polynomial with integral coefficients
assumes the values +1 for two integral values x, and x, of the
independent variable, then it has no rational roots if | x; —x, | >2.
However, if | x;—x,|<2, then the only possible rational root

.1
is 5 (63 +x5).

*667. Use the Eisenstein criterion to prove the irreducibility
of the polynomials

(@) x*—8x3+12x2—6x+2,
(b) x5—12x3+36x—12, (c) x*—x3+2x+1.
*668. Prove the irreducibility of the polynomial

xP—1 .
X, (x)= ~—] ° P prime.
*669. Prove the irreducibility of the polynomial
xP* 1 .
Xp"(x)=xp71‘:, p prime.
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*670. Prove that the polynomial f(x)=a¢x"+ax" 1+ ... +a,
with integral coefficients that has no rational roots is irreducib-
le if there exists a prime number p such that g, is not divisible
by p; as, as, ..., a, are divisible by p and g, is not divisible by p2,

*671. Let f(x) be a polynomial with integral coefficients
for which there is a prime number p such that a, is not divisible
by p; ayi1, At ---» G, are divisible by p and a, is not divisible
by p% Prove that in that case f(x) has an irreducible factor of
degree >n—*k.

672. Using the method of factorization into factors of the
values of a polynomial with integral values of the variable, de-
compose the following polynomials into factors or prove their
irreducibility:

(@) x*—3x2+1, (b) x*+5x3—3x*—bx+1,
(c) x*+3x3—2x2—2x+1,
(d) xt—x®—3x2+2x+2.

673. Prove that a polynomial of degree three is irreducible
if it has no rational roots.

674. Prove that the fourth-degree polynomial x*+-ax®+bx2+
+cx+d with integral coefficients is irreducible if it has no inte-
gral roots and is not divisible by any polynomial of the form

where m are divisors of the number d. Polynomials with frac-
tional coefficients may be disregarded. Polynomials like those of
Problems 614, 615 are a possible exception.

675. Prove that the fifth-degree polynomial x®+ ax?+bx3+
+cx?+4-dx+e with integral coefficients is irreducible if it has
no integral roots and is not divisible by any polynomials with
integral coefficients of the following form:

am®—cm?—dn+ be

2
XTm
x mé—n*+ae—dm +

. . e
where m is a divisor of e, [n=— .

676. Factor the following polynomials and prove their irre-
ducibility using Problems 674, 675:

(a) x4—=3x34+2x2+3x—9, (b) x*—3x342x2+2x—6,
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(¢) x*+4x3—6x2—23x—12,
(d) x%+x*—4x%+9x2—6x+6.

677. Find the necessary and sufficient conditions for redu-
cibility of the polynomial x*+px%+¢g with rational (possibly
fractional) coefficients.

678. Prove that, for the reducibility of a fourth-degree poly-
nomial without rational roots, it is necessary (but not sufficient)
that there exists a rational root of a cubic equation obtained in
a solution by the Ferrari method.

*679. Prove the irreducibility of the polynomial f(x)=
=(x—a) (x—ay) ...(x—a,)—1; a, a, ..., a, are distinct in-
tegers.

*680. Prove the irreducibility of the polynomial f(x)=
=(x—a)(x—ay) ... (x—a,)+1 for distinct integers a,, a,, ..., a,
with the exception of
x—a)(x—a-1)(x—a—2)(x—a—-3)+1

=[x—a-1)(x—a-2)—1]?
and
(x—a)(x—a-2)+1=(x—a—1)

*681. Prove that if an nth-degree polynomial with integral
coefficients assumes the values +1 for more than 2m integral
values of the variable (n=2m or 2m+1), then it is irreducible.

*682. Prove the irreducibility of the polynomial
f)=(x—a)? (x—ay)? ... (x—a,)?+1
if @, a,, ..., a, are distinct integers.
*683. Prove that the polynomial f(x) with integral coeffi-
cients which takes on the value +1 for more than three inte-

gral values of the independent variable cannot assume the va-
lue —1 for integral values of the independent variable.

*684. Prove that an nth-degree polynomial with integral
coefficients assuming the values + 1 for more than -;5 integral
values of the independent variable is irreducible for n > 12.

*685. Prove that if a polynomial ax*+bx+1 with integral
coefficients is irreducible, then so is the polynomial a [p (x)]2+
+b9 (x)+1 where ¢ (x)=(x—ay) (x—ay) ... (x—a,) for nz7.
Here, a,, as, ..., a, are distinct integers.
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Sec. 7. Bounds of the Roots of a Polynomial

686. Prove that the roots of the polynomial ayx”+a,x?~1+
+ ... +a, with real or complex coefficients do not exceed, in

absolute value,
(a) 1+maX’ G I, k=1,2, ..., n
ay

a
(b) p+max‘ kT p,’j_l

’

k=1,2,...,n; p is any positive number;

k .
(c) 2 max]/! Z—’: 1, k=1,2, ..., n

k-1
a4 /I ag
@ | % Ve e
687. Prove that the moduli of the roots of the polynomial
agx"+a;x" "1+ ... +a, do not exceed a unique positive root
of the equation bgx"—byx*~*—byx""%— .., —b,, where 0<
<bs<|agl, by2|ay |, by>asl, ..., 0, > a,|.
688. Prove that the moduli of the roots of the polynomial
f(X)=ax"+a, x*" "+ ... +a,, a,#0, do not exceed

=1,2, ..., n

r
(a) 1+]/max’ 2 k=t oo om
ay
) e+ Vmax kT a,’j ~ 1,
=r, ..., n, and p is any positive number;

r k—r_

° ar ak —
(c) ,/‘a— V a—r” k=r, ..., n

689. Prove that the real roots of a polynomial with real coef-
ficients do not exceed a unique nonnegative root of a polynomial
obtainable from the given polynomial by deleting all terms (ex-
cept the highest-degree one), the coefficients of which are of sign
that coincides with the sign of the leading coefficient.

Prove the following theorems:
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690. The real roots of the polynomial ax”+ a;x"~14...+a,
with real coefficients (for a,>0) do not exceed
r
/ ax | . . .
(a) 1+ —l/max. 7|where r is the index of the first negative
0
coefficient and a, are negative coefficients of the polynomial;

e

(®) o+ |/ max| 2

negative coefficient, a, are negative coefficients, and p is any
positive number;

where r is the index of the first

k —_—
(c) 2max ]/IZ—"I, a, are negative coefficients of the polyno-
0
mial;

r k—r
() 4,/|Z~’l~+ max 1/ ‘ % ‘, r is the index of the first ne-
0 r
gative coefficient, and a, are negative coefficients.

691. If all the coefficients of the polynomial f(x) are nonne-
gative, then the polynomial does not have positive roots.

692. If f(a)>0, f(@=0, ..., f™ (@) 20, then all real roots
of the polynomial do not exceed a.

693. Indicate the upper and lower bounds of the real roots
of the polynomials:

(a) x*—4x3+7x*—8x+43, (b) x3+7x3-3,
(¢) x7—108x%—445x*+900x2+4-801,
(d) x*+4x3—8x2—10x+14.

Sec. 8. Sturm’s Theorem

694. Form the Sturm polynomials and isolate the roots of
the polynomials:

() x*=3x—1, (b) x®+x2—2x—1,

© x*=7x+7, (d) x>*—x+5,

(e) x3+3x—5.

695. Form the Sturm polynomials and isolate the roots of
the polynomials:

(a) x1—12x*—16x—4, (b) x*—x—1,
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(©) 2x*—-8x3+8x2—1, (d) x*+x%*—1,
(e) x*+4x3—12x+9.

696. Form the Sturm polynomials and isolate the roots of
the following polynomials:

(a) x*—2x3—4x*+5x+5, (b) x*—2x3+x2—2x+1,
(©) x*—2x3—3x%+2x+1, (d) x*—x3+x2—x—1,
(e) x*—4x3—4x?+4x+1.

697. Form a Sturm sequence and isolate the roots of the fol-
lowing polynomials:

(a) x*—2x3—7x*+8x+1, (b) xt—4x?+x+1,

() xt—x3—x2—x+1, (d) x*—4x3+8x2—12x+8,

(e) x2—x%—-2x+1.

698. Form a Sturm sequence and isolate the roots of the fol-
lowing polynomials:

(a) x*—6x*—4x+2, (b) 4x*—12x2+8x—1,

© 3x*+12x3+9x%2—1, (d) x*—x3—4x2+4x+1,

(e) 9x*—126x%—252x—140.

699. Form a Sturm sequence and isolate the roots of the fol-
lowing polynomials:

(a) 2x5—10x%+10x -3,
(b) x8—3x%—3x*+ 11x3—3x2—3x+1,
(©) x3+x2—4x*—3x?+3x+1, (d) x*—5x3—10x2+2.

700. Form a Sturm sequence using the permission to divide
the Sturm functions by positive quantities, and isolate the roots
of the following polynomials:

(a) x*+4x>—1, (b) x*—2x3+3x2—9x+1,

(c) x*—2x*+2x2—6x+1,

(d) x5+5x2+10x2—5x—3.

701. Use Sturm’s theorem to determine the number of real

roots of the equation x®+px-+¢=0 for p and g real.
*702. Determine the number of real roots of the equation

x"+px+q=0.
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703. Determine the number of real roots of the equation
x5—bax®+5a?x+2b=0,

704. Prove that if a Sturm sequence contains polynomials
of all degrees from zero to n, then the number of variations of
sign in the sequence of leading coefficients of Sturm polynomials
is equal to the number of pairs of conjugate complex roots of
the original polynomial.

705. Prove that if the polynomials f(x), f;(x), fz(x), ...,
Ji (%) have the following properties:

(1) £ (x) f1 (x) changes sign from plus to minus when passing
through the root f(x);

(2) two adjacent polynomials do not vanish simultaneously;

3) if £, (xp)=0, then f;_; (xo) and f;,; (x,) have opposite signs ;

(4) the last polynomial f, (x) does not change sign in the in-
terval (a, b),
then the number of roots of the polynomial f(x) in the inter-
val (a, b) is equal to the increment in the number of variations
of sign in the sequence of values of the polynomials f, f;, ..., fx
when going from g to b.

706. Let x, be a real root of f' (x):

A@= W)

f2(x) is the remainder, after division of f(x) by f; (x), taken with
reversed sign; f5;(x) is the remainder, left after dividing f; (x)
by f, (x), taken with reversed sign, and so on. It is assumed that
S (x) has no multiple roots. Relate the number of real roots of
f(x) to the number of variations in sign in the sequence of values
of the polynomials constructed for x= — 00, x=x,, and x= + 0.

*707. Construct a Sturm sequence for the Hermite polyno-
mials

Xo

= die ‘
—(— 1Y p 2
Pn (X)—( 1) e dxn

and determine the number of real roots.

*708. Determine the number of real roots of the Laguerre
polynomials
dn (e —X ﬂ

dxn

Pp(x)=(-1)¢*




CH. 5. POLYNOMIALS AND FUNCTIONS OF ONE VARIABLE 111

Determine the number of real roots of the following polyno-
mials:
xn

2
*709. E,(x)=1+ T+ gt ... +7

nl °

1
2 _l dn+1 (e;)
*710. P,,(x)=(—1)"+1x”+2e x* W

l dn |
L. Py ()= e 1y S ()

1

* — — n 2 "+§ ar ;

T2 P,(x)=(=1r(e+1) "2 2 (Vx—-H)

*713. Let f(x) be a third-degree polynomial without multip-
le roots. Show that the polynomial F(x)=2f(x)f" (x)—[f (x)]?
has two and only two real roots. Investigate the case when f(x)
has a double or a triple root.

714. Prove that if all roots of the polynomial f(x) are real
and distinct, then all roots of each of the polynomials of the
Sturm sequence constructed by the Euclidean algorithm are real
and distinct.

Sec. 9. Theorems on the Distribution of Roots
of a Polynomial

Prove the following theorems:
715. All roots of the Legendre polynomial P, (x)=

are real, distinct and are in the interval (—1, +1).

716. If all the roots of the polynomial f(x) are real, then all
the roots of the polynomial A f(x)+f' (x) are real for arbitrary
real A.

*717. If all the roots of the polynomial f(x) are real and all
the roots of the polynomial g (x)=ax”+ax""*+ ... +a, are
real, then all the roots of the polynomial

F(xX)=a, fx)+a, f'(xX)+ ... +a,f® )

an (xz—l)n

dx”

are real.
*718. If all the roots of the polynomial f(x)=aex"+ax""1+
+ ... +a, are real, then all the roots of the polynomial

ay x"+a,mx"" L+ a,m(m—1) xn—2
+...tam(m=1) ... m—n+1)
are real for arbitrary positive integral m.
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*719. If all the roots of the polynomial f(x)=agx"+a;x" 1+
+ ... +a, are real, then all the roots of the polynomial

G(X)=ayx"+Cha; x" 1+ Cla, x" 2+ ... +a,
are real.
720. Prove that all the roots of the following polynomial are
real:

x"+(%)2x"—1+(”(1”__21))2x"-2+ R

*721. Determine the number of real roots of the polynomial
pxt—xtl—xnmt— 1],

722. Determine the number of real roots of the polynomial

Ing+1
aoml @ttt g

723. Determine the number of real roots of the polynomial
F)=(x—a) (x—b) (x—c)— A2 (x—a)—B? (x—b)—C%(x—c) for
a, b, c, A, B, C.

724, Prove that
A 4 4
(P(x):' X—a X—ay Tt X—ap

+B

does not have imaginary roots for real ay, a,, ..., q,, A, 4,
ooy A,y B.

Prove the following theorems:

725. If the polynomial f(x) has real and distinct roots, then
[f (X)2—f(x)f" (x) does not have real roots,

726. If the roots of the polynomials f(x) and ¢ (x) are all real,
prime and can be separated, that is, between any two roots of
f(x) there is a root of ¢ (x) and between any two roots of ¢ (x)
there is aroot of f (x), then all roots of the equation Af (x)+we (x)=
=0 are real for arbitrary real A and .

*727. If all the roots of the polynomials F(x)=2x f(x)+ ue (x)
are real for arbitrary real A and p, then the roots of the polyno-
mials £(x) and ¢ (x) can be separated.

*728. If all the roots of f (x) are real and distinct and f(x)
does not have multiple roots, then the number of real roots of
the polynomial [f' (X)]2—f(x)f'(x) is equal to the number of
imaginary roots of the polynomial f(x).

*729, If the roots of the polynomials f; (x) and f, (x) are all
real and separable, then the roots of their derivatives can be se-
parated.
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*730. If all the roots of the polynomial f(x) are real, then
all the roots of the polynomial F(x)=vf (x)+(+x) f'(x) are
real for v>0 or y< —n and for arbitrary real A as well.

*731. If the polynomial
f)=ay+ax+ ... +a,x"
has only real roots, and the polynomial
@ (X)=by+bx+ ... +bx*

has real roots that do not lie in the interval (0, »n), then all the
roots of the polynomial

ae (O +ay90 (D) x+asp (2)x2+ ... +a,p (n)x"

are real.

*732. If all the roots of the polynomial f(x)=ay+a,x+ ... +a,x"
are real, then all the roots of the polynomial a,+a;yx+ayy (y—
—Dx2+ ... +a,y(y—=1) ..{y—n+1)x* are real for y>n—1.

*733, If all the roots of the polynomial f(x)=ag,+ax+ ...
...+a,x" are real, then also real are the roots of the polynomial

y(y—1) yy=1 ... (y—n+tl) a. X"

2
o (1) BXF ...t o(a+1) ... (x+n—=1) """

a0+ga1x+

for y>n—1, «>0.
*734. If all the roots of the polynomial f(x)=ay+ax+ ...
... +a,x" are real, then all the roots of the polynomial

Gyt aywx—+a, wAx4+ ... +aq,w" x"

are real for O<w<1.

*735. If all the roots of the polynomial a,+a;x+a,x?+
+ ... +a,x"are real and of the same sign, then all the roots of the
polynomial a,cos ¢ +a; cos (p+9) x+a, cos (¢ +26) x*+ ... +a,
cos (¢ +#n0) x* are real.

*736. If all the roots of the polynomial

(ap+ibg)+(a,+ib) x+ ... +(a,+ib,)x"
lie in the upper half-plane, then all the roots of the polynomial
ay+ax+ ... +a,x"* and by+bx+ ... +bx"
are real and separable (the numbers ay, ay, ..., a,, by, by, ..., b,
are real).
*737. If all the roots of the polynomials ¢ (x) and ¢ (x) are

real and separable, then the imaginary parts of the roots ¢ (x)+
+1i ¢ (x) have the same signs.
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*738. If all the roots of the polynomial f(x) lie in the upper
half-plane, then all the roots of its derivative likewise lie in the
upper half-plane.

*739. If all the roots of the polynomial f(x) are located in
some half-plane, then all the roots of the derivative are located
in the same half-plane.

*740. The roots of the derivative of the polynomial f(x) lie
within an arbitrary convex contour which contains all the roots
of the polynomial f(x).

*741, If f(x) is a polynomial of degree n with real roots, then
all the roots of the equation [f(x)]2+k%2+{f" (x)]?=0 have an
imaginary part less than kn in absolute value.

742, If all the roots of the polynomials f(x) — a and f(x)—b
are real, then all the roots of the polynomial f(x)—x are real
if A lies between @ and b.

*743. For the real parts of all the roots of the polynomial x"+

+ayx" 14 ...+ a, with real coefficients to be of the same sign,
it is necessary and sufficient that the roots of the polynomials

XP—ay X" i g, x it — L
and

Gy xtl—agy x" T L

be real and separable.

*744. Find the necessary and sufficient conditions for the real
parts of all the roots of the equation x®+ax?+bx+c¢=0 with
real coefficients to be negative.

*745, Find the necessary and sufficient conditions for the ne-

gativity of the real parts of all the roots of the equation x*+ax® +
+bx2+cx+d=0 with real coefficients.

*746. Find the necessary and sufficient conditions for all
the roots of the equation x3+ax?+bx +c=0 with real coefficients
not to exceed unity in absolute value.

*747. Prove that if ay>a,>a,>...2a,20, then all the roots
of the polynomial f(x)=ayx"+ax""1+...+a, do not exceed
unity in absolute value.
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Sec. 10. Approximating Roots of a Polynomial

748. Compute to within 0.0001 the root of the equation x®—
—3x%2—13x—7=0 which lies in the interval (—1, 0).

749. Compute the real root of the equation x*—2x—-5=0
with an accuracy of 0.000001.

750. Compute the real roots of the following equations to

within 0.0001:

(@) x*—10x-5=0, (b) x*+2x—-30=0,

(©) x*—3x2—4x+1=0, (d) x®—3x2—x+2=0.

751. Divide a hemisphere of radius | into two equal parts by
a plane parallel to the base.

752. Evaluate the positive root of the equation x®—-5x—3=0

to within 0.0001.
753. Compute to within 0.0001 the root of the equation:

(@) x*+3x*—9x—9=0 lying in the interval (1, 2);
() x*—4x3+4x2—4=0 lying in the interval (—1, 0);
(©) x*+3x*+4x?+x—3=0 lying in the interval (0, 1);
(d) x*—10x2—16x+5=0  lying in the interval (0, 1);
(&) x*—x3—9x?+10x—10=0 lying in the interval (—4, —3);
) xt—6x2+12x—8=0 lying in the interval (1, 2);

(g) x*—3x*+4x—-3=0 lying in the interval (-3, —2);
(h) x*—x*—7x*—8x—6=0 lying in the interval (3, 4);
() x*—3x¥+3x2—2=0 lying in the interval (1, 2).

754. Compute to within 0.0001 the real roots of the following
equations:

(a) x*+3x3—4x—1=0,

(b) x*+3x*— x2—3x+1=0,
(©) x2—6x3+13x2—10x+1=0,
(d) x4—-8x3—-2x%+16x—3=0,
(e) x*—5x3+9x?—5x—1=0,
) x*—2x3—6x2+4x+4=0,
(8) x*+2x3+3x24+2x—-2=0,
(h) x*+4x®—4x%—16x—8=0.



CHAPTER 6

SYMMETRIC
FUNCTIONS

Sec. 1. Expressing Symmetric Functions
in Terms of Elementary Symmetric Functions.
Computing Symmetric Functions of the Roots
of an Algebraic Equation

755. Express the following in terms of the elementary symmet-
ric polynomials:

(a) x}+ x3+ x3 — 3x; x5 %,

(b) XPxs+ x1x5+ XTxa+ X, X3+ X5x5 + Xy %3,

(©) xt+ xd+ x§—2x3x3 — 2x3x3 — 2x3x?,

(d) x3xd+ xPx§+ x5x3 + xPx3+ x5xf+ x§x§,
(&) (rrtxs) (xp+x5) (xa+x,),
() (xF+x3) (xf + xB) (x3+ x3),
(8) (@xy—x3—x35) (@xa—x;—X3) (2x3—X;—X5),
(h) (xp—x2)? (X1 —x3)? (x5 —x5)%

756. Represent the following in terms of the elementary sym-
metric polynomials:

(@) (x1+x2) (1 +x3) (3 +x4) (X2 X3) (X3 +xg) (xz+x,),
(b) (erxa+x3xy) (Xpx3+XaXg) (X1X4+X9Xs),
(©) (x1+xa—Xx3—x4) (X3 —Xg+X3—X,) (%1 —X5—X3+X,).

757. Represent the following monogenic polynomials in terms
of the elementary symmetric polynomials:

(@ xf+ -, (g) x%x%x3+ ce-, () XxpxgXe+ ...,
Xl+ ey x;lxzxa_l_...’ [s) x1x2x3+ ey

(b) x{ (h) (0) xix3

(€) xPxpxs+ - -+, (i) xixg+ .-, @) X3+ .-,

(d) xfx3+ - - -, (3) xxa+ -, (@) xixaxs+ .- -,

(€) xixa+ -, (k)x?+ () x{xg+ .-,

€) xt+ - -, O xxGxaxa+ ..., (8) XPxat+ - - -,

(
(m) xfxfx3+ -, (1) x}+
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758. Express the following in terms of the elementary sym-
metric polynomials:

(@) (—xy+xs+X3+ oo +X,)2 4+ 00y — x5+ x3
+ ook X2+ (X — X3+ . 4 X))
T o G S e S e ) o)
(b) (—x;+xa+x3+ ... +x,) (X3—x3+x5
+ ot x) (Xt —x).

759. Express the following in terms of the elementary sym-
metric polynomials:

(a) Z (x:i—x0%  (b) Z (3 + %)%,

i>k i>k
(C) Z (xi - xk)4, (d) Z (xi + X, — Xj)Z.
ok i¢;;>jl;k

760. Express the following monogenic polynomial in terms
of the elementary symmetric polynomials:
X - xp

761. Express the following in terms of the elementary sym-
metric polynomials:

Z (X, +apxi,+ - -0 taux )P

The sum is extended over all possible permutations iy, i,, .
of the numbers 1, 2, ..., n.

762. Express the following in terms of the elementary sym-
metric polynomials:

ves Ip

X X. X, X X X
(a) _1+_“+_3+_3+_3+_1,
Xa X3 X1 X1 X3 X3
(b) (o0 — xp)? (3 —x)* 7(x3—x1)z
X1+ Xxa Xyt X3+ X1

@ (B+242) (228

X1 Xz, X3 Xy X3 X1

’

763. Express the following in terms of the elementary sym-
metric polynomials:

X1 X3 X1X3 X1X4 XaXs XaXa XaX4
() oy T N Ty T TR
XXy XaXy XgX3 X1X4 X1X3 X1X3

(b) XatXy , xatXs , xat X XebXs  Xa+ Xy X3+ X
XgtXg Xo+ Xy XabXg XptXy Xptxs X+ Xy
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764. Express the following in terms of the elementary sym-
metric polynomials:

@%5  OX @

i#f
x? x? XjXf
@ 2 X, @ X X, ) 2 .
- x; . X ; 4
i#j 7 I #j i# ]
izk
i>k

765. Compute the sum of the squares of the roots of the equ-
ation
x¥+2x—3=0.

766. Compute x3xp+x;%3 4+ x3x; + x93+ x3x; + x5x3 of the roots
of the equation x®—x2—4x+1=0.
767. Determine the value of the monogenic symmetric function

X0y + ..
of the roots of the equation
x4+ x3—2x*—3x+1=0.
768. Let xy, x,, x3 be the roots of the equation x®+px+g=0.
Compute:

X3 Xa X3
@ F+ntan
(b) xfx3+ xfx§+ xhoed + xfxd + xsx? + x3xt,
(c) (%% — xp3) (x% — X1X3) (x§ — XaXy),
@ O +xz)“ (1 +x9) (X2 +x5)%,

x2 x%
© ErhEmeh D ey e D
x1 2 xg

O mrpt sy T mrne

769. What relationship is there between the coefficients of the
cubic equation

+2 +—+—
X1 X3

x*+ax?+bx+c¢=0

if the square of one of the roots is equal to the sum of the squares
of the other two?

g 770. Prove the following theorem: for all roots of the cubic
equation x*+ax®+bx+ c=0 to have negative real parts, it is ne-
cessary and sufficient that the following conditions hold:

a>0, ab—c>0, ¢>0.
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771. Find the area and the radius of a circle circumscribed
about a triangle whose sides are equal to the roots of the cubic
equation

x}—ax*+bx—c=0.

*772. Find the relationship among the coefficients of an equa-
tion whose roots are equal to the sines of the angles of a triangle.

773. Compute the value of a symmetric function of the roots
of the equation f(x)=0:

(@) xtx,+ ..., f(x)=3x3-bx2+1;
(b) x}x3+ ..., fO)=3x*—2x*+2x2+x—1;
(€) (xf+x1X 4 x3) (X3 + xp3 + x3) (X5 + x3x1 + x7),
fx)=5x*—-6x2+7x—8.
774. Express in terms of the coefficients of the equation
apx*+a;x*+ax+a;=0
the following symmetric functions:
(a) af (1= %2)? (%1 = x3)* (%2 — %3)?,
(b) af (xF — xax5) (%8 — X1x3) (X5 — x1Xs),

(C) x1—xz (%1 x3)" (xa—x,)*
X1X3 X3 X3

(d) af (x, + XXy + x3) (X3 + Xp23 + x3) (xF+ X3, + x7).

?

775. Let x,, x5, ..., X, be the roots of the polynomial
X+axt . 4a,

Prove that the symmetric polynomial in Xy, X3, ..., X, can be
represented in the form of a polynomial in x,.

776. Using the result of Problem 775, solve Problems 755(e),
755 (g), 774 (b) 774 (d).

777. Find Z where fr 1s the kth elementary symmetric
i=1
function of x;, x3, ..., X,
778. Let the expression of the symmetric function F (x;, x», ...,
x,) in terms of the elementary symmetric functions be known.

Find the expression of Z —— in terms of the elementary sym-
i=l1
metric functions.
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Prove the theorems:

779. If F(x3, X3, ..., X,) is a symmetric function having the
property

F(xy+a, xota, ..., x,+a)=F(xy, X5, ..., Xp)

and if © (£, fs,..., f,) Is its expression in terms of the elementary
symmetric functions, then

oD oD ot
TS +(n—-1)A 73724' I o ) Ff: =0

and conversely.
780. Every homogeneous symmetric polynomial of degree
two having the property of Problem 779 is equal to « Z (x;— x,)?
i<k
where « is a constant.
781. Find the general form of homogeneous symmetric poly-
nomials of degree three having the property of Problem 779.
782. Using the result of Problem 779, express the following in
terms of the elementary symmetric polynomials:

Z (3 = %) (6, — x3)® (o — X ).

783. Prove that among the symmetric polynomials F (x;, x,,
.., X,) having the property

F(xy, X9 ..., X)=F (xy+a, xo,+a, ..., x,+a)

there are n—1 ‘“‘elementary polynomials” @,, @, ..., @, such that
each polynomial of the class under consideration can be expres-
sed in the form of a polynomial in ¢y, @5, ..., @,.

784. Express the following symmetric functionsin terms of
the polynomials ¢, @; of Problems 783:

(a) (rp—x2)% Oy —X3)? (x5 —x,)%,
(b) (g —x)*+ Oy —x3)* + (33 —x35)*.

785. Express the following symmetric functions in terms of
the polynomials @,, @,, ¢, of Problem 783:

(@) (o +xz—Xx3—xg) (63 —Xa+X3—xg) (X3—Xy—X3+Xy),

(B) (g —x2) (33 —x3)% (%1 —X)? (xp — X3)? (¥a—X4)% (3 —x)%
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Sec. 2. Power Sums

786. Find an expression for s,, §y, 84, 55, S in terms of the ele-
mentary symmetric polynomials, using Newton’s formulas.

787. Express f, f:, f1, J5, fo in terms of the power sums s, Sy,

., using Newton’s formulas.

788. Find the sum of the fifth powers of the roots of the equ-
ation

x8—4x5+3x3—4x*+x+1=0.

789. Find the sum of the eighth powers of the roots of the

equation
xt—x*—1=0.
790. Find the sum of the tenth powers of the roots of the

equation
x3—=3x+1=0.

791. Find sy, s, ..., 5, Of the roots of the equation
xn_l xn—a

1
x"+—l——+ﬁ+ +_l=0'

n

792. Prove that
k

@t (xf +d) = (= D [0

b2 g 4 KE=9) (1[(._23) b*~ta%c?
_ k=) k=5 ph
1-2-3
if x;, x5 are the roots of the quadratic equation ax®+bx + c¢=0.
793. Prove that for any cubic equation

A S UR-A).

§$3—5,

ac o]

794. Prove that if the sum of the roots of a quartic equation
is equal to zero, then

S5 _ 83 5
57 3 2
795. Prove that if s;=s,=0 for a sextic equation, then
S S S
7 5 2°

796. Find nth-degree equations for which
§=8=...=5,_,=0.
797, Find nth-degree equations for which

Sy=8=...=5,=0,
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798. Find an nth-degree equation for which
s2=1, S3=84=...=8,=8,.1=0.
799. Express Z xf x¥ in terms of power sums.
i<j
*800. Express Z (x;+x;)* in terms of power sums.
i<j
*801. Express Z (x;— x;)* in terms of power sums.
i<j
f 1 0 ... 0

21, f 1 ... 0
802. Prove that s,=| 37, fo fi +-- 0

5 1 0 -+ 0
9 5 2 ... 0
1
803. Prove that fk= %0 | Ss So 5 3 ... 0

Sk Sk-1 Sp-s $1
X" xn—l xn——2 1
s 1 0 0
804. Compute the determinant | 5, 5 2 ... 0]
................ |
Sy Spy-1 Sy—2 N {
*805. Find s,, of the roots of the equation
X, (x)=0.

*806. Prove that f,, f; and f; of the roots of the equation X, (x)=
=( can only take on values 0 and +1.
*807. Solve the system of equations

X1+ X+ ¢ Fx,=a,
K+t o +xi=q,
x?+x§'+ « . +xﬁ=a

and find xJ*' 4+ x4+ + .. 40t
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*808. Compute the power sums 8, S, ..., 8, of the roots of
the equation
x"+(a+b) x"~1 + (a®+ ab + b?) x"*
+ <« +(@+a b+ .- +b7)=0.
*809. Compute the power sums sy, 8g, ..., 8, of the roots of
the equation
r(a+b)xr (@@ + 0% xm 2 - (a4 b)) =0.

Sec. 3. Transformation of Equations

810. Find equations whose roots are:
(@) x1+xg, Xo+ X3, X3+ X1}
(b) (ey—x2)% (x2—x3)%, (X3 —x1)%;
(€) xT—xoxy, X5—X3Xy, X5— XyXa
(d) (3= Xa) (X1 — Xa)y (xa—2x1) (X2 —X3), (X3— X1) (X3 —Xp);
(e) x}, x§, x% (f) x3, 8, x3
where x;, Xo, X, are the roots of the equation x%+ ax?+bx+c=0.
811. Find an equation whose roots are
(x1+x, e+x35 %)% and (xy +x, ¥+ x, €)®
V3
2

where = —% +1i ; X1, X9, X3 are the roots of the equation

xX+axt+bx+c=0.

812, Find an equation of lowest degree, one of the roots of
which is 2t 4 X2 o +—, where x,, x,, X5 are the roots of the cu-
2

3

bic equation x3+ax2+bx+c 0, and the coefficients of which
are expressed rationally in terms of the coefficients of the given
equation.

813. Find an equation of lowest degree, one of the roots of
which 1is ix“— where x;, x,, X; are the roots of the equation x3+

2
+ax?+bx+c=0, and the coefficients of which are expressed in
terms of the coefficients of the given equation.

814. Find an equation of lowest degree with coefficients ex-
pressed rationally in terms of the coefficients of a given equation
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x4+ax®+bx2+cx+d=0, one of the roots of the desired equ-
ation being:

;(3-) X Xg+XaXg, (B) (xytXe—X3—xg)%  (€) XXy,

[(d) xy4xg (&) (x—x2)%

815. Using the results of Problems 814 (a) and 814 (b), express
the roots of a quartic equation in terms of roots of the auxiliary
cubic equation of Problem 814 (a).

[816. Write a formula for the solution of equation

—6ax?+bx—3a2=0.
[817. Write an equation, one of the roots of which is
(X1 + XoXg 4 XgX 4+ X X5+ X5X1)
X (15 + XX+ XgXg b XX g + X 54%y)
where x;, x,, X5, X4, X5 are roots of the equation
x5+ax+b=0.

Sec. 4. Resultant and Discriminant

[*818. Prove that the resultant of the polynomials
F)=x"+ax""+...+a, and @ (X)=bx"+...+b,
is equal to a determinant made up of the coefficients of the re-
mainders left after dividing ¢ (x), x¢ (x), ..., x*71 ¢ (x) by f(x).
It is assumed that the remainders are arranged in order of increa-
sing powers of x (Hermite’s method).

JRemark. The remainder r, (x) left after dividing x*~2 ¢ (x) by
S (%) is equal to the remainder obtained upon division of x7;,_(x)
by £ (). _

\¥819. Prove that the resultant of the polynomials

F)=apx"+ax""14+...+a,
and

@ (X)=bex"+bx""1+...+b,
is equal to a determinant composed of the coefficients of poly-
nomials of degree n—1 (or lower)

Oy () = (@px* "2+ ayxk =24+ <+ 4 ap_;)o(x)
—(box* = byxk 24 - o o b)) f(X)
k=1, ..., n (Bézout’s method).
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Remark. {,=a40—b,f,
be=xy 1+ 10— b1 f.
*820. Prove that the resultant of the polynomials

f(x)=apx"+ayx* 7+ .- +a,
and
@ (x)=bex"+byx" 14 .- +b,

is equal, for n>m, to a determinant made up of the coefficients
of polynomials y,(x) of degree not exceeding n—1 determined
from the formulas

Y (x)=xF"1o(x) for 1<k<n—m,
Yo (%) = (@ox*~m+m=1 4 g, xk-n+m=2
+ o Gpim1) XV @ (X) = (Box* Mt
FopxkTrEmE L e b pmo1) f(X)

(the polynomials y, are arranged in order of increasing powers
of x).
Remark. Xn—m+1=00xn—m ¢ (x) “bof (X),

Y= XNk—1+ e tm=1 X" "7 @ (%) = by e m-2.S (%)

for k>n—m+1.

821. Compute the resultant of the polynomials:

(& x*-3x*+2x+1 and 2x*—x-—1;

(b) 2x*—3x2+2x+1 and x*+x+3;

(© 2x*-3x*—x+2 and x*-—2x2—-3x+4;

(d) 3x*+2x2+x+1 and 2x34x*—x—1;

(e) 2x*—x3+43 and 3x®-—-x%-+4;

®) apx®+ax+a, and bx?+bx-+b,.

822. For what value of A do the following polynomials have a
common root:

(a) x®*—Ax+2 and x2+4+Ax42;

(b) x*—2xx+ A% and x24+A2-2;

() ¥*+x1x2—9  and x*+ix—-3?

823. Eliminate x from the following systems of equations:

(@) x2—xy+y2=3, Xty +xy2=6;
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(b) x*—xy—y*+y=0, x24x—)*—1=0;
(©) y=x*—2x2—6x+38, y=2x3—8x2+5x+2.

824. Solve the following systems:

(@) y2—Txy+4x*+13x—2y—3=0,
12 —14xy+9x%+28x -4y —5=0;

(®) y2+x2—y—3x=0,
Y2—b6xy—xt+11y+7x—12=0;

(c) 5y*—6xy+5x2—16=0,
Y2—xy+2x2—y—x—4=0;

@) y*+(x—4)y+x2—2x+3=0,
=52+ (x+7)y+x3—x2—5x—3=0;

() 2)°—4xy?—(2x2—12x+8)y +x3+4+6x2—16x=0,
43— (3x+10)y* — (4x®—24x + 16)y —3x3

+2x2—12x+40=0.
825. Determine the resultant of the polynomials

ax"+ayx""1+ ... +a,
and
aoxn—1+alx”—2+ c e +a,,_1.

826. Prove that R(f, 91 @:)=R(f, 90 - RS, ¢2).
*827. Find the resultant of the polynomials

X, and x™—1.

*828. Find the resultant of the polynomials X,, and X,.
829. Compute the discriminant of the polynomial:

(a) x?—x%2—-2x+1, (b) x3+2x2+4x+1,

(c) 3x%+3x*+5x+2, (d) x*—x*-3x2+x+1,

(e) 2x*—x®—4x24+x +1.

830. Compute the discriminant of the polynomial:

(a) x®—bax®+5a2x—b, b)) (BF—x+1PB-A(x2-x)?,
(c) ax®*~bx2+(b—3a) x+a,

(d) x1—-ax3+3 (A —4) x2—2(A—-8) x—4.
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831. For what value of A does the polynomial have multiple
roots:

(a) x*=3x+2; (b) x*—4x+),

(©) x*—8x2+ (13— x—(6+2N),

(d) x2—4x3+(2—2) x*+2x—-27

832. Characterize the number of real roots of a polynomial
with real coefficients by the sign of the discriminant:

(a) for a third-degree polynomial;

(b) for a fourth-degree polynomial;

(c) in the general case.

833. Compute the discriminant of the polynomial x"+a.

*834. Compute the discriminant of the polynomial x"+px+g.
*835. Compute the discriminant of the polynomial

X"t 4+ a, x" + a,.
836. Knowing the discriminant of the polynomial
apx"+ax" 1+ ... +a,
find the discriminant of the polynomial
ax"+a,_x""14+ .- +a,.
837. Prove that the discriminant of a fourth-degree polyno-
mial is equal to the discriminant of its Ferrari resolvent (Prob-

lem 814(a) and Problem 80).
838. Prove that

D (x—a) f(x))=D (fix)) /@]
*839. Compute the discriminant of the polynomial
xtlyxn—24 ... 4],
*840. Compute the discriminant of the polynomial
x"+ax"'+ax""t4+ ... 4a.
841. Prove that the discriminant of a product of two polyno-
mials is equal to the product of the discriminants multiplied by

the square of their resultant.

842. Find the discriminant of the polynomial
143
X,=2=l
14 xP -1

*843. Find the discriminant of the cyclotomic polynomial X,
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*844. Compute the discriminant of the polynomial
=n! XX ﬂ)
E, ”'(1+1+1-2+ +-1)

*845. Compute the discriminant of the polynomial
(a=1). - - (@a—n+1)
nl ’

Fn=x"+% x"‘1+%)-x"‘2+ cee 42

*846. Compute the discriminant of the Hermite polynomial

n T -
Py(x)=(—1ye” ¥
*847. Compute the discriminant of the Laguerre polynomial

i n dn (xne—-x)
P, (x)=(= 1y LD
*848. Compute the discriminant of the Chebyshev polynomial

2 cos (n arc cos %)

*849. Compute the discriminant of the polynomial

1
n d" 2
P, (x) =" (14 2y 4(;;" ).

*850. Compute the discriminant of the polynomial
1
dn Sy p—
Vi+xd
dxn

*851. Compute the discriminant of the polynomial
1

1 —_—

T drtie)
—f — n 2n+2
P"(X)—( 1) x € dxnt1

*852. Find the maximum of the discriminant of the polynomial
Xt+ax"l e 4oa,
all the roots of which are real and connected by the relation
X+ x+...+x=n(n—1) R2

1
P (x)=(~ 1y (14+x7) 2

853. Knowing the discriminant of f (x), find the discriminant

of f(x%.

854. Knowing the discriminant of f(x), find the discriminant

of f(x™).



CH. 6. SYMMETRIC FUNCTIONS 129

855. Prove that the discriminant of F(x)=f (¢ (x)) is equal to
I [T 2(e(x-x),
i=1

where m is the degree of ¢ (x); X3, Xy, ..., X, are roots of f(x). The
leading coefficients of f and ¢ are taken equal to unity.

Sec. 5. The Tschirnhausen Transformation
and Rationalization of the Denominator

856. Transform the equation (x—1) (x—3) (x+4)=0 by the
substitution y=x%—x—].

857. Transform the following equations:

(a) x*—3x—4=0 by the substitution y=x2+x+1;

(b) ¥®+2x2+2=0 by the substitution y=x2+1;

) x*— x-2=0 by the substitution y=x3—2;

(d) x*—x*—x24+1=0 by the substitution y=x3+x2+x+].

858. Transform the following equations by the Tschirnhausen
transformation and find the inverse transformations:

(&) x*-—x+2=0, y=x%+x;

(b) x*—3x+1=0, y=x+x;

() x2+5x3+6x2—1=0, y=x>+4x2+3x—1.

859, Transform the equation x®*—x2—2x+1=0 by the substi-
tution y=2—x? and interpret the result.

860. Prove that for the roots of a cubic equation with rational
coefficients to be expressed rationally with rational coefficients
in terms of one another, it is necessary and sufficient that the

discriminant be the square of a rational number.
861. Rationalize the denominators:

1 1 7
@) —=—es () —g—5—, () — ——.
1+V2-V3 1+12+2Y 4 1-V2+V12
862. Rationalize the denominators:
(@) «?—3u+1=0;

02— 30— 1

(®) oy o +a?+ 30 +4=0;

S, 1215
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1
©) Fragai
1
() isaiais
863. Prove that every rational function of a root x; of the

cubic equation x*+ax?+bx+c¢=0 can be represented as 'é::‘ig
1

with coefficients 4, B, C, D, which can be expressed rationally
in terms of the coefficients of the original expression and in
terms of the coefficients a, b, c.

864. Let the discriminant of a cubic equation that has rational
coefficients and is irreducible over the field of rationals be the
square of a rational number. It is then possible to establish the

relation x,= —f: ;(1: g among the roots. What condition do the
1
coefficients «, 8, v, 8 have to satisfy?
865. Make the transformation y=x? in the equation

apx"+ax" '+ .- +a,=0.

ot — ol 4+ 20+ 1=0;

ot +ad—4a?—3a+2=0.

866. Make the transformation y=x® in the equation
AGpx"+ayx"" 4 oo 44,=0.
*867. Prove that if all the roots x; of the polynomial
f(X)=x"+ax"'+ --- +a, a,#0

with integral coefficients satisfy the condition | x; | < I, then they
are all roots of unity.

Sec. 6. Polynomials that Remain Unchanged
under Even Permutations of the Variables.
Polynomials that Remain Unchanged
under Circular Permutations of the Variables

868. Prove that if a polynomial remains unchanged under
even permutations and changes sign under odd permutations,
then it is divisible by the Vandermonde determinant made up of
the variables, and the quotient is a symmetric polynomial.

869. Prove that every polynomial that remains unchanged un-
der even permutations of the variables can be represented as

F\+F, A

where F; and F, are symmetric polynomials and A is the Vander-
monde determinant made up of the variables.
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870. Evaluate

ilox xt xp=2 xpt
1 x, X% xp=?  xptl
' 1 x, x2 --« xi72 xntl|

871. Form an equation whose roots are ax;-+fx,+vxs, ax,+
+ Bxs+vx, and axg+fx; +vx, wWhere x;, x,, x3 are the roots of
the equation x*-+ax*+bx+c=0.

872. Form an equation whose roots are Xx;y;-+Xy¥s-+XsVs,
X1Va+XoVs+XaY1, X1 Vs XY+ X3y Where x,;, X,, X3 are the roots
of the equation x®+px+¢+0, and y,, y,, y; are the roots of the
equation y*+p'y+g'=0.

873. For the following equations with rational coefficients

*+px+g=0,

Y +py+q'=0
to be connected by a rational Tschirnhausen transformation, it
is necessary and sufficient that the ratio of their discriminants A

and A’ be the square of a rational number and that one of the

equations

u=3pp'u + E%KAA

have a rational root. Prove this.

874. Prove that every polynomial in n variables x;, Xy, ..., X,
which remains unchanged under circular permutations of the
variables may be represented as

2 Affni <o g,
where v, 7y, ..., ,—1 are linear forms:
T =XE F X A+ -+,
N =x82 et 4+ o X,
o1 = X&' TE e Xy

2r . . 2%
e=¢Co0S - 4ismn - -
H n

The exponents oy, &, ..., &,_; satisfy the condition: n divides
o +2054 ... +(n—1) o,_s.

875. For rational functions that do not change under circular
permutations of the variables, indicate » elementary ones (frag-

§*
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tional and with nonrational coefficients) in terms of which. all of
them can be expressed rationally.

876. For rational functions of three variables unaltered under
circular permutations, indicate three elementary functions with
rational coefficients.

877. For rational functions of four variables that remain un-
changed under circular permutations, indicate four elementary
functions with rational coefficients.

878. For rational functions of five variables that remain fixed
under circular permutations, indicate five elementary functions
with rational coefficients.



CHAPTER 7

LINEAR
ALGEBRA

In this chapter we adhere to the following terminology and
notations. The term space is used to denote a vector space over
the field of real numbers, unless otherwise stated. This term is
used both for the space as a whole and for any part of a larger
space (the term subspace will be used only when it is necessary to
specify that a given space is part of a larger space). A linear mani-
fold is a set of vectors of the form X+ X, where X, is some fixed
vector and X runs through the set of all vectors of some subspace.

The equation X'=(x,, x5, ..., X,) means that X has coordinates
X1, Xa, ..., X, in some fixed basis of the space; when we deal with
Euclidean space, the basis is assumed to be orthogonally norma-
lized.

Vectors are sometimes called points, one-dimensional mani-
folds are called straight lines, and two-dimensional manifolds are
called planes.

Sec. 1. Subspaces and Linear Manifolds.
Transformation of Coordinates

879. Given a vector space spanned by the vectors X;, X,, ..
X,,.. Determine the basis and dimension:

@ X=2,1,3 1), X,=(1,2,0,1),
X;=(-1,1, =3, 0);

() X=2,0,1,3, -1), Xe=(,1,0, =1, 1),
X;=0, -2, 1, 5, =3), X,=(, -3,2,9, -5);

© x=2, 1,3, -1, X,=(—1, 1, =3, 1),
X,=(4, 5, 3, —1), X,=(, 5 =3, 1)

)
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880. Determine the basis and dimension of the union and in-
tersection of spaces spanned by the vectors X3, ..., X, and Y,,
ey Y0
(a) X1=(17 27 13 O)) Y1=(2’ _13 O) 1)3
X2:(_13 13 13 1)7 Y2=(17 _13 3, 7),
(b) X]_:(l, 23 _13 _2)7 Y1:(27 57 _63 _5)7

X,=G, 1, 1, 1), Yo=(-1, 2, =7, -3),
X;=(-1,0, 1, —1);

© x,=(, 1,0, 0), Y,=(@, 0, t, 1),
X,=(,0,1, 1), Y,=(0, 1, 1, 0).

881. Find the coordinates of the vector X in the basis E,,
E, E, E,:
(a X=(1,2,1,1), E={111D,
E,=(, 1, -1, —1),
E,=(, —-1,1, =1, E.~=({, -1, =1, 1);
M® X=(0,0,0,1), E=(1,1,0,1), E=(2,1,3,1),
E,=(,1,0,0), E=(@O,1, -1, =1).

882. Develop formulas for the transformation of coordinates
from the basis E,, E,, E;, E, to the basis E|, E;, Ej, E;:

(2) E;=(1,0,0,0), E,=(0,1,0,0), £;=(0,0,1,0),
E,=(0,0,0,1), E;=(1,1,0,0), E;=(1,0,1,0),
Ej=(1,0,0, 1), E;=(, 1,1, 1);

M) E=(,2, —1,0), E,=(, —1,1,1),

E=(-1,2,1,1), E;=(—-1, —1,0, 1),
E=(2,1,0,1),

E;=(0,1,2,2), Es=(-2,1, 1, 2),
E;=(, 3, 1, 2).

883. The equation of a ‘‘surface” with respect to some basis
E,, ..., E; has the form x{+x§—x3—x?=1. Find the equation
of this surface relative to the basis

E=(, 1,1, 1, Es=(, =1, 1, =1,
E=(,1, -1, =D, Ei=(1, -1, =1, D)
(the coordinates are given in the same basis £, ..., E,).
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*884, In the space of polynomials in cos x of degree not ex-
ceeding n, write the formulas for transformation of coordinates
from the basis 1, cos x, ..., cos” x to the basis 1, cos x, ..., cos nx,

and conversely.
885. Find a straight line in four-dimensional space that passes
through the origin of coordinates and intersects the straight lines:

x=2+3t, xo=1—1t, x3=—14+2¢, x,=3-2t
and
x; =Tt x3=1, xs=1+1, x4=—1+2¢.

Find the points of intersection of this straight line with the
given straight lines.

886. Prove that any two straight lines in n-dimensional
space can be embedded in a three-dimensional linear mani-
fold.

887. Investigate, in general form, the condition for solvabi-
lity of Problem 885 for two straight lines in r-dimensional
space.

888. Prove that any two planes in n-dimensional space can be
embedded in a five-dimensional linear manifold.

889. Give a description of all possible cases of the mutual lo-
cation of two planes in n-dimensional space.

890. Prove that a linear manifold can be characterized as a
set of vectors containing the linear combinations aX;+(1 —o) X,
of any two vectors X;, X, for arbitrary «.

Sec. 2. Elementary Geometry of n-Dimensional Euclidean Space

891. Determine the scalar product of the vectors X and Y:
(a X=(2,1, -1,2), Y=(@3, -1, =2, 1);

b) X=(,2,1, =1, Y=(-2,3, =5, —1).

892. Determine the angle between the vectors X and Y:

(@ X=(2,1,3,2), Y=(,2, -2, 1);

®) X=(,2,2,3), Y=(3,1,5,1);

© X=0U,1,1,2, Y=@3,1, ~1,0).

893. Determine the cosines of the angles between the straight
line x;=x,=...=x, and the axes of coordinates.

894. Determine the cosines of the interior angles of a triangle
ABC which is specified by the coordinates of the vertices:

A=(17 27 17 2)7 B=(37 17 _17 O)a C:(l’ 1)07 1)'
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895. Find the lengths of the diagonals of an n-dimensional
cube with side unity.

896. Find the number of diagonals of an n-dimensional cube
which are orthogonal to a given diagonal.

897. In n-dimensional space, find »n points with nonnegative
coordinates such that the distances between the points and from the
origin are upity. Place the first of these points on the first axis,
the second, in the plane spanned by the first two axes, etc. To-
gether with the coordinate origin, these points form the vertices of
a regular simplex with unit edge.

898. Determine the coordinates of the centre and radius of a
sphere circumscribed about the simplex of Problem 897.

899. Normalize the vector (3, 1, 2, 1).

900. Find the normalized vector orthogonal to the vectors
a, 1,1, D;a, -1, =1, D;@2, 1, 1, 3).

901. Construct an orthonormal basis of a space, taking for
two vectors of this basis the vectors

1 1 1 1 1 1 1 5
(203 20 2)emd (55 60 50 )

902. By means of the orthogonalization process, find the or-
thogonal basis of a space generated by the vectors (1, 2, 1, 3);
4 1,1,1):@3, 1, 1, 0).

903. Adjoin to the matrix

1 1 1 2 1
1 0 01 -2
21 -1 0 2

t wo mutualiy orthogonal rows that are orthogonal to the first
three rows.
904. Interpret the system of homogeneous linear equations

Ay Xy + Xy + ... +ay,x,=0,

Uy Xy +Ayp Xs + ... +a, x,=0,

A X1+ dpXet+ . oo +0,, %, =0

and its fundamental system of solutions in a space of n dimen-
sions, taking the coefficients of each equation for the coordinates
of a vector,
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905. Find an orthogonal and normalized fundamental system
of solutions for the system of equations

3x1_ xZ'x3+X4=O,

xl+2xZ_X3”'X4=O.
906. Decompose the vector X into a sum of two vectors, one
of which lies in a space spanned by the vectors A, A,, ..., 4,

and the other is orthogonal to this space (the orthogonal projec-
tion and the orthogonal component of the vector X);

(a) X=(5, 2, ‘—2, 2), A1=(2a 1) 1) ’1))
A2=(1’ 1’ 3’ 0);

(b) X=(_3) 57 9’ 3)’ A1=(1a 1’ 1’ 1);
A2=(2’ _1’ 1’ 1)) A3=(2, _7a _la _1)

907. Assuming the vectors 4y, 4, ..., 4,, to be linearly inde-
pendent, give formulas for computing the lengths of the compo-
nents of the vector in Problem 906 when posed in general form.

908. Prove that of all vectors of a given space P, the smallest
angle with a given vector X is formed by the orthogonal projec-
tion of the vector X on the space P.

909. Find the smallest angle between the vectors of the space P
(spanned by the vectors 4,, .., 4,,) and the vector X

(a) X:(I, 39 _1: 3)7 Alz(ls _1: 15 1)5
A2:(59 17 _37 3);
(b) X:(25 25 _15 1), A1=(1, _1; 1, 1):
A2=(_—1’ 2: 3’ 1)9 A3=(1’ 05 5’ 3)'
910. Find the smallest angle formed by the vector (1, 1, ..., 1)
with the vectors of some m-dimensional coordinate space.
911. Prove that of all vectors X — Y, where X is a given vector
and Y runs through a given space P, the vector X— X', where X’
is the orthogonal projection of X on P, is of smallest length.

(This smallest length is called the distance from the point X to

the space P.)
912. Determine the distance from the point X to the linear

manifold Ay-+t; A;+...+¢t,A4,,:
(@) X=(1,2, -1, 1), 4,=0, =1, 1, 1),
A,=0, =3, -1, 5), 4,=(4, —1, =3, 3);
() X=(0,0,0,0), 4,=(, 1,1, 1), 4,=(1, 2,3, 4).
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913. Consider a space of polynomials of degree not excee-
ding n. The scalar product of polynomials f;, f; is defined as
1

f f1 (@) fo (x) dx. Find the distance from the origin to the linear
0

manifold consisting of the polynomials x"+a; x"~14 ... +a,.

914. Indicate a method for determining the shortest distance
hetween the points of the two linear manifolds X, +P and Y,+ Q.

915. The vertices of a regular n-dimensional simplex (see Prob-
lem 897), the length of an edge of which is unity, are partitioned
into two sets of m+1 and n—m vertices. Linear manifolds of
smallest dimension are passed through these sets of vertices. Deter-
mine the shortest distance between the points of these manifolds
and determine the points for which it is realized.

*916. Given, in a four-dimensional space, two planes spanned
by the vectors 4;, A, and B,, B,. Find the smallest of the angles
formed by the vectors of the first plane with the vectors of the
second plane:

(@) 4,=(1,0,0,0), 4.=(0,1,0,0), B,=(1, 1,1, 1),
B,=(2, =2, 5, 2);.

() 4,=(1,0,0,0), 4,=(0,1,0,0), B,=(l, 1,1, 1),
B,=(1, —1, 1, —1).

*917. A four-dimensional cube is cut by a three-dimensional
“‘plane” passing through the centre of the cube and orthogonal
to a diagonal. Determine the shape of the solid obtained in the
intersection. .

*918. Given a system of linearly independent vectors B;, B,
..., B,,. The set of points made up of the endpoints of the vectors
LB +t,By+ ...+t B, 05 <], .., 01, <1, is called a paral-
lelepiped constructed on the vectors By, B,, ..., B,. Determine
the volume of the parallelepiped inductively as the volume of
the ‘‘base” [By, B,, ..., B, _] multiplied by the ‘‘altitude” equal
to the distance from. the endpoint of vector B,, to the space span-
ned by the base. The ‘‘volume” of the one-dimensional ‘‘paral-
lelepiped” [B,] is considered equal to the length of the vector B,.

(a) Develop a formula for computing the square of the volume
and assure yourself that the volume does not depend on the num-
bering of the vertices.

(b) Prove that V [cBy, By, ..., Bul=lc|-VI[B;, By, ..., Byl
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(c) Prove that V [B{+B{, B,, ..., B,J<VI[B], B, ..., B,]+
+VI[B], B,, ..., B,] and determine when the equal sign holds
true.

1919. Prove that the volume of an n-dimensional parallelepiped
in n-dimensional space is equal to the absolute value of the de-
terminant made up of the coordinates of the generating vectors.

*920. Let C), C,, ..., C,, be the orthogonal projections of the
vectors By, B;, ..., B,, on some space. Prove that

V[CD C27 (] Cm] < V[Bh BZ; LR Bm]'
*921. Prove that
V[Ab A27 veey Am7 Bl, ey Bk]< V[Ab e Am] V[Bl, ARRE Bk]

(cf. Problem 518).
922. Prove that

Vidy, Aoy oy A< Ap]-| 4] ... 1 4

(cf. Problem 519).
923. Find the volume of an n-dimensional sphere using Cava-
lieri’s principle.
924, Consider the space of polynomials whose degree does not
1

m [

exceed n. For the scalar product we take f f1 () f5(x)dx. Find

0
the volume of the parallelepiped formed by the vectors of the
basis relative to which the coefficients of the polynomial are its
coordinates.

Sec. 3. Eigenvalues and Eigenvectors of a Matrix

925. Find the eigenvalues and eigenvectors of the following
matrices:

2 1 /3 4 0 a
W) w (0 w( )
SRR
@i, _y 1 _{] @{-r o 1)
1 11
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(f)

)

PART 1.
2 -1 2
5 =3 3], (g)
—1 0 -2
3 1 0
-4 -1 0), @)
4 -8 -2

PROBLEMS

001 0
010), (-2
100 —1
2 5 —6

4 6 -9

3 6 -8

2 1
0 3},
-3 0

926. Knowing the eigenvalues of the matrix 4, find the eigen-
values of the matrix A1

927. Knowing the eigenvalues of the matrix 4, find the eigen-
values of the matrix A2

928. Knowing the eigenvalues of the matrix 4, find the eigen-
values of the matrix A™.
929. Knowing the characteristic polynomial F(}) of the mat-
rix A (of order n), find the determinant of the matrix f (4), where

F)=by (x—&) (x=&) ... (x—Ep).
930. Knowing the eigenvalues of the matrix A4, find the deter-

minant of the matrix f(4), where f(x) is a polynomial.

931. Knowing the eigenvalues of the matrix 4, find the eigen-
values of the matrix f(A4).
932. Prove that all the eigenvectors of the matrix 4 are eigen-
vectors of the matrix f(4).
*933. Find the eigenvalues of the matrix

s2 sn—l
1 c2 € c2 (n—1)
] gin-b g2n-D gn=17

where € =cos EnTE +1i sin 2—: , h an odd number.

*934. Find the sum
l+etet+. .. fen D2
935, Find the eigenvalues of the matrices:

(@)

0 x x ... x
y 0 x X
y »y O x| ®

a, a, a,
a, 4 ap-1
ds ds a,
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0 1
-1 0 1
1 0
(©) '
0 I
~1 0

*936. Knowing the eigenvalues of the matrices 4 and B, find
the eigenvalues of their Kronecker product.

937. Prove that the characteristic polynomials of the matri-
ces AB and BA coincide for arbitrary square matrices 4 and B.

938. Prove that the characteristic polynomials of the matrices
AB and BA differ solely in the factor (—A)?~". Here, 4 is a rec-
tangular matrix with m rows and »n columns, and B is an n-by-m
matrix, n>m.

Sec. 4. Quadratic Forms and Symmetric Matrices

939. Transform the following quadratic forms to a sum of
squares:

() x?+2xy x5+ 2x3+4x, x5+ 5x3,
(b) x}—4xy xo+ 2xy x5 +4x5+ x3,
(€) Xy Xo+ Xg Xg =+ X3 Xy,
(d)Y x2—2x; xp+ 207 X3 — 2x; xq+ X3+ 25 X3 — 4 x5 X, + X3 — 25,
(&) x4+ x;y X+ X3 Xg
940. Transform the quadratic form
n

Z X?"’Z Xi Xy

i=1 i<k
to diagonal form.
941. Transform the quadratic form

Z Xi Xy
i<k
to diagonal form.
942. Prove that all the principal minors of the positive quad-

ratic form are positive.
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*943. Let the quadratic form

9
f=ay X3+ a9 x1 X+ ...+ ay, Xy X,
+ @y Xg X1+ Qop X3+ . .. + @z, X9 X,
9
+a, Xy Xyt Qe Xy xo+ ..t a,, X,

be reducible to the diagonal form oy x> 40y X2+ ...+, X2 by
the “‘triangular’ transformation

X1 =X+ by X9+ ...+ by, x,

It is required to:

(a) express the coefficients oy, o, ..., a, in terms of the coaf-
ficients a,;

(b) express the discriminants of the forms f, (X341, ..., X,) =
=f—o x2—...—o, x2 in terms of the coefficients a,,.

Find the condition under which a triangular transformation of
the indicated type is possible.

944. Prove that the necessary and sufficient condition for po-
sitivity of the quadratic form

— 2 i
S=au xt+apx; xg+ ..+ ay, X x,
+ Ggy Xo Xy + Ay X5+ . ..+ ay, X, X,
Y 2
+anl AuA14-anz-x,, X2+ e +a,," Xy

is fulfilment of the inequalities

ay Qe iy
yy Qyp
anp > 0; >0; ... |9 G2 - Qa5 0
l a21 a;zz -----------
Ay Qe Ay |

(Sylvester’s condition).
*945, Prove that if to a positive quadratic form we add the
square of a linear form, the discriminant of the former increases.
*946. Let f(xy, X3, ...y X,)=a;X;+ ... be a positive quadratic
form,

@ (Xgy ooy X)) =10, x5, ..., X,)
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D; and D, their discriminants. Prove that

DfSau D(p.
947. Let
f(xl, x;r, ooy x"):l%‘*‘l%‘*‘ PR +ll2’—llg"[—/§+2— e T i72+[]
where Iy, Iy, ..., Ip, Lppidpvo, oo, [po, are real linear forms in xg,

Xy ..., X, Prove that the number of positive squares in a canoni-
cal representation of the form f does not exceed p, and the number
of negative squares doss not exceed g.

*948, Let s, 5, ... be power sums of the roots of the equation
x"+a, x" 1+ ...+a,=0 with real coefficients. Prove that the
number of negative squares in a canonical representation of the

quadratic form Z Sitr+s X X 18 equal to the number of pairs
i) k=1
of conjugate complex roots of the given equation.
Prove the following theorems:

949. Fulfillment of the following inequalities is a necessary
and sufficient condition for all the roots of an equation with real
coefficients to be real and distinct:

\SO 5 Szl So 51 Sp—1
So &1 . s Sg ... S
!>0; Isl sy 55 |>0; . A=|"1 2 n >0.
f1 S
| S2 83 Sy Sp—1 Sp .+ Sou_s
*950, If the quadratic forms
_ 2 . .
S=ay XT+ a1 Xy Xo+ -+ Ay Xy X,
Ay Xg Xy F Gyp X L+ By Xp X,
F @y Xy X3+ Ao Xy XgF .o+ A, X2
and

©=by X4+ byg Xy XoF ..+ by, X X,
+ by Xo X3+ oy X5+ ...+ by, Xy X,

+ bnl Xy X1 + an Xp X +...+ bnn “,_,1
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are nonnegative, then the form
(fs 9)=anbn Xt 4 aya e X1 Xz + .o+ A1, by Xg X,

+ @gy boy Xy Xyt Gag Dog X3+ . . . + Uoy Dyy Xs X,

2
+an1 bnl Xn x1+an2 bn2 Xn X2+ v +ann bnn Xn

is nonnegative.
951, Transform the following quadratic forms to canonical
form by an orthogonal transformation:

(a) 2x+ x§— 4xy x5 — 4xp X3,
(b) x4+ 2x3+ 3x§— 4xy x5 — 4x5 X3,
(€) 3x?+ 4x3+5x3 4 4x; x5 — 4x, X3,
(d) 2x% + bxg+ 5x3 + 4xy x5 —4xy X3 — 85 X3,
(€) X2 —2x3—2x3 — 4xy X, + 4xy X3+ 8%y xs,
(f) 5x2+6x3+4x3—4x; x5 — 4xq X3,
(g) 3x?+6x3+ 3x3 — 4x; x5 — 8xy X3 — 4x;5 X,
(h) 7x}+ 5x3+ 3x§— 8xy x5+ 8xy x5,
(1) 2xP+ 2x3+ 2x5+ 2x3 — 4xy xo+ 2x; X4+ 2%5 Xy — 43 Xy,
(3) 2xy x5+ 20x5 x4,
(K) X7+ X3+ x3+ x5+ 2x, Xo — 2x3 X4 — 2x5 X3+ 2X5 Xy,
(1) 2x1 o+ 2x; X3 — 2x; X4 — 2Xa X3+ 2X5 X4+ 235 Xy,
(m) xP+ x5+ x5+ x7 — 2x; Xo+ 6x; x5 —4x; X,
— 4y X3+ 6x5 x4 — 2x3 x4,
(n) 8xy x5+ 2xy x4+ 2%, X3+ 8x, X,

952, Transform the following quadratic forms to canonical
form by an orthogonal transformation:

(a) Z x,?+z x; X, (b) Z X; Xy

i=1 i<k i<k
953. Transform the form
Xy Xg+Xg Xg+ ...+ X1 X,
to canonical form by an orthogonal transformation.

954. Prove that if all the eigenvalues of a real symmetric mat-
rix A lie in the interval [a, 5], then the quadratic form with mat-
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rix A—A E is negative for A>b and positive for A<a. The con-
verse holds true as well.

1955. Prove that if all the eigenvalues of a real symmetric mat-
rix A lie in the interval [a, ¢] and all the eigenvalues of a real sym-
metric matrix B lie in the interval [b, d] then all the eigenvalues
of the matrix A+ B lie in the interval [a+ b, c+d].

956. Let us call the positive square root of the largest eigen-
values of the matrix A4 (A4 is a real square matrix, A is its trans-
pose) the norm of the matrix A4 and denote it by || 4 ||. Prove
that

@ 14l=14l,

(b) | AX <[ 4d]-]| X|[; the equality holds for some vector X,

© I A+BI<IAl+B],

(d (4Bl Al-1B],

(e) the moduli of all cigenvalues of the matrix 4 do not ex-
ceed || A4 |

957. Prove that any real nonsingular matrix can be represen-
ted as a product of an orthogonal matrix and a triangular matrix
of the form

by by ... by,
b22 LIS bzn
.

nh

with positive diagonal elements b;; and that this representation
is unique.

958. Prove that any real nonsingular matrix is representable
in the form of a product of an orthogonal matrix and a symmet-
ric matrix corresponding to some positive quadratic form.

959, Let there be a quadric surface in n-dimensional space
given by the equation

Ay X2 4 Qe Xy Xo 4 o oo F a1y Xy Xy

@y Xo X1+ as X3+ . ..+ aay Xs X,

2
F @y X, X1+ A Xy X+ ..+ Ay, X5

+2b, x,+2bp x5+ ... +2b,x,+¢c=0
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or, in abbreviated notation, AX-X+2B-X+c¢=0. Prove that
for the centre of the surface to exist it is necessary and sufficient
that the rank of the matrix 4 be equal to the rank of the matrix
(4, B).

960. Prove that the equation of a central quadric surface
may be reduced to canonical form

oy X+ .. +a,xi+y=0

by a translati on of the origin and by an orthogonal transformation.
961. Prove that the equation of a noncentral quadric sur-
face may be reduced to canonical form

g XPH+ e xP=2x,,

by a translation of the origin and by an orthogonal transforma-
tion.

Sec. 5. Linear Transformations. Jordan Canornical Form

962. Establish that the dimension of a subspace into which
the entire space is mapped under a linear transformation is equal
to the rank of the matrix of this linear transformation.

963. Let Q be a subspace of dimension g of the space R of di-
mension #, and let Q' be the image of Q under a linear transfor-
mation of rank r of the space R. Prove that the dimension ¢’ of
space Q' satisfies the inequalities

g+r—n<qg <min(g, r).

964. Using the result of Problem 963, establish that the rank p
of the product of two matrices of ranks r; and r, satisfies the
inequalities

rtra—n<p<min (Fy, 7).

*965. Let P and Q be any complementary subspaces of the
space R. Then any vector X e R decomposes uniquely into a sum
of the vectors Y e P and Z e Q. The transformation consisting in
going from vector X to its component Y is called projection on P
parallel to Q. Prove that projection is a linear transformation
and its matrix 4 (in any basis) satisfies the condition A2=4.
Conversely, any linear transformation whose matrix satisfies
the condition 42=A is a projection.
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*966. The projection is termed orthogonal if P | Q. Prove
that in any orthonormal basis, the matrix of orthogonal projec-
tion is symmetric. Conversely, any symmetric idempotent matrix
of the same degree is a matrix of orthogonal projection.

*967. Prove that all nonzero eigenvalues of a skew-symmet-
ric matrix are pure imaginaries, and the real and imaginary parts
of the corresponding eigenvectors are equal in length and orthogo-
nal.

*968. Prove that for a skew-symmetric matrix A it is possible
to find an orthogonal matrix P such that

0 a
—a, 0
0 a,
—-a, 0
P-14P= 0 a
—a, O

0
(all elements not indicated are zero; ay, a,, ..., @, are real numbers).

969. Prove the theorem: if A4 is a skew-symmetric matrix,
then the matrix (E—A) (E+ A)~! is an orthogonal matrix with-
out —1 as eigenvalue. Conversely, every orthogonal matrix
that does not have —1 as an eigenvalue can be represented in
this form.

*970. Prove that the moduli of all eigenvalues of an orthogo-
nal matrix are equal to 1.

*971. Prove that eigenvectors of an orthogonal matrix which
belong to a complex eigenvalue are of the form X+iY, where
X, Y are real vectors equal in length and orthogonal.

*972. Prove that every orthogonal matrix can be represented as

Q' TQ
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where Q is an orthogonal matrix and T is of the form

cos @, —sin g,

sing, Ccosgq .
COS @y —sin @,

sing,  COS @,

(all other elements being equal to zero).
973. Reduce the following matrices to the Jordan normal

form:

12 0 4 6 0
@)( 0 2 0), w)(_3 —5 0)
-2 —2 | ~3 -6 |

13 16 16 3 0 8
-5 -7 -6}, (d) -1 6],

-6 -8 -7 0 -5

2
—4 2 10 7 —12 -2
) (—4 3 7), a)( 3 _4 0),
—3 1 7 _9 0 -2

(©)

-2 8 6 o 3 3
-4 10 6}, @) [ -1 8 6},
2

-14 -10



l

21

-26
5
-2
—1

22

—4

16
l
-3
-2

974. Reduce the

form:

(©
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1.
) o
-21

-2
l
l

1

-1
3
2

[e)

o

-6 l
), (n){ 3
-5 2

).

—6

3

-2

4

» (b)

—14

-3

8 30
6 —19
—93
7
-5
~10
—1 2
-3 6},
—2 4

SO O -

OO = N

O = N W

2
3

)
),

4
3
2 )

1
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following matrices to the Jordan normal

*975. Prove that any periodic matrix A (satisfying the condi-
tion A™=E for some natural m) is reducible to the diagonal ca-

nonical form.

*976. Knowing the eigenvalues of the matrix 4, find the eigen-
values of the matrix A, composed of appropriately arranged

mth-order minors of the matrix 4 (see Problem 531).

977. Prove that any matrix A can be transformed into its trans-

pose.

*978. Prove that any matrix can be represented as a product
of two symmetric matrices, one of which is nonsingular.
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979. Starting with a given matrix 4 of order », construct a
sequence of matrices via the following process:

A=A, tr 4y =p,, Ay, —py E=B,,

B, A=A4,, St Ay=py, Ay—ps E=B,,

Bn—lAzAn’ % trAn:pm An—an:Bn

where tr A4; is the trace of matrix 4; (the sum of the diagonal

elements). Prove that p,, p,, ..., p, are the coefficients of the cha-
racteristic polynomial of the matrix A written in the form
(=D [A—py A~ l—py, A*~2— ... —p,]; matrix B, is a zero matrix;

finally, if 4 is nonsingular, then o B, =A%

*980. For the equation XY — YX=C to be solvable in terms
of square matrices X, Y, it is necessary and sufficient that the
trace of the matrix C be zero. Prove this.



PART II. HINTS TO SOLUTIONS

CHAPTER 1

COMPLEX
NUMBERS

11. See Problem 10.

13. Demonstrate the validity of the theorem for each of the four opera-
tions on the two numbers and take advantage of the method of mathematical
induction.

18. Use the fact that the left members are easily represented as a sum of
two squares.

27. Set x=a+bi, y=c+di

28. Set z=cos@+ising.

31. Set z=r¢2, z’=¢"2. Use Problem 27.

37. Go over to the trigonometric form.

38. l+o=—ouw?

40. Pass to the half-angle.

4i. Convince yourself that z=cos0xisin0; %:cos 0Fi sin 0. Take
advantage of De Moivre’s formula,

. oo~ \2m
51. Set a=cos x+1 sin x. Then cos“’x:(L) , etc

2
52.-Show that the coefficient of (2 cos x)™ %7 is equal to (1)’ .C? Tt
+CP lp_l). Take advantage of the method of mathematical inducticn.

53. This is similar to Problem 52.
54. Make use of the binomial expansion of (1 +i)".
55. Use Problem 54.

n

56. Expand ( I+ V;’—) using Newton’s binomial formula.

68. Show that the problem reduces to computing the limit of the sum
—1+i
—
2
69. Take advantage of the fact that sin? o= —;— ——COSQ—a .
71. Use the fact that

cos? qm 08 3 n 3 cos a sin® o 3sina  sin 3«
4 4 4 4

l+a+o2+ ..., where o=
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72. In computing sums of the type 14+2a+3a%4...+na" ! and 14
422043202+ ... +n%a" "1 it is useful first to multiply them by 1 —a.

76. x;=0+B, x;=00+pw?, x3=awd4Bo, ®+B3=—g, Jxf=—p.

77. Multiply by —27 and regard the left member as the discriminant
of some cubic equation.

78. Set x=a+p.

87. Show that e"=—1.

2 .2 . .
88. If e=cos f +isin ;n, then the desired sum can be written as [+e+

+ei4 ...+ L
89. Consider two cases: (1) k is divisible by n; (2) & is not divisible by n.
91. 92. Multiply by 1—ce.
94. (a) Subtract from the sum of all 15th roots of 1 the sum of the roots
belonging to the exponents 1, 3, and 5.

97, The length of a side of a regular 14-sided polygon of radius unity is
equal to 2 sin i 4 Use the fact that cos 47n+ isin 47” satisfies the equation x®+
+x’+x4+x3+x’+x+1=0.

98. (1) If xy, x3, ..., x,, are roots of the equation aex"+ayx" ™'+ ...+ a,=0,
then ax" + X"~ 1+ +a =g (X—X1)...(x—x,).
(2) If ¢ is an nth root of 1, then ¢, the conjugate of ¢, is also an nth root
of I.
99, In the identities obtained from Problem 98 set x=1.
100. Take advantage of the factorization of x”—1 into linear factors.
101. In the factorization of x"—1 into linear factors set: (1) x=cos 0+
+isin 0, (2) x=cos 0—i sin0.
103. Take advantage of the fact that the moduli of conjugate complex
numbers are equal.
. x+1 \m
105. (a) Reduce the equation to the form (x_l_) =].
107. Let
S=cos ¢+ Cl cos (p+a) x+... +cos (¢+na) X",

T=sing+Clsin (p-+2) x+... +sin (¢ +na) x".
Compute S+ 7i and $— 7i and determine S from the resulting equations.
113. First prove that ¢ (p*)=p* (l—l), if p is a prime number. To do

this, count the numbers not exceeding p* that are divisible by p.

116. Prove that all roots of x*™ ' —1 and only such roots are not primi-
tive roots of x7"—1.

117. Show that if nis odd, then to obtain all the primitive roots of degree

21 of unity it is sufficient to multiply all primitive nth roots by —1.

119. Use Problem 118.

120. Use Problems 115, 116, 111 and show that (1) w (p)=—1 if pis prime;
(2) that w (p®)=0if p is prime, o> 1, (3) w (@b)=u (a) u () if @ and b are rela-
tive prime.

. 2 . 2k
122. Show that if ex=cos ~£n73 +i sin Tn belongs to the exponent ny,
then x— e, will enter the right member of the equation being proved to the

power Zu (dy), where d runs through all divisors ni .
1
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123. Consider the cases: (1) n is the power of a prim.  (2) n is the product
of powers of distinct primes. For Case (1) use Problem 11 for (2) use Prob-
lems 119 and 122.

124. Consider the cases: (1) n is odd and exceeds 1; (2) n=2%; (3) n=2n,
#, is odd and exceeds 1 : (4) n=2%n,, where k> 1, n, is odd and exceeds 1.

125. Use the identity
Xy Xg+Xy X+ oo+ Xpn_1 X,
(XpFxg 4 Fx)P— (X xp L 4 x2)
= . 5 -

Consider the cases: (1) n is odd; (2) n=2n,, n, is 0odd; (3) n=2%n,, where k> 1,
n, is odd.

126. Multiply the sum S by its conjugate and take into account that a
does not change when x+n is substituted for x.

CHAPTER 2

EVALUATION OF DETERMINANTS

132. Bear in mind that each pair of elements of a permutation constitutes
an inversion.

133. The number of inversions in the second permutation is equal to the
number of orders in the first.

145. Show that each term has O for a factor.

149, 150. Replace rows by columns.

153. Find out how the determinant will change if its columns are permu-
ted in some fashion.

154. (a) Note that when x=gq;, the determinant has two identical rows.

155. To the last column add the first multiplied by 100 and the second
multiplied by 10.

156. First subtract the first column from each column.

163. Subtract the first column from the second.

179. Add the first row to all other rows.

180.182. Subtract the first row from all other rows.

183. Subtract the second row from all other rows.

184. Add the first row to the second.

185. Add all columns to the first.

186, 187. From the first column subtract the second, add the third, etc.

188. Expand by elements of the first column or add to the last row the
first multiplied by x%, the second multiplied by x*~1, etc.

189. Add to the last column the first multiplied by x*~1, the second mul-
tiplied by x"~2, ete.
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190. Construct a determinant equal to f(x+1)—f(x). In the resulting
determinant subtract from the last column the first, the second multiplied by
x, the third multiplied by x2, etc.

191. Multiply the last column by ay, a,, ..., a, and subtract, respectively,
from the first, second, ..., nth column.

192. Add all columns to the first.

194. Add all columns to the last one.

195, Take a, out of the first column, a, out of the second, etc. Add to the
last column all the preceding columns.

196. Take & out of the first column; add the first column to the second.

197. Multiply the first row and the first column by x.

198. Subtract from each row the first multiplied successively by a4, as, ...,
@n. From each columin subtract the first multiplied successively by a, a, ..., a,.

199, Add all columns to the first. i

200. Add to the first column all the others.

201. From each column, beginning with the last, subtract the preceding
column multiplied by a.

202. From each row, beginning with the last, subtract the preceding row.’
Then to each column add the first,

203. Multiply the first row by by, the second by b, etc. To the first row
add all succeeding rows.

204. Take a out of the first row and subtract the first row from the second.

205. Expand by elements of ths first row.

206. Represent as a sum of two determinants.

208. Add a zero to each off-diagonal element and represent the determi-
nant as a sum of 2” determinants., Use Problem 206 or 207.

211. Multiply the first column by x"~ 1, the second by x"~2, etc.

212. Expand by elements of the last column and show that A =x,An1t
+axix ... xs_1 (A, denotes a determinant of crder n). Use mathematical in-
duction in computmg the determinant.

213. Expand by elements of the last column and show that A, ;=x,A +
+a,y1¥e- - Yy

214. Takea, out of the second column, a, out of the third, ..., and g, out of
the (n+ 1)th. Reverse the sign of the first column and add all columns to
the first.

215. Expand in terms of elements of the first row.

216. Expand in terms of elements of the first row and show that
An=aiay...0n_1— 1y

219. Use the result of Problem 217.

221. Expand by elements of the first row and show that
Ay=x0p_ 1_An— 2-

222. From the last row subtract the second last multiplied by Ty

n—1

In.

Show that A,= y’ X Yu_1=Xn_1¥n) Ap_1
n—1

223. Represent as a sum of two determinants and show that
Ap=a Ny 1t aiay. . .ay_ 1. )
225. Represent as a sum of two determinants and show that

Ap=(a;i—x)Ap_1+x(a1—%) ... (@u_1—X).

226. Setting x,=(xp—an)+ a,, represent the determinant in the form of a
sum of two determinants and show that

Ap=(xp—an) Ap_1+a, (x1—a) (xa—as) ... (Xp_1—an_p-
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227. Represent in the form of a sum of two determinants and show that
Ap=(xn—anbp) Ay 1+an by (1—a1 by) ... (Xn_1— Gy bn_1).
228. Represent in the form of a sum of two determinants and show that
Ap=—mAy_1+(=1)""1m" " L x,.
230. Expand by elements of the first row and show that
Agn=(a"~b?) Mgy _,.

231. From each row subtract the preceding one and add to the second
all subsequent rows. Then, expanding the determinant by elements of the
last row, show that

Ap=la+(n—1)b] Ap_1+a(a+b) ... [a+(r—2) ).
232. Represent as a sum of two determinants and show that
n—1
Ap==x (x~2ay) Ay _y+a2 x 1 I_I (x—2a;).
i=1

233. Setting (x—a,)*=x (x—2a,,)+a3, represent the determinant as a sum
of two determinants and show that

Ap=x(x—2a,) Ay 1+ @2 x" 7t (x-2a)) ... (x—2a,_,).

234. Represent as a sum of two determinants and show that
Ap=0y_+(—1)" b1 by ... b

-
235. Represent the last element of the last row as a,—a,. Prove that
Ay=(=1)""1 by by... by_ra,—a, Ay_,.

236. From each row subtract the next.

237. Set 1=x-+(l—x) in the upper left corner. Represent the determi-
nant as a sum of two determinants. Use the result of Problem 236.

238. Multiply the second row by x"~1, the third by x?~2, ..., the nth by x.
From the first column take out x”, from the second, x" Y, ..., from the nth, x.

239. Use the suggestion of the preceding problem.

240. From each column subtract the preceding one (begin with the last
column). Then from each row subtract the preceding one. Prove that A,=
=A,_;. When calculating, bear in mind that C%=C¥%_ +C -1

n—1'
241 From each column subtract the precedmg one
242. From each row subtract the preceding one. Prove that A,=A,_,.
243. Take m out of the first row, m+1 out of the second, ..., m+n out

of the last. Take % out of the first column, ~k+l—1 out of the second,

etc. Repeat this operation until all elements of the first column become
equalto 1.

244. From each column subtract the preceding one. In the resulting de-
terminant, subtract from each column the preceding one, keeping the first
two fixed. Again, subtract from each column the preceding one, keeping the
first three columns fixed, and so on. After m such operations we get a deter-
minant in which all elements of the last column are 1. The evaluation of this
determinant presents no special difficulties.
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245. From each row subtract the preceding one and show that A, ,=
=(x—1A4,.

246. From each row subtract the preceding one and show that A, ,=
=nm—1)! x—1)A,

247. From each row subtract the preceding one; from each column sub-
tract the preceding one. Prove that A, =aA,_,.

248. Represent the last element of the last row as z+(x—z). Represent
the determinant as a sum of two determinants. Use the fact that the deter-
minant is symmetric in y and z.

249. See the suggestion of Problem 248.

252, Subtract from each row the first row multiplied by S». In the re-
sulting determinant, take —;i% out of the first column and subtract from
the first column all the other columns.

253. Add all columns to the first and from each row subtract the preceding
one. See Problem 199.

254. Use the suggestion of Problem 253.

256. Regard the determinant as a polynomial in a of degree four. Show

that the desired polynomial is divisible by the following linear polynomialsin a:
at+b+c+d, atb—c—d, a-b+ec—d, a—b—c+d.

258. Adding all columns to the first, separate out the factor x+a,+...+a,
Then setting x=a;, a,, ..., a,, convince yourself that the determinant is di-
visible by x—ay, x—a,, ..., x—a,,.

259. The Vandermonde determinant.

264. Expand by elements of the first column.

265. From the second row subtract the first. In the resulting determinant
subtract the second row from the third, etc.

269. Take 21—' out of the third row, % out of the fourth, etc.

270. Make use of the result of Problem 269.

271. Take 2 out of the second column, 3 out of the third, etc. When com-

puting n (i2—k?) it is useful to represent

nzi> k21
n (i*—k?) = n (i—k)- n (i+k).

X1 X3

x—1 -1

273. Take af out of the first row, aj out of the second, and so on.

275. To the first column add the second multiplied by C!,, the third
multiplied by CZ,, etc.

276. Take advantage of the result of Problem 51.

277. Take advantage of Problem 53.

278. Adjoin the row [. x4, X,, ..., X, and the column [, 0,0, ..., 0.

ey Xy

272. Take out of the first column, out of the second, etc.
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279. Consider the determinant

Compare the expansion of D by elements of the last column with the ex-

pression D= n (xi—xy) - I‘l (z—x)).

nEi>kxl i=1

280. Use the suggestion of Problem 279.

282. Adjoin the first row 1, 0, ..., O and thefi rst column 1, [, 1, ..., I.
Subtract the first column from all the succeeding columns.

285. Expand by elements of the last row.

286. First, from each column (beginning with the last) subtract the prece-
ding column multiplied by x. Then, after reducing the order and taking out
obvious factors, transform the first rows (dependent on x) using the relation

L{Q =g 1.

m+ 1)y —ms=sm* "1+

287. From each column, beginning with the last, subtract the preceding
column multiplied by x.

288. (m) Add to the first column the sixth and the eleventh, to the second
column, the seventh and the twelfth, ..., to the fifth column, the tenth and
the fifteenth. Add to the sixth column the eleventh, to the seventh column,
the twelfth, ..., to the tenth column, the fifteenth.

From the fifteenth row subtract the tenth, from the fourteenth row sub-
tract the ninth, ..., from the sixth row subtract the first.

293. Consider

t'1 Clay Cla}... at b br...obn
1 Clay Clay ... a7 ' pr=t bp=l.. pn-l ‘
I Cla, C2a...a% | |1 1 1 ’

294. Consider

) COS o; COS dp ... COS Oy
sin o, cos oy O ... 0 . ) i
. sin o, sin oy ... sin o,
sin o, cos o, 0 ... 0

0 0 ... 0
sin oy cos oy O ... 0
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295. Consider

I Y
11 |

1 x, .xg—l 0
Xy Xp ... Xp X

........... I

n—1

xitoxgo.ooxnox" ‘1 Kn oo Xy 0

00 0 1

296. Raise to the second power.

297. Subtract from the third column the first, from the fourth the second.
Then multiply by

cos ¢ —sin ¢ 0 0
sin ¢ €OS ¢ 0 0
0 0 cos 2¢ —sin 29
0 0 sin 29 cos 2¢

298. Subtract from the second column »n times the first, from the fourth,
n times the second. Interchange the second and third columns. Multiply by

cos ne —sin ue 0 0

sin ne cos ne 0 0
| 0 0 cos(n+1)e —sin(n+1)o
| o 0 sin(n+1) ¢  cos(n+l)o

299, Square it. Transform as a Vandermonde determinant and trans-
form each difference to the sine of some angle. This will yield the sign.

300. Study the product

a a, Gy ... Qn_4 11 o1 |
Gn_y Gy @ . An_g 1 e €n1
| @ d; ay ... a, I en—l en—l
ke 2k

where e, =cos —--- +i sin
n

308. Consider e,—cos +z sm . Then

n—1 [

aeT1 (Z 55 o)

k=0 j=1
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311. Use Problem 92.
2p—1
314. I_l (a0+al g +a U}'E,‘i“ R Y] Ein'_l)
k=0
a—1
= I_l [(ao+an)+(ar+anpd) art ... +(@n_1+2n_y) (I:‘_l]
r=0

n—1

I] —an)+(ay—ay 1) Bs+---+(an_1_azn—1)ﬁg—1]

kr . kw o .. 2
where e;=cos -—+isin—; 9,=c08 —— +isin —— ;
n n n n

@sH D7 L gip DT
n n

Bs=cos

323. From each row subtract the first, from each column subtract the
first.

325. Use Problem 217.

327. Represent in the form of a sum of determinants or set x=0 in the
determinant and its derivatives.

328. (1) From the (2n— 1) th row subtract the (2n—2)th, from the (2n—2)th
row subtract the (2r—3)th, ..., and from the (n+1)th row subtract thz nth,
from the nth row subtract the sum of all the preceding ones.

(2) Add to the (n+i)th row the ith, i=1,2, ..., n—1.

329. Add to every row all the subsequent ones, and subtract from every
column the preceding column. Prove that

Ay )=x—n)A, (x—1).

CHAPTER 4
MATRICES

466. Use the result of Problem 465 (e).

473, Consider the sum of the diagonal elements.

491, Take advantage of the results of Problems 489, 490.

492, Use the result of Problem 490.

494, 495. Use the results of Problems 492, 493.

496. Argue by induction with respect to the number of columns of the
matrix B, first having proved that if the adjoining of one column does not
change the rank of B, then it does not change the rank of the matrix (4, B)
cither.

A proof other than by induction can be carried out by using the Laplace
theorem.

497. Take advantage of the results of Problems 496, 492.

498. From the matrix (E— A, E+ A) select a nonsingular square matrix P
and consider the product (E--A4) P and (E+ A) P.

5090. Take advantage of the result of Problem 489.

501. Prove the uniqueness of the representation in Problem 500 and thus
reduce the problem to counting the number of triangular matrices R with a
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given determinant k. Denoting the desired number by F, (k), prove that if
k=a - b for relatively prime g, b, then F, (k) E, (a) F, (b). Finally, construct,
inductively, a formula for F, ( p’") where pis prime.

505. Take advantage of the results of Problems 495, 498. Find the matrix P
with the smallest possible determinant so that P~ AP is diagonal, and then
use the result of Problem 500.

517. Use the Laplace theorem and the Bunyakovsky inequality.

518. Establish the equation | AA|=|BB|-|1CC| on the assumption
that the sum of the products of the elements of any column of matrix B into
corresponding elements of any column of matrix C is equal to zero. Then
complete (in appropriate fashion) the matrix (B, C) to a square matrix and
take advantage of the result of Problem 517.

523. On the left of the determinant, adjoin a column, all elements of which

%/1; adjoin at the top a row, all elements of which (except the
corner) are 0; then subtract the first column from all other columns.

527. Take advantage of the results of Problems 522, 526.

528. Establish a connection between an adjoint matrix and an inverse
matrix.

529. With respect to the minor formed from elements of the first m rows
and the first m columns of the adjoint matrix, establish the result by consi-
dering the product of the matrices

are equal to

An oov Amgrr <o Am
Ae oo Amyr e .. Am
--------------- all alz aln
Aim Am+1 m Aum A G Qzn
T A B,
Apy  dpy Qnn
1

where A;, are the cofactors of the elements g;;.

Do the same for the general case.

535. Represent AxB as (AXE,) - (E,xB).

537. First analyze the case when A;; is a nonsingular matrix and then
argue by induction. Reduce the general case to this case, adding AE to the
matrix.,

CHAPTER 5

POLYNOMIALS AND RATIONAL FUNCTIONS
OF ONE VARIABLE

547. (a) Expand f(x) in powers of x—3, then substitute x+3 for x.

553. Differentiate directly and substitute x=1, then isolate the maximum
power of x and continue the differentiation.

555. Consider the polynomials

LX) =nf(X)—xf'(x), fo @)=nf, (X)—xf](x)

and so on.
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561. Prove by the method of mathematical induction.

5§62. The nonzero root of multiplicity k— 1 of the polynomial f(x) is a
root of multiplicity k—2 of the polynomial xf’(x), a root of multiplicity k —3
of the polynomial x [xf’(x)}, etc.

Conversely, the general nonzero root of the polynomials f(x), xf’(x),
x [xf' x)1, ... (a total of k~1 polynomials) is a root of f(x) of multiplicity
not lower than k—1.

563. Differentiate the equation showing that the polynomial is divisible

by its derivative, P
. . f 1 (X) 2 (X)
567. Consider the function ——- or ——— .
f (%) fi (%)

568. Relate the problem to a consideration of the roots
? (X)=F ) f Ge)—f" (x) £ (x0)

where x, is a root of [f"()E—f(x) f” (x).
569. Use the solution of Problem 568 and expand f(x) in powers of x— x,,.
576. Prove it like d’Alembert’s lemma.
580, 581. Represent the function in the same form as in proving the
d’Alembert lemma:

r@=r@+ L2 e-aFtiro@ v@=o0.

583. Find the roots of the polynomials and take into account the leading
coefficients [in Problems (a) and (b)]. It is advisable, in Problem (¢), to set
x=tan? 6 when seeking the roots.

589. Find the common roots.

608. First prove that f(x) does not have any real roots of odd multipli-
city.

623. Use the result of Problem 622.

626. Use the fact that the equation should not change when — x is substi-

tuted for x and % for x.

627. The equation should not change when ;1; is substituted for x and

1—x for x.

637. Divide by (1 —x)* and differentiate m—1 times, assuming x=0 after
each differentiation. Take advantage of the fact that the degree of N(x) is
less than m and the degree of M (x) is less than n.

642. Use the Lagrange formula. Perform the division in each term of the
result and collect like terms using the result of Problem 100.

644. Express f (xp) in terms of f(xy), f(*), ..., f(x,), using the Lagrange
interpolation formula and compare the result with the hypothesis of the

problem, taking into account the independence of f(x;), f(x)s ..., (X)),
Then study ¢ (x)=(x—x;) (x—x2)...(x—x,), expanding it in powers of X—Xp.

645. Represent the polynomial x* in terms of its values by means of the
Lagrange interpolation formula.

648, 649. Construct an interpolation polynomial by Newton’s method.

650. Find the values of the desired polynomial for x=0, 1, 2, 3, ..., 2n.

651. The problem can be solved by using Newton’s method. A shorter
way is to consider the polynomial F (x) =xf(x) — 1, where f(x) is the desired
polynomial.

652. Consider the polynomial (x—a) f(x) —I.

6. 1215
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653. Construct the polynomial by Newton’s method and, for conveni-

en ce of computation, introduce a factorial into the denominator of each term.
654. Consider the polynomial f(x?), where f(x) is the desired polynomial.
655. The ecasiest way is by the Lagrange formula

) < £ )
e(x) Z (x—xp) @’ (xx)

(x1, X, ..., xn are roots of the denominator).
656. First expand by the Lagrange formula, then combine complex con-~
jugate terms.

657. (¢) Use Problem 631, (f) Set ”—;’a—" =y. (d), () Seek expansions

by the method of undetermined coefficients. Find part by the substitution
X=X, X3, ..., X, after multiplying by the common denominator, Then diffe-

rentiate and again set x=1xy, Xz, ..., X,

1 .
660. Use Problem 659. In Problem (b) decompose B v into

partial fractions.

665, 666. Take advantage of Problem 663.

667. In Problem (¢) expand the polynomial in powers of x—1.

668. Expand in powers of x— 1 (or put x=y+1).

669. Set x=y+1 and use mathematical induction to prove that all coeffi-
cients of the dividend and divisor (except the leading coefficients) are divi~
sible by p.

670, 671. The proof is like that of the Eisenstein theorem.

679, 680. Assuming reducibility of f(x), set x=ay, a,, ..., a, and draw a
conclusion concerning the values of the divisors.

681. Count the number of equal values of the presumed divisors.

682. Use the fact that f(x) does not have real roots.

683. Prove that a polynomial having more than three integral roots can-
not have for one of its values a prime in the case of an integral value of the
independent variable; apply this to the polynomial f(x) —1.

684, 685. Use the result of Problem 683.

702. Construct a Sturm sequence and consider separately the cases of
even and odd n.

707-712. Derive recurrence relations between the polynomials of conse-
cutive degrees and their derivatives and use them to construct a Sturm sequ-
ence. In Problem 708, construct a Sturm sequence solely for positive values of
x and use other reasoning to assure yourself that there are no negative roots.
In Problem 709, construct a Sturm sequence for negative x.

713. Use the fact that F’ (x)=2f(x) f” (x) and that f” (x) is a constant.

717. Factor g (x) and use the result of Problem 716 several times.

718. Apply the result of Problem 717 to the polynomial x™.

719. Use the fact that if all the roots of the polynomial g,x”+a,x" 14 ...
+ay_1x+a, are real, then all the roots of the polynomial a,x"+a,_1x""*+...
+a, are real.

721. Multiply by x—1.

727. Prove by contradiction by taking advantage of Rolle’s theorem and
the result of Problem 581.
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728. Construct the graph of ¢ (x)=;i((xx))
every root of [f' (X)P—f (x) f” (x) yields an extreme point for ¢ (x) and con-
versely. Prove that ¢ (x) has no extreme points in the intervals, between
the roots of f’ (x), that contain a root of f(x), and has exactly one extreme
point in the intervals which do not contain roots of f (x).

729. Use the result of Problems 727 and 726.

730. Study the behaviour of the function

_f(x) _x+7\
¢(x)_f’(X)+ Y

731. 1t is solved on the basis of the preceding problem for A=0.

732. Prove by means of induction with respect to the degree of f (x), set-
ting f(x)=(x+2) fi (x), where f; (x) is a polynomial of degree n—1.

733. The proof is obtained by a double application of the result of Prob-
lem 732,

734. If all the roots of f(x) are positive, then the proof is effected by ele-
mentary means, namely by induction with respect to the degree of f(x). Inc-
lude in the induction hypotheses that the roots x;, X3, ..., Xp_1 of the poly~
nomial b+ bywx+ ...+ by_ w21 satisfy the condition

and prove rigorously that

0<x;<x3<...<Xp_, and x>x_, w2

To prove the theorem in the general case, it is necessary to represent wx*
as the limit of a polynomial in x with roots not contained in the interval (0, n)
and to take advantage of the result of Problem 731.

: ¢ (x)+if (x)
735. Consider o =10 ()

¢ (x)=a,cos p+ ... +aycos (¢ +nd) x",
P (x)=besine+ ... +bysin (¢ +n0) x7.
736. Consider the modulus of M, W
@ (x) =1} (x)
¢ (x)=as+a, x+...+a, x",
$ () =bo+by x+ ... +byxn.

Having proved the real nature of the roots, multiply ¢ (x)+i{ (x) by
oo— @i and consider the real part. Use the result of Problem 727.
§ (x)
737. Decompose
PO o )

coefficients in this decomposition and study the imaginary part

—ilo () +ib (D] _ ¢ (x)

9 (%) o) "

738. Investigate the imaginary part of }} (ES) by decomposing the

, where

here

into partial fractions, investigate the signs of the

fraction into partial fractions.

739. Change the variable so that the given half-plane is converted into
the half-plane Im (x)>0.

740. Relate to Problem 739.

6*
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741. Decompose ff% into partial fractions and estimmate the ima-
ginary part.

743. Set x=yi and take advantage of the results of Problems 736 and 737.

744, 745. Take advantage of the result of Problem 743.

746. Set x= i ty and use the result of Problem 744.

747. Multiply the polynomial by 1—x and, setting |x|=p>1, estimate
the modulus of (1—x) f(x).

CHAPTER 6

SYMMETRIC FUNCTIONS

772. The sides of a triangle similar to the given one and inscribed in a
. | . . .
circle of radius 5 are equal to the sines of the angles of the given triangle.
800. First compute the sum

Z (oc+ x)*

i=1

and then substitute x=x; and sum from | to » with respect to j. Finally, de-
lete extraneous terms and divide by 2.

801. The solution is like that of Problem 800.

805. Every primitive #th root of unity raised to the mth power yields a
primitive root of degree %, where d is the greatest common divisor of m and n.
As a result of this operation performed with respect to all primitive #nth roots

. . n .
of unity, all primitive roots of degree 7 are obtained the same number of
times.

806. Use the results of Problems 805, 117, and 119.

807. It is necessary to find an equation whose roots are x;, X3, ..., x,. To
do this, use Newton’s formulas or a representation of the coefficients in terms
of power sums in the form of a determinant (Problem 803).

808. The problem is readily solved by means of Newton’s formulas or by
means of representing power sums in terms of the elementary symmetric func-
tions in the form of determinants (Problem 802). However, it is still easier to
multiply the equation by (x—a) - (x—5) and compute the power sums for
the new equation.

809. The simplest way is to multiply the equation by (x—a) - (x— b).

818. Consider the roots of the polynomial f(x) as independent variables.
Multiply the determinant of the coefficients of the remainders by the Vander-
monde determinant.

819. First prove that all polynomials ¢ have degree n— 1. Then multiply
the determinant of the coefficients of g by the Vandermonde determinant.

820. The solution is like that of Problem 819.
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827. Use the fact that the mth degrees of the primitive nth roots of | run

through all primitive roots of unity of degree %, where d is the greatest com-

mon divisor of m and n.

828. Use the result of Problem 827 and the fact that R (X,,, X,) is a di-
visor of R (X, x"—1) and R (X,, x"—1).

834, 835. Compute R(f", f).

839. Multiply by x—1.

840. Multiply by x—1 and use the result of Problem 835.

843. Compute R (X,, Xy). In computing the values of X, for the roots
of X,, represent X, in the form

(=Tl —1)" @)

considering that d runs through the proper divisors of .
844. Take advantage of the relation E,=E,—x".
845. Take advantage of the relation

(a=1) ... (a—n) -0

(mx—x—a) Fy—x(x+1) Fp+- o

846. Use the relations
P,=xPy_y—(n—1) Py_,, Pr=nP,_,.

847. Use the relations

xPp=nP,+ 1*Py_1, P,=(x—2n+1) Py_1—(n—1)* Py_s.
848. Use the relations

(4—x*) Pp+nxP,=2n Py_y, P,—xPy_1+Pu_,=0.
849. Use the relations
P,—2xPy_;+(x*+1) Py_=0, Pp=(n+1) P,_,.

850, Use the relations

Py—(2n—1)xPp_1+(n—12 (x*+1) Py_ =0, Pr=nP,_,.
851. Use the relations

Py—@2nx+1) Py_y+n(n—1) x2P,_ =0,
Pp=(+1) nPy_1.

852. Solve the problem by Lagrange’s method of multipliers. Write the
result of equating the derivatives to zero in the form of a differential equation
with respect to the polynomial that yields a maximum, and solve the equation
by the method of undetermined coefficients.

867. First demonstrate that there is only a finite number of equations
with the given properties for a given n. Then show that the properties are
not destroyed under the transformation y=x".
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CHAPTER 7

LINEAR ALGEBRA

884. Use the results of Problems 51, 52.

916. The smallest angle is to be sought among the angles formed by vec-
tors of the second plane with their orthogonal projections on the first plane.

917. Specify the cube in a system of coordinates with origin at the centre
and with axes parallel to the edges. Then take four mutually orthogonal dia-
gonals for the axes.

918. Use the result of Problem 907.

920. Prove by induction.

921. Use the fact that V [Ay, ..., Ay, By, ..., Bl=V[A4,, ..., 4,) VIB,,
..., B ]1if A; 1 B; and use the result of the preceding problem.

933. First find the eigenvalues of the square of the matrix. Then, to de-
termine the signs in taking the square root, use the fact that the sum of the
eigenvalues is equal to the sum of the elements of the principal diagonal and
that the product of the eigenvalues is equal to the determinant. Apply the
results of Problems 126 and 299.

934. Apply the result of Problem 933.

936. Use the results of Problems 537 and 930.

943, (1) Use the fact that the determinant of a triangular transformation
is equal to unity.

(2) Set

X 41Xk p 2= ... =Xp=0.

945. For the new independent variable take the linear form whose square
is added to the quadratic form.
946. Isolate one square from the form fand use the result of Problem 945.

948. Consider the quadratic form in the unknowns u;, us, ..., Uy:

n

f=Z (tug x4 . . Ay x71R
k=1

where x;, X3, ..., X are roots of the given equation.

950. Decompose f and ¢ into a sum of squares and use the distributivity
of the operation (f, ¢).

965. In proving the converse, make use of the factorization X=A4X+
+(E—4) X.

966. Write the projection matrix in the basis obtained by combining the
orthonormal bases P and Q.

967. Be sure that AX - X=0 for any real vector X. Decompose the eigen-
value and eigenvector into a real part and an imaginary part.

968. Multiply the matrix 4 on the right by P, on the left by P~, where P
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is an orthogonal matrix, the first two columns of which are composed of nor-
malized real and imaginary parts of the eigenvector.

970, 971. Use the fact that for the orthogonal matrix 4, 4X+ AY=
=X -+ Y for any real vectors X and Y.

972. The proof is based on the results of Problems 970, 971 and, like
Problem 968, on the results of Problem 967.

975, 976. Go to the Jordan canonical form,

978. Connect it with the solution of Problem 977.

980. For necessity, see Problem 473.

For the sufficiency proof, consider first the case when all diagonal ele-
ments of the matrix C are zero. Then use the fact that if C=XY— YX, then

S~1CS=(S"1 XS) (S~ YS)—(S~1 ¥S) (S~ XS).



PART III. ANSWERS AND SOLUTIONS

CHAPTER 1

COMPLEX
NUMBERS

3. lifn=4k;iif n=4k+1; —1if n=4k+2; —iif n=4k+3; k an integer.

5. (a) 117 +44i, (b) —556, (c) —76i.

6. If and only if:

(1) none of the factors is zero;

(2) the factors are of the form (a+bi) and A (b+ai), where A is a real
number.

. . a®—b* . 2ab 44 -5
7. (a) cos 2a+isin 2a, (b) PO +i poy ey (¢) 38 "
-1 -3%
(d) o5 (e) 2.
8. 2i"L,

9. (@) x=1+14, y=i; ) x=2+i, y=2-i; (¢) x=3—11i, y=-3-9i,
z=1-7i.

10. (a) -»21-—1' ]/25, ) 1.

11. @) a®+b*+c2—(ab+be+ac); (b) a®+b°%;
(©) 2(a®+b*+ c®)—3(a*b+a’c+b2a+ bic+c®a+c®b)+ 12abc;
(d) a®—ab+b2.

1 V3 1

Tt T3 T
15. (@) £(1+0); (b) £(2-20); (©) =(2-i); @) +(+4D);
(© £(1=-20); () £(5+6i); (g) +(1+30); (h) +(1-30);

P
12. (a) O, 1, #; () 0, 1, i, =1, —i
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() @ () @+ ® i(l/@ - 1/1/‘_32‘2);

/

M £V 8+2V17 +i V/ —8+2V17; (m) i( __g_,-]/_l);

2

) Vi(gliil. (o) i* ( 1+2V§ 1 1—2]/5 i), a=01,2 3

16. £ (B—ai).
17. (@) x;=3—1i, x,=—1+2i; (b) x,=2+i, x,=1-3;
4—2i

S

18. (a) 1£2i, —4+2i, (x*—2x+5) (x*+8x+20);
) 2+i V2, —2+2 V72, (x*—4x+6) (x*+4x+12).

©) xy=1—i, x3=

19. (a) x=iVT7 + L (b) x4xi
q

20, + ]/__]/2_ -2 1 VT/E + 2.

22. (a) cos 0+isin0; (b) cosm+isinw; (c) cos % +1 sin _275;

3 .. 3 — .
(d) cos —215 +isin 71:; © V2 (cos % +7 sin %),
3r 5r
® Ve (cos = +1i sin T); © Ve (cos T'H sin T);

_ 71f . » = . . T L. P .
) V2 (cos — Tisn —4—), (i) 2(005 7 +isin §) ;

() 2 (cos 2% L isin 2“); k) 2 (cos A yisin 43 )

3 3 3
) 2 (cos % +1 sin 5%), (m) 2 (cos % +7 sin ;i),

{(n) 3 (cos T+isinmw); (o) 2 (cos “T"’ +i sinl—éi) ,

) (V2 +V6) (cos I—T; +i sin 11:—2—)

Remark. Given here is one of the possible values of the argument.
23. (a) V10 (cos 18°26" -+ sin 18°26);

®) V7 (cos 345°57°48" +i sin 345°57°48");
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(© V5 (cos 153°26'6"+i sin 153°26'6");
(d) V5 (cos 243°26'6” +i sin 243°26'6").
24. (a) A circle of radius 1 with centre at the origin.

(b) A rayissuing from the origin at an angle of % to the positive direction

of the axis of reals.
25. (a) The interior of a circle of radius 2 with centre at the coordinate

origin.

(b) The interior and contour of a circle of radius 1 with centre at the point
©, D.i

(¢) The interior of a circle of radius | with centre at the point (I, 1).

3 . 3 .

26. (a) x= 3~ 2i, (b) x——4——|—z.

27. The identity expresses a familiar theorem of geometry: the sum of
the squares of the diagonals of a parallelogram is equal to the sum of the
squares of its sides.

29. If the difference of the arguments of these numbers is equal to 7w+ 2k,
where k is an integer.

30. If the difference of the arguments of these numbers is equal to 2w,
where k& is an integer.

34. cos (p+ ) +isin (p+ ).

Ve . n
3. 5 [cos (Qq)_— ﬁ)-l—l sin (2cp - ﬁ)]
36. (2) 24(1 +), () 221 —i V/3), (@ @-V3)2, (@) -

f

nx . . 'nw
38. COST +zsm?.
39. 2 cos 2;”
40, Solution. 1+cos a+isina
= 2 % 4 oin ® * _ « * L iein 2.
2 cos 5 +2i sin 5 C08 5 2 cos 3 (cos 2+zsm 2),

(I4+cos a +i sin a)?=27 cos? % (cos Sl

+isi noc)
P lsln7 .

8. (@) -, V3+i =V3+i,
[ ) N

B

. 1+V3 ]/3—1 1—1/3 l+]/3
—1 . .
(b) +1, 5 + 5 i, ) — ) i;
© 1+i, 1—i, —l+i, —1-1;
'[/—;3,— 1 .V3 V

@1, -1, —-3 +i v T iy *5 5

©iV3, -iV3, 3+"2V3. 3-i/3 V? -3+iV

2 ! 2 2

-V

-1

|
|

N —
)
.

w]
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6
4. (a) ]/3 (cos 8°5'18”+i sin 8°5°18”) ¢,
where e,=cos 120°k+isin 120%, k=0, 1, 2;

6
(b) -'/1_0 (COS 113°51/20” +i sin 113051120”) ek

where g;=cos 120°%+i sin 120°k, k=0, 1, 2;
10

() Vi3 (cos 11°15729” +i sin 11°1529") ey,
where &, =cos 72°k+i sin 72°%k, k=0, 1, 2, 3, 4.

45. (a) ! (cos 24k + 19 m+i sin 24+ 19 n),

Z_ 72 72
V2

where k=0, 1, 2, 3, 4, 5;

1 24k +-5 . . 24k+5
(b) 5 (co 5% misin —gr— n) ,
V2
where k=0, 1, 2, 3,4, 5,6, 7;
1 24k + 17 .. 24k 417
© P ( 72 1r+zsmT n),
V2
where k=0, 1, 2, 3, 4, 5.
46. 8 (cos Zere +i sin Qan), where k=0, 1, 2, ..., n—1.
n

47. (a) Solution. Consider (cos x-isin x)®. By De Moivre’s formula,

(cos x-+i sin x)*=cos bx+i sin 5x.
On the other hand,

(cos x+1 sin x)®*=cos® x+5i cos?x sin x—10 cos®x sin?x—10 / cos?x
sin®x+5 cos x sin?x+ i sin® x=(cos® x— 10cos® x sin? x-+5 cos x sin*x)
+i (5 costx sin x— 10 cos?x sin®x+sin® x).
Comparing the results, we have
cos bx=cos®x— 10 cos® x sin?x+ 5 cos x sintx;
(b) cos®x—28 cos®x sin®x+ 70 costx sin?x—28 cos? x sin®x-+sin® x;
(c) 6 cos®x sin x—20 cos®x sin? x+6 cos x sin®x;
(d) 7 cos® x sin x— 35 cos?x sin®x+21 cos?x sin® x—sin” x.
48. 2(3 tan ¢— 10 tan®¢+3 tan®¢)

1—15 tan? ¢+ 15 tan* p—tan® ¢

49. cos nx=cos” x— C2cos”~2x sin? x+ C% cos” 4 x sinfx — ... + M
r
where M=(—1)? sin"x if » is even, and
n—1

M=(—I)T n cos x sin”~'x if n is odd.
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sin nx=C, cos""* x sinx—CJ cos” P x sin*x+,..+ M
n—2
where M=(~1) 2 ncos xsin®1x if n is even, and
n—1
M=(-1) 2 sin"x if n is odd.
50. (a) Solution. Let a«=cos x+i sin x. Then
a~l=cos x—i sin x;
ok =cos kx+isin kx; o~ *=cos kx—i sin kx.

ky o —k
o+ o .
Whence we have cos kx = —5 sin kx =

ok —a~k
2 :
. ato? . o—o"t

In particular, cos x= 3 Sl x= ——p—y

sindx= ( oo )3 o —Ba4+3a" -0 (-7 —3(a—aTT)

21 =

2i sin 3x—6i sinx _ 3 sinx —sin 3x .
—8i - 1 ;

—~8i - —8i

sin®x=

(b) cos 4x-——4800s 2x+3; © cos bx+5 cos 3x+10 cos x

16 ’

cos 6x+6 cos 4x+15 cos 2x+ 10

52, Solution.

Cfn—p+C51:};—1= (m—p) m—p—1) ... (m—2p+1)

p!
+ (m—p-1) ... (m—2p+1)
(p—1)
_ m(m—p—1) (m—p=2) ... (m—2p+1) .

p!

Denote 2 cos mx=S;; 2 cos x=a. Then the equation that interests us
may be written thus:

Sm=a"—ma""+(C},_ +C, _) a"™*

— (= D)P(CH_p+ CE Yy )
It is easy to show that

2 cos mx=2 cos x * 2 cos (m—1)x—2 cos (m—2)x or, in our notations,
8= aSm—1— S 2

It can readily be verified that for m=1 and m=2, the equation being pro-
ved holds true. Let us assume that

Sm_1=a " '—(m—1) a”’“s+(C,n,,_s+ C_g) a8

oo+ (=P (ChH_ g1 +CRT ) amm 4
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Sm_2=a'"_2—(m—-Q)am_‘+(C:h_4+C;1_s) am—e
o (= )PTHCE T+ CR ) @™ L
Then S,=a"—ma™™?

+(_l)p(cfn -p— 1+Cp—p—2+Cp_p 1+Cm_p ) a?TW L,

Bearing in mind that C§= C§_1+ C,If: 1, we get the required result.

sin mx —_ m—1_ m—3
53. o % (2 cos x) Cin—s (2 cos x)
+Cr_g(2cos x)"5 — ... 4+ (=1)P Ch_p_1(2 cosx)m2p1 4
5 nw 5 nw 2n nw
54. (a) 22 cos 7, (b) 22 sin 7 - 56. =] sin G -
3 2

59. (a) Solution.
S=1+a cosp+atcos 2+ .. . +a* cos ke.
Form T=asinp+a®sin 2o+ . .. +4* sin kop;
S+ Ti= 14 a(cos ¢ +i sin ¢) + a* (cos 2p + i sin 2¢)
+ ...+ a¥(cos ke -+ i sin kg).

Setting oc=cos ¢+ sin ¢, we have
k+1 k+1__
S+Ti=l+ar+ato®+ ... +adf k= —‘Ll

.

aox—1

S is equal to the real part of the sum obtained. We have

ST ak+1 ak+1_1 ax~1—1 _ akt2 ok gk+1 otk+1—aoc_1+l
b= a—1 ax—1—=1 @—ale+a~)+1
ak+2 cos ko — a"+‘cos(k+l)<p —acose+l
Whence §= —~2acosp+1
) a* *2 sin (¢ +kh)—ak+! sin [p+(k+1) ] —a sin (p— k) +sin ¢
@ —2a cos h+1 )
2n+1

sin X
2
© ———F—-*

2Sin'2—

60. Solution.
T=sin x+sin 2x+ ... +sin nx;

S=cos x+cos 2x+...+cos nx.
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Let o

S+Ti

PART 1I1. ANSWERS AND SOLUTIONS

=cos % +1 sin % Then S+Ti=ol+oa + ... + o,

—o? o2n—1 —a o (a*—a™ ")

af—1 "~ o (d—a~T)

. n
bl . onl Shog X
= | cos Tx+t sin D) x)

sin

(IR

sin nx
n+1 2

Whence T=sin g X

61.

64

66

67.

sin —2—*
2(2—cos x)
5—4cosx
. n—1 . nh
sin |a+ —— k) sin -~
(o 25 0)sn
. (a) , if n is even,

cos 3
cos (a+ % h) cos %
, if nis odd;

Cos -

2
cos (a+ n_—2-_1 h) sin %ﬁ
(b) ; , if nis even,
cos o

sin <a+ n;l h) cos ﬂ
, if n is odd.

cos L2
2

n+2
2

n+2

2

. (@) 27 cos™ % cos x; (b) 27 cos” % sin

(@) 2" sin” % cos %2)_"; (b) 27 sin® _’2£ sin w

68. The limit of the sum is equal to the vector depicting the number
3+
=
n sin 4nx
69. 2 7 4sin2x
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3 n+1 . nx 3(r+1) . 3nx
cos —— xsin 5 cOS —5—- xsin —=

st
71. (a) 2 2 2 .
4sin =X 4sin % '
2 2
. n+l . nx . 3(m+ 1) . 3nx
3 sin 5 — X sin =~ sin ———= xsin ——
(b) - 2
4sin X 4 sin 3x
2 2
7. (@ (n+1) cos nx—ncos (n+1) x—1 ,
4sin? X
2
(b) (n+1) sin nx—n sin (n+1)x
4 sin? X
2

73. €% (cos b+i sin b).
75. () —3, % ®) —3, 225'2& :

s

© -7, —1£1V3; @ -1, OEIV3, o a3,

3 3

o Vr-vT, VEi-V2 L1U3 VT+VD);

2

@ V3-2V3, 2V3-VE V3 (y5.,77),

3 3 23— 8 .y/5 3 3
0 1-VE-VT, BV2RVE VS (yg_y3),

3 3
@ -+V3+1V9),
3 3 _ 3
—2+V3 +V9 +iV3 (Vg_-l/g)
9 ) ’

G2 ~1£2 V302 —1 £3i V3;02 ~1+4i V/3;
) 1, —2+V3; (@) 4, —1+4iV3; ©) =2, i, i
) ~1—i —1-i, 2+2;;

@ —@t), L2 4 LV3 oy,

3 3
) - @VrFg+b Vfed),

3 3 .
anTg;bega i-i]é?’ (als/ng—b]a/J?’);
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(s) 2, 1149, —0,2541, —1, 8608;

(t) 1,5981, 0,5115, —2,1007.

76. Solution.

x~x=a (1 —0)+p (I—-o)=(1-0) (a—Bu?;

Xi—xp=0 (=0 +B (1 - )= (1 - %) (a—Bo);

Xa—X3=x (0— &%) + B (0?—0)=(0—o?) (x—B);

(e1—=x3) (e1—=x3) (X2—=X3)=3(0— ©?) (*—B%);

(er—x2) (01— x3)? (x3—xg)% = —27[(o® + 2)2— 402B%] = —27¢% — 4p°.
71. Solution.

The cubic equation mentioned in “Hints to Solutions” z8—3(px+¢g)z+
+x*4+p*—3gx—3pg=0 having the obvious root z= —(x+ p). The other roots

+V —3G—p)p+12 .
of this equation are z, 3= *X+pt V 3 é’x py+12g . By virtue of Problem

76, the left member of the equation under study may be given as

- % (23— 25)2 (25— 2))® (2, 2,)?

—
= 2% [—3(x—p)*+12q) [3 )+ Y —23 (x—p) +12q]

« [3 (x+p) —]/ ~3(x—p)2+12q ]2
2

=[(x—p)*—4q] (x**+px+p*—q)
whence the roots are readily found:

— —p+ 4q — 3p2
xm=p12]/q, x3=x4=p—]/2qL;

—p—1V 49-3p*
n=x= 27V A=W
78. The left member will be represented in the form
%+ B°+5(x+B) (o2 +oB +p2—a) (ef—a)—25=0.
Answer, x=ao+ where

5 5
oc=l/b+]/b”—a5, B=Vb—]/b’—a5; af=a.
. @ V2, 1+iV3;0) -1+VE, +iV3;

© +VZ, 1112]/3; @ 112]/“5“’ 3121/3

© L2V iy o 12VB 5HVT
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(8) #i, 1+ilV/2; () +V5, 1212_1/_7_

G +i, —1+iV6;G) —2+2V2, —1x1;

®1,3,1x1V2; M1, -1, 1+2;

() 1+ V5 +V22+2V5  1-V5+V22—2V35
1 ’ 1

@) 1+1/5+V30-6 V5 1-V5 + V30+61/5
1 ’ 4

(0)—”;/2 sy T s, Sy oy

2
© 1+VT2V6+2V7, 1-V7+V6—2V7;
) 1+V 473 -3 1+ —4/3-3 |

2 : 2 ;

(a

) 1+V5+V =2 -6V5 1-V5+V -2 +6V5 .
1 ’ 4

@ 1+VZ2V5+2V2  1-V2:V5-2V72
4 ’ 4 ’

o 14V Vies2 V3 1-V3+Vie—2V3
4 ’ 1 .

80. Solution.

x4+ axd+bxd+ex+d
=[xt 2 A ) ( 2y 9 A e
—(x+2x+2+mx+n x+2x+2 mx—n
A A
xlx,=? +n; x3x4=§ —n; A=Xy Xa+X3Xy.
81. (@) £1; (b) 1, —%.—L—i V23 i (© 1, 55

@, 2t e U @ 215 2 V2 e

2 * 5
, 1 V§ ]/§ i
f) +1, i, ifit 5 1-_2_1-5,
, 1 .. V3 Ve _ V3 i
(&) %1, £ & 5 ki =5, =g (1£i), & T &5,

2
+ 1/_6_:1/5 L VE-Ve Ve-vz 1/311/"2__

177

)
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= _
82, a) —1; (b —-éii Vs 3 () 245 (@) éiiv—;’ ;

2
V2 L. V3 i,
) £ —5— (i) () £ —F5—*53
Ve+V2 . Ve-V2 V6-V2 . Ve+V2
(g) £ 7 +i 7 , * 3 +i i .
83. (a) 20, 20, 180; (b) 72, 144, 12,
84. cos 2;c—n +i sin 2?—“ where k=1, 2, 3, 4, 5, 6.

85. (a) Denoting e, =cos % +1 sin 21k_61r’ we get the following:
€, belongs to exponent 1,
€g belongs to exponent 2,
€4, €3 belong to exponent 4,
€4, €, €10 €14 belong to exponent §,
the primitive 16th roots are €y, €, €5, €9, €, €11, €13, Exse
(b) Denoting €,=cos 2k +isin 2km , we find that
20 20
g, belongs to exponent 1,
€10 belongs to exponent 2,
g5, €55 belong to exponent 4,
€4, €3, €13, €15 belong to exponent 5,
€2, €5 €14, €15 belong to exponent 10,
the primitive 20th roots are €,, €3, €;, €5, €11, €135 €125 €190

(c) Denoting ¢, =cos 221‘7—47: +isin 221‘; ™ we find that

g, belongs to exponent 1,
€2 belongs to exponent 2,
€g, €45 belong to exponent 3,
€g, £33 belong to exponent 4,
€4, €3¢ belong to exponent 6,
€3, €y, €15, €31 belong to exponent 8§,
€5, €109 €145 €22 belong to exponent 12,
the primitive 24th roots are €,, €, €7, €11, €12, €175 €195 a3
86. (a) X; (x)=x—1; (b) X; ()=x+1;
© X;(x)=x2+x+1; (@) X, (x)=x2+1;
©) X;()=xt+x3+x34+x+1; ) X ()=x2—x+1;
@) X, ()=x5+x5+x4+x3+x2+x+1; (h) X5 (x)=x4+1;
() X, )=x+x+1; () Xp )=xt—x*+x2—x+1;
&) Xy )=x"+x 42+ X7+ x5+ x5+ x4+ x4 x2 4 x4+ 1
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1) Xy ()=xt—x2+1; (m) Xy ()=x"—x"+x°~x4+x°—x+1;

(1) Xyos (X) =84 X7 % — x4 313041 x40 89| xB6 | 85
X314 88 1 x82 L x 31— x28 _ x28
—xBL_x2_x20 {17 | 164 3154 18| 1B | 51350 48

—2x7—x*—x*+x*+x+1.

87, 1o+
88. 0 if n>1.
89. nif k is divisible by r; 0 if & is not divisible by #.
90. m(x™+1).
o1 — " it 1y MOED ey,
l—e 2
2 -
92, _M if e#£1; M.l)s if e=1.
(I—¢) 6
n n TC
93. (a) -5 (b) -3 cot —
94. (a) 1, )0, (c) —1.
95, xp=1;
on .. 2 VYB—1 | i =
X =c08 & +isin - = —p— + 7 V10+2 Vs ;
i . 4w V5+1 i j———=
X =C08 & +i sin T =T + 2 V10—2 ]/5;
61c .. 6% _ VLP) +1 i —C
xs=cos—5~+tsm T =T 1~ 1% V]O—Q]/S;

X,==COS 8% +1 sin 8%‘ = E‘;—] - i V10+2 ]/g.

96. sin 18°= ]%l. s 18°= _]ZIO'Z#‘I/E) .

’

97. Solution. Divide both sides of the equation x® +x5+x¢4+x3+x2+x+1=
=0 by x*. A few simple manipulations yield

3 p)
(x+ L) + (x+ —l> -2 (x+ L) ~1=0.
x x x
The equation z2+42z3—2z—1=0 is satisfied by z=2 cos 4%‘ =~-2sin % .
Whence ¢t= 2 sin .1% satisfies the equation #3—z2—2¢+1=0, The resulting

equation is the simplest in the sense that any other equation with rational
coefficients having a common root with it is of higher degree. The proof of
this fact requires information from subsequent sections of the course.



180 PART III. ANSWERS AND SOLUTIONS

98. Solution. Let n=_2m, then the equation x"—1=0 has two real roots,

I and —1 and 2m—2 complex roots. Here ¢, =cos Qk_n +4i sin & is as-
2m 2m
sociated with ey, _ g =cos 2(2”5—_1()‘" 41 sin 2(_2”5:£)i We thus have
m m

2l =(2—1) (x—e1) (x—&1) (x —e9) (Xx—&4)
con (x—em_q) (x—Em_1);

== [—(e, +E) x+ 1] ... [X2—(emestem_r) x+ I];
m—1
km
2m _ | =(x2— | 2_9 KT .
x (x2—1) I_I (x X COS - +1)
=1

If n=2m+1, then in analogous fashion we obtain

m
a1 =(x—1) I_I (x’—2x cosgi——ﬁ_ﬂ:l +1).
k=1

99, Solution. (a) We have
—1

m
2 | k
_xﬁ=| I (x“—?x cos ;ﬂ:_}_l)-

k=1
m—1
Putting x=1, we get m=2""1 I_I (I—cos E)
n
k=1
m—1
- . km
or m=22(m-1) sin? == and finally,
I_I om ¥
k=1
V_ m—1
m . km
F = I_I sin %.
k=1

Formula (b) is obtained in similar fashion.
n—1

100. Solution. In the identity x"—1= I'I (x—¢p)
k=0

where &;=cos % +isin _Q_k_“_, put x=— %_ We get
' n

n—1

(=1 _Z%_ I=(=1) I_I (%-}-gk) and so on.
k=0
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101. Following the suggestion made in ‘“Hints to Solutions”, we get
n—1
cos n® +isinn®—{ = l_I (cos ®@+isin ®—eg),
k=0
n—|
cos n®—isin n®@—J= n (cos @—isin ©@—gy).
k=0

We get the required result by multiplying together the last equations.
102. Solution.

n—1 | n-1 n—1
t (e
[ erer=i_ L cre—s)
= k=0 5=0
n—1 n—I1 y n—1 n—1
i
- [r—ek(.i;—l)]=t—n [T 1T te—extes—1
k=0 5=0 k=0 5=0
| n—1 n—1 | n—1
= === [ ] er—te—vm
s=0 k=0 s=0

n—1

=TT tr——11m
k=1

103. We have | x |=|x{*72, hence | x |=0 or |x |=1. If | x |=0, then
x=0. But if | x [=I, then xx=1.

On the other hand, xx=x". Hence, x"=1. Thus

2
x=0 and x=cos—:£+is' 2% k=0,1,2, ..., n—1.

== )/TE]

)\
The locus of points the distance from which to two given pomts is the given
ratio is a circle (a straight line in a particular case).

The converse is readily verified.

104. Solution. If z satisfies the given equation, then

105. (a) We have XF!_ €, where €, = cos em oy isim 2T ,
x—1 m m

k=1, 2, ..., m—1. Whence x= k+i . Transformation of the last ex-
ey —

pression yields x,=i cot X%, k=1,9, ..., m~1;
m

kTL‘

(b) xg=cot ==, k=1,2, ..., m—1;
m
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a
©) xk=—
ekv2—1
where ex=cos ? +1i sin 2’1:—7:. k=0,1, 2, ..., n—1.

106. Solution. Let A=cos ¢+ising. Then

I+ix _ o+2km . . o4 2kw k=0 1 -1
T—ix =mn2 where ng=cos o 41 sin “on , Lo m=1.
Whence,
i ng—1 ne—ng! oy OH%T
ifng+1) T il o2m
107. Solution. Using the hint, we have
S+Ti=p (14+2)", S—Ti= (14 )
where A=cos o+i sin &, p=cos -7 sine. Whence
28 = (14 2x)+ & (1 4 2x)"
The equation becomes p. (1 +2x)"+ (1 +2)n=0;
sin 2k + I;n-r: ~ 2
= - y k=0, 1, 2,..., —1-
=T Tkt 1) 7 = 99 = Zna "
sin o

108. Solution. Let a®=1, Bo=1. Then (aB)*0=(a2)? - (Bt)2=1.

109. Solution. Let ¢ be the common root of x?—1 and x?—~1; sis the ex~
ponent to which e belongs. Then s is a common divisor of @ and b and can
therefore only be equal to 1 and e=1. The converse is obvious.

110. Solution. Let o, and B, be roots of 1 of degree g and b; k=0, 1, 2,
.oa—1;5=0,1,2, ..., b—1. On the basis of Problem 108 it suffices to show

o
that all «; B are distinct. Suppose that o, B =a, B . Then T &'— ,

akg ﬁsl
ie., a;=f;. On the basis of Problem 109, «;=B;=1, i.e., ky=k,, 51=5..

111. Solution. Let oo and B be primitive ath and bth roots of 1. Let
(eB)’=1. Then abs=1, Bas=1. It thus appears that bs is divisible by @ and
as is divisible by 5. Hence, s is divisible by ab.

Let 2 be a primitive abth root of unity. Then rA=a*@ (Problem 110). Let
ok belong to the exponent a,<a. Then A%® =(ak)ab (B¥)ad = | which is im-
possible. In the same way it may be shown that S is a primitive bth root of 1.

112. It follows directly from Problem 111.

113. Using the hint, write out all multiples of p that do not exceed p*.
Namely, 1 *p, 2°p, 3 * p, ..., p*~1 - p. It is immediately seen that there are
p*~! such numbers. Whence o (p"‘)=p°‘—p“"1=p°‘( - 1 ) On the basis

P
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of Problem 112, ¢ (=¢ (1) ¢ (03)...9 (pFF)=n ( 1— —) ( 1— —)

. (1 _ L) .
Py
114. Solution. If € is a primitive nth root of 1, then &, the conjugate of ¢,

is also a primitive nth root of 1. Here, e# + 1 since n>2.
115. X, (x)=xP714+xP~ 24 . +x+1.

_ —1 _ -1 -1
116. Xpm (x)=x"P~ NP7 PP T 4L

117. The suggestion can be utilized immediately on the basis of
Problem 111.

Let oy, &, . .., %y(y be primitive nth roots of 1. Then —ay, —ay, ..., —tg(n)
are primitive 2nth roots of 1. We have

Xon ()= (x+0ay) (x+ag) ... (xtopm) = (=D (—x—a)) ... (=X —0pm)
or (Problem 114) Xaa (x)=X, (—x).

118. Solution. Let e;=cos —Qk—n+i sin 2k77-c be a primitive ndth root
n

nd
of 1, that is, & and n are relatively prime. Divide k& by n, this yields k=nq+r,
2rrm 2rr
2qr+ - 2qm+ ——
where 0 <r<n. Whence ¢,=cos 7 " isin Tﬂ that s,

g is one of the values ofthe dth root of 7, = cos QrTTC + isin 2rm

7, is a primitive nth root of 1, since every common divisor of r and » is a com-
mon divisor of k and .

Now let n,=cos 2rm +isin 2 be a primitive nth root of 1, ie., r
n n

and n are relatively prime.

2rre 2rr
2qm+ n 2qm+ n 2r (r + ng)
Form ¢;=co0s —  +isi =
q 7 + 17 sin 7 cos wd
+isin &r(_r;’-n_q) where =0, 1, 2, ..., d—1; ¢, is a primitive ndth

R
root of 1. Indeed, if r+ng and nd were both divisible by some prime p,
then p would divide » and r, but this is impossible.
119. Solution. Let g,, €, ..., o) be primitive roots of 1 of degree »'.
o(n’)
Then X, (x*)= I_I (x""—¢;). Furthermore, let (x — e, 1) (x— e, 5)
k=1
.. (x— g,y be a factorization of x""— ¢, into linear factors. Then X, (x*") =
e=o(r)
i=n
= n (x—e, ». On the basis of Problem 118, each linear factor x—ey, ;

k=1
i=1
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enters into the factorization of X, (x), and conversely. Besides, since
¢ (W=r"p (n'), the degrees of X, (x) and X (x") are equal.

121. Sslution. The sum of all nth roots of | is zero. Since each nth root of 1
belongs to the exponent d, which is a divisor of n, and conversely, it follows

that ). u(d)=
din
122. Solution. Let g;=cos 2kr +1i sin 2k belong to the exponent
n n
n,. Then the factor x—¢, will enter into the binomials x?— ], where d is
divisible by r; (and only such binomials). Here, if d runs through all divisors

of n that are multiples of n, g.runs through all divisors of -,
n

Thus, x— €, will enter the right side with exponent Z u (dy). This sum is

4/
equal to zero if > #1 and to | if n=n,. ™
n
123. Solution. If n=p* where p is prime, then X, ()=p. If n=p7* p§
...Pik, Where py, ps, ..., p, are distinct primes, then (Problem 119) X, ()=

=X, (1), where n'=p,, py ... py,
Now let n=p,, py...py; k=2; n1=—n—. Note that in order to obtain
k

all divisors of n it is sufficient to adjoin to all divisors of n, their products
into pg. Therefore

X, (x)= n (x4 1 d)
din
=[] -1 @, 1 (xd”k_l)“(wnk)

din, dim
= [X,, (0] X, (%)
Whence X, (1)=1.
124, Solution. (1) Let n be odd and greater than unity, Then (Problem 117)
X, (=1)=X,, ()=1.

xn—1 % .
- =x“+1 and X, (—1) is equal to 0

x% -1

(2) Let n=2%, then X,=

if k=1 and to 2 if k> 1.

(3) Let n=2n, where n, is odd and greater than unity. Then (Problem 117)
X, (==X, (1) and, hence, X, (—1)isequal to p if n;=p* (p prime) or is
equal to 1 if n, #p*

(4) Let n=2%n,, where k> 1 and n,=p{*p3* ... p¥s (p1, Ps ..., P, are
distinct odd primes). In this case (Problem 119) X, (x)= X, pips - -5 (x*), whe-

re A=2k=1p%=1  p%=1 Whence it follows that X, (—1)=X, (I)=1.
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125. Solution. Let €, €, ..., €4(n) be primitive nth roots of 1:
fw@)P—(+ed + ... + € (,,))
s=¢€;€+¢ &+ ... Fepn)—1* Ep(m)= 3

(1) Letn be odd, then €2 is a primitive sth root of 1 and e}=¢!? for I=j

only. Therefore
2_
e?+el+ ... + €2 M .
(2) Let n=2n,, n, is odd. In this case —¢; (Problem 111) is a primitive n,th
root of unity and therefore [see (1)] ei+e2 +...+ efo (=W (n)=—u (n).

Lo O+ o (n)
2

(3) Let n=2kn, where k> 1, n, is odd. In this case e? belongs to exponent —'21— .

o= () and s=

Thus, in this case s=

On the basis of Problem |18, we assert that €, €5, ..., €y (n) are square
n
roots of 0y, Mg, ...» N, WheTe Ny, Mg, .., M, are primitive 0} th roots
*(3) *(3)
of 1. Whence it follows that
n
ef+ei + .. |(,,)"‘2 (7)1+7)z+ .+ n ) =2(~"(§) 3
*(3)
)
= ‘_L 2 .
n—1 y+n—1 n—1
126. Solution. §= ), F'= D F= D o
x=0 x=y s=0
for arbitrary integral y:
n—1 n—1 n—1 n—1
S = Z eV 8= Z Vs = Z (e—y'. Z‘ e(y+s)’)
y—O y=0 y=0 s=0
n—1 n-1 n—1 n—1 n—1
Z Z 2ys+s Z (es’ . s?ys) =n4+ Z es'
y=0 5=0 y=0 s=1

Z (e*Y’=n for nodd;

Y

SIE

S8 =n+ne =n [1+(_1)

]

n—1
for n even (since Z €25¥=0 for 2s not divisible by »).

y=0 . ﬁ
To summarize, | S|= ]/n if #n is odd, and | S |= -[/ 1+(——l 2]
if n is even.
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CHAPTER 2
EVALUATION OF DETERMINANTS

127. @) 5, ) 5, (©) 1, (d) ab—c2—d?, (e) a®+p2—y2—8%, (f)sin (@ —B),
®) cos (@+B), (h) secte, () —2, () 0, (k) (b—c)(@—a), () 4ab, (m) —1,

@ -1, © 1+z1/3

128. @) 1, (b) 2 © 2'@+®), @ 1, @ -2 O -2-V72,
® -3V3, @ -3

129. The number of transpositions is odd.
130. (a) 10, (b) 18, (c) 36. 131. (a) i=8, k=3, (b) i=3, k=6.

-] 1
132. C2. 133, C2—1. 134. (a) ng , (b) B (n2+ ) :
n(3n+1 3n(n-1
5. @ O 2

136. Consider a pair of elements a; and q, where i< k." If these elements
do not form an inversion, then a; will precede a;, when the permutation re-
turns to its original order, and, hence the indices will not yield an inversion.

But if the elements g; and a;, form an inversion, then a, will precede 4; after
the permutation is returned to its original orderlng and, thus, the mdloes i
and k will yield an inversion.

137. 1In both cases the permutation is odd. This is due to the fact that the
original arrangement is obtained from the other one by means of an even num-
ber of transpositions.

138. (a) With the + sign; (b) with the + sign.

139. (a) No, (b) yes. 140. i=1, k=4.

141. 1833052044, Q12023054041 ANA Q14@23051 043

Q31 Qg Qgs
142. —a 35 | Gay Qs dgs
A5y Asa Qg

143. With the+sign. 144. With the sign(—l)cr%.
n(n—1)
146. 2, —1. 147. (@ n!, ®) (=) 2 , © =l
ni{nt+1) M
148. @) (=1) 2 (@t @) (=) 2 (@pnt

149. Solution. Interchanging rows and columns: (1) does not change the
determinant; (2) makes the determinant a conjugate complex number.

150. Solution. Interchanging rows and columns: (1) does not change the
determinant; (2) results in the determinant being multiplied by —1.

n{n—1)

151. (=)=t A, 152. Is multiplied by (=1) 2

153. Zero, since the number of even permutations of n elements is equal
to the number of their odd permutations.
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154. (a) xy=a; X3=0a5; ...; Xn_1=0p_1;
®) x,=0; x,=1; ...; Xn_1=n—2;

© xy=ay; Xo=a; ...} Xp_1=0y_1.
b
156. 0. 158. (mg—np) | ° l
c d
(Laly sl
159. (a) aya,...an ata +... o)

n(n—1)
1 1 1

® (=) F aa e ()
1 2 n

160. 3a—b+2¢c+d. 161. 4t—x—y—z. 162. 2a—b—c—d.
163. —1,487,600. 164. —29,400,000. 165. 48. 166. 1.
167. 160. 168. 12. 169. 900. 170. 394. 171. 665.

172, a*+ b2+ c2—2bc+catab). 173, —2(x*+?).

174. (x+1) (x2—x+1)2 175, x?z2. 176. —3(x2—1) (x2—4).
177. sin (¢— a) sin (c—b) sin (a—b). 178. (af—be+ cd)*.
179. nl. 180. bb,...b,. 181. (x—x) (x—x,)...0x—x,).
182. (n—1)!. 183. —2(n—2)!. 184. 1.

n—1 n—1

a na
185. 5 [2a+ (n—1) K. 186. B) [2a+ (rn—1) A].

n (n+1)
187. (=1) 2 [ay—atas—...+(—=1)"ayl
nx" xn—1
188. gy x"+a; x4+ ... +a, 189. =1 my .

190. (r+ 1! x* 191, (x—a) (x—ay)...(x—ap).

192, et (= 1) dl e—ap=t. 193, EFDEE=A

194. (—1)" (n+1) aya4...an.

11 1
195. a1 a,. . .y (1+—+a—+...+—)_

5] 3 Qn

196. h (x+h)n. 197, (—1)~* (n—1) xn~2.

| 1 1
198. (—1)"2"_1a1a2.,.a,,(a—+~£+.”+a—) .
1 n

n(n—1)

199. (—1) 2 ATl o (et

2

n

201, [ (t—axe ). 202 (=12 2272 (nt 1),
k=1
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203. (— 1" (abo+a1b1+ ...+ anby) biba...by_1.

204. a(a+b) (a+2b) ... [a+(n+1) 5]

205. x"+(—1)n"1yn. 206. 0 if n>2. 207. 0 if n>2.
208. Let n=2. Using the hint, we have

14+a,4+x, a;+x,
ay+x, 14ay+x,

1 0 1"“ I a1+x, a,+x,
01 0 aztx, dy+ X1
=14 [(ay+ x1) + (a2 + X3) ]+ (@2 — a,) (x, — x3).

If in this fashion we represent an nth-order determinant in the form of a
sum of 2” determinants, we find that one of the summands is equal to unity,

(n—1)
2

ar+x;, ay+x,
az+x; aztx,

e

n
n summands are equal to a;+x;, where i=1, 2, ..., n and summands

are equal to (a;—ay) (x;—x;), where i> k.
The other summands are zero. Thus, we have the answer:

1+ D (@tx)+ D, (@i—a) (x—x).

i=1 i>k
This result can be transformed to

U+a+az+...+an) (+x+xg+ ..ot xp)—n(apa+axst- ... 4-anxy).

. ntl xnti_]
209. O if p>2. 211. —l——x+w
a
212. Solution. It is easy to see that A2=x1x2(1 + x—1+ %) Suppose that
1 3
a a an_
Ap_1=X1X30 . . Xn_1 (1 + 'i‘l‘ i-l— .o +ﬁ-)

a dgy an_1
Ap= (1+—+——+...+——)
Then Ap=x;%3...%p % % X,

a a a
FAnXyXa. . Xne1=X1 Xy. . . X (l+~xl1 +~;;+...+;:—) .

213, agxiX3... Xp+ @Y Xe . Xnt A 1YaXg. . Xnt o . T AnY1Ye. V0.

1 1 1
214, —aya,...a, (a—l+g+.-.+z).

215. n! (@x"+ax" 14 ... +ap).
216. aas...an_1—01da.. .Gy 3+ ...+ (= Dlag+(—1)rF 1,

217. Solution. Expand the determinant by elements of the first column;
this yields Ap=(x+B) Ay_1—afAs_,. It is easy to verify that



CH. 2. EVALUATION OF DETERMINANTS 189

od— 3 ot — @ an1—p3n=1
A2=W' Ay= ol Suppose that A,,_3=T, Apoy=
an_ n
=—»a_ﬁ . Then
OL"-B" OC”—I—B"_I _ an+1_ﬁn+1
A,,=(OC+B) OC—B —OCB OC—B = OC—B

Alternative solution.
Represent A, as a sum d,+8,, where

o off 0 ...0 0

I a+f o ... 0 O
d,=| 0 1 o+f ... 0 0 .

0 o0 0 1 «tp

g 0 0 0 0

I at+f  of 0 0
3,=10 I o«+8 0 0

0 0 0 R

Take « out of the first row of d, and then subtract the first row from the se-
cond. This yields dy=od,_,. It is readily seen that dy=0o2. Letd,_,=a""1,
then d,=oa".

Expanding 8, by elements of the first row, we see that

8n=ﬁAn—-1-
From the foregoing it follows that A,=o"+BA,_,. We can readily check
o(s_ 3 o(n_ '3
that A= p Suppose that A,,_1=Tg—. Then
mn_ﬁn OC"+1-—B"+1
Ap=a+8 —p = B
sin (n+1) ®
218. n+1. 219. sin ® 220. cos n®.
221, x"—CL_  x* 24 C2_,x"*— ... Compare with Problem 583,

n—1

222. X, yn n (X1 Vi —XiVigp)-

i=1
223, ayay. . .0, <1+—+a—+...+—).

n(n—1)

1 1 1
24, (-1) 2 alaa-'-an(l‘"a—"'; +...+—).

225. x(ay—x). . .{ag—x) (}1—+ L +... 4+ L )
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(1+ B
226. (x1—ay) (Xa—a)...(xn—an) ima, T T ey )

n

n
a; b;
227. ]_I (xi—a; b;) (H‘ Z x,-—lal,-b;) :

i=1 i=1
228. (—1)"mn (1— > %)

a
229, xy=xp=...=x,_1=0; xp= Z —' .
230. (a®— b¥)".
1 1 1
231. a(a+b)...[a+(n—1)B] (;+ i +~--+m) .

n n
a?
232, x"? ]_I (x—2a) (x+ Z Mx‘—IQa- )
1

=1 i=1

n n 2
233, xn? ]_I (x—2a3) (x+ Z T—%&T)'
i=1 i=1
234, 1 —by,+b:1ba—bibobat ... +(—1)" biba.. .ba.
235, (— 1)1 (b1asas...an+b:1ba0s.. .an+ ...+ b1bs. . Bp_1an).
236, (—1)"~1x""3 237, (=) [(x—1)"—x"].
n
B8. apxt | | (i—a). 240, 1. 241. 1. 242. 1.
i=l
3 Colin Cotin=1- - - ot 41 244, (~1)
Coahabiaft T
245, (x—1)". 246. (n— D! (n=2)'...11 (x—=1". 247. o".
248. Using the hint, we have

mlntl)
2

Dp=(x—2) Ap_y+2z (x—-y)" 71,
Ap=(x—y)Ap_1+y(x—2)""1
From the resulting system of equations, we find

z(x—y)" —y(x—2)"

A, =
n 7=y

n(ntl)

249, (~1) 2 @G—a"7)

a—b
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. X W)=y ) where f(x)= ]—I (ax—x).

250 >
k=1
251. % where f(x)= ]—I (cx—x).
k=1

252, (x—B)* 2 [ha+(n—2) M3—(n—1) abl.

nin—1
253, (1) 2 mTleth

n (n—1
4. (1) 7 (uypr [a+ ”_(”.2—&] 255, (1—xny=1.

256. If all columns are added to the first column, then we can take a+b+
+e¢+d outside the sign of the determinant; all elements of the remaining
determinant will be integral expressions in a.

This proves that the determinant is divisible by a+b+c+d. If we add-
the second column to the first and subtract the third and fourth, we find that
the determinant is divisible by a+b—c—d. Reasoning in this way, we will
show that the determinant is divisible by a—b+c—d and a—b—c+d. From
the foregoing it follows that the determinant is equal to A(a+b+c+d)(a+b~—
—c—d) (a—b+c—d) (a—b—c+d). To determine A, note that the coeffi
cient of a* must be equal to 1, and so A=1,

257. (a+b+c+d+e+f+g+h) (a+b+ctd—e—f-g—h)x
x(a+b—c—d+e+f—g—h) (a+b—c—d—e—f+g+h) (a—b+c
—d+e—f+g—h) (a—b+ec—d—e+f—g+h) (a—b—c+dte—f
—g+h) (a—b—c+d—e+f+g—h).
258. (x+a+as+...+an) (x—a) (x—ay)...(x—ap).

n(n—1)
T2 . Pitok . PE—Pi
259. 2 ]—I sin —5 ]—I sin 5.
Igi<k<n Igi<k<n
n(n—1)
2 Pi+ Pr . Pi— Pk
260. 2 ]—I cos ) ]—I sin —5 7 .
nxi>kzl1 nzi>k>1

261. 112!...n0 262. ]'] (ai—ax).
n+lz2k>izl
263. (=D 112!...al.

n

264. (=12t ﬂ ai ﬂ (ai—ak) ( Z ;j%)*)

i=1 nzi>k21 i=1
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where f(x)=(x—a,) (x— a,)...(x—ay).

265. I_I (o — xp)-

nzi>kz1

nin-1) 9k Rk
266. 2 2 I_I Cos —(’% I_I sin &2& .

nzi>k»l nzi>kz1
267. I_I (xi—xx).
nzi>k>1
n{n—1)
268. 2. 2 Go1Qog- - - g, n—1 I_I sin ‘P";ﬁq’k I_I sinﬂc;w—.
nzi>kzl1 nzi>kzl
1
269. Tror m=1)i [T -
nzi>kz1
n
n
ot st @e-nt 2 [ 2 [ -
i=1 nzi>kz1

273. I_I (brai—ap b;). 274, l—I sin (a; — o).

nt+lzk>izl Igi<k<n

275. I_I (ai—ar) (@ a—1).

Igi<k<n+l

+ p— .
z6. gm0 [] s H5E ] s B

n—1z2i>k20 n—1z2i>k>0

277. 2 (*FVsin «, sin o
. . it . =y
...8in oy, sin —5— sin 5
nzi>kz0 nzi>kz0

278, [x1x5. . . xp—(x3—1)...(xp—1)] I_I (xi —xx)-

nzi>kz1

1 1 l
279, x,%3. .. %p (—-+—+...+Z) I_I (i — x).

nzi>kz=i

280, (x;+ x5+ ... +xp) l_I (x; —xp).

nzi>kz1

281. 6,_g I_I (x;—x;) where o, forms a sum of all possible pro-

nzi>kz1
ducts of the numbers x;, X, . .., X, taken p at a time.
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282. [2nxa. . = a—1) Ga=1)...Gn—D1 || ).

283. x2 (1) 284. 2%y (x—y)". neizkl
n(n—1)

285. 112131...(n—=)x 2 (p—x)
k(k=1)

286. 11213 .. (k—=)lx 2  (G1—x)F (ra—x)*

287, (y—x)k (=R,

288. (b) 9, (c) 5, (e) 128, (f) (@1 as— b1 b2) (¢ ca—d,dy),
(8) (x3—xa)* (xg—x1)* X2—x)%

(h) 2—a® (@—B)" " [et+@—1) B,

(K) (xs—xa) [(xs—x2) (xa—x3)—2 (xa—x0) (x4—x1),

(m) 27(a+2)% (a—1)¢ [3 (a+2)2—4x?] [3 (a—1)2—4x]3.
Remark. This problem is a particular case of Problem 537.

2 8 17
-5 —2
29. (2) | _g 4‘, ® |11 -6 5‘,
3 8 —3
7 5 -3 3
-1 5 -3 3
© ) _4 _4 5 4
4 —4 0 3

290. (a) 24, (b) 18,
(©) (a+b+c+d) (@a+b—c—d) (a—b+c—d) (a—b—c+d).

291. (a) 256, (b) 78400, (¢) (a®+ b2+ c2+d%)4

292. D n (x; — xx)-

nzi>kz=l
293, (a) cict...ct n (a;i —ax) (bi—bi),
nzi>k20
o T] - @0
nzis>kz=l

n

204. 0 if n>2. 25, | | w—x) [] u—mon
i=1 nzi>k>1

206. —(@*+ B+ A+ a2+ B mP+n2 4 pR)A.

297. 4 sin®p. 298. 4 sin‘q.

7. 1215
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b
299, Denote the desired determinant by A, Squaring yields | A |=n?
On the other hand, A= | |  (—e9.

n—lzk>5>0
T ., T
We assume g;=cos — +isin —. Then e=¢? and

A= l_l (Ek—53)= l_l E/1€+s I_I (e{c—s_el—kfI-S)

n—lzk>s20
n(n—-1)

= I_I Efﬂ.i—i— l_l 2 sin —_(k—ns)ﬂ:

—§) T
PR >0 for all k£, s. Hence

.k
Furthermore, sin

;— (k— s)
n =|A|=‘l_l25m E— l_IQ

Therefore
n _("_.l)_ n on(n-l) n(n-1)
A=n?i 2 l—l ekts_p? 2 e, 2
n—lzk>s20
n nn=1) n (n—1) (n+2)
5 Ha=1yp L -
=’12 i 2 :nQ ] 2
n—1
n—1 2kr
300. I_I (@t arck+asef+ ... +an_1ek ) where eg=cos p
k=0
L. 2km
+isin 7

301. x—ypt+ 20— ut+ dxy®z + dxzu? — AxPyu—4yziu—2x2z2 + 2N,
303. 271 if nis odd, O if n is even.

[(n+ 1) a"—1)1—n"ar (#*1)
304, (=1 Ty -

n-1

305. (— 1)t (n—1) ﬂ (@ +ayek+...+anck ) where

k=0
2%km . 2km
€ =COS —n—+t sin - -—
(tteg)'—1
306. 9o () @y (1)...@n_y (1) where @i ()=""""""""3
2k

2k,
£ =COS T+lsm
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According to the result of Problem 102, the answer can be represented as
n—1

[T er——1m.

k=1
307. (—2)»" 1 (n—2p) if (n, p)=1, 0 if (n, p)#1.
308. 27—z (cos" %—1).
© +2)0 . ©
309. 27— 2gipn—2 % [sin” (e 2)——sm" n2 ]
h ~2
310. (—1)* 2r—2gin" 2 n_2h [cos" (a+ %)—cos" (a+W) ]
(2 1
311, (-1t (nt )T(Q—”j—) n"2[(n+ 2" — ",
n—1
_ Ck+1)m
313. (a1 +azet+asel+ ... +ancf 1) where er=cos —
k=0
. (2k+Dmw
+isin ———— .
n
315. l—[ (a+aspi+aspi+ ... +anel™!) where g1, pp, ..., pn are nth
i=1
roots of w.
318. The solution of Problem 223. Adding 1 to all elements of the deter-
a 0 ...0
minant 0 a...0 , we get the determinant A,
0 0 an
n n
We have A=a, a,...a,+ Z Z Aik,
k=1 i=1
n n
55 a2 L L)
l ik=dydg. . .0y a @ an )
k=1 i=

The solution of Problem 250. Denote by A the determinant to be evaluated.
We have

A=(a;—x)(a,—x). . .(an—Xx)+x Z Ak,

A=(@-) (@=Y). . .=+ D, A

where Z A;, is the sum of the cofactors of all elements of A,
A is readily determined from the system of equations.

7*
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323 [] (@-a [T @-s0 n;

Isi<k<n Isi<ks<na
[1r@

i=1

where f(x)=(x+b)...(x+b,).
[c+]/cn 4ab]"+1—[c—]/ & —dgpnt1
on+1 ‘|/cz 4ab .
p+Vp*—4al+Ip—V p*—4ql"
on

327. X"+ ax" "1 tax" " 2+...+a,, where g is the sum of all kth-order
minors of the determinant

325.

326.

Ay g ... Gip
dy; @y ... Gz | Obtained from it by deleting n—k rows with indices
.......... oy, Gy, ..., %,y and columns with the same indices.
amy Qg ... Gnn

328. (n+1)"" L 329. (x—m)nt,
330. (x2—13) (x2—39)...[x*—2m—1)?] if n=2m,

x (x2—22) (x2—4?)...(x2—4m®) if n=2m+1.
331. (x+na—n) [x+(n—2) a—n+1][x+(n—4) a—n+2]. ..(x—na).

n(n2-1) {12, .. (n=1)1p
332. (1) (=D 3BT D @n=D1

Alay, a, ..., Aby, by ..., b .
334. (@, as a g") ( 1’1) 2 n) where A is the Vandermon-

de determinant.

CHAPTER 3

SYSTEMS OF LINEAR EQUATIONS

335. x,=3, xp=x3=1.

336. x,=1, x3=2, xg=—2.

337. x,=2, X5=—2, x3=3.

338. x,=3, x;=4, x3=5.

339. x;=x,=—1, x,=0, x,=1.
340. x;=1, xo=2, xa=—1, x,=—2.
341, x,=—2, x3=2, x3=—3, x,=3.
342, x,=1, x3=2, Xz=1, x,=—1.
343, x,=2, x3=x;=x,=0.

344, x;=X,=x;=x,=0.

345. x;=1, xy=—1, x3=0, x,=2,
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346, x;=x3=x3=x,=x;=0.

347. x;=x3=x3=x,=0.

348. x;=1, xa=—1, x3=1, x,=—1, x5=1.
349, x,=x3=X3=x,=x;=0.

350. x;=1, xa=~—1, x3=1, x4=—1, x35=1.
351, x,=0, x,=2, x3=—2, x,=0, x;=3.
352, x;=2, x3=0, x3=—2, x,=—2, x;=1.

353. The determinant of the system is equal to zero, since the system has a
nonzero solution.
354, The determinant of the system is equal to —(a?+b%+ c?+d?)?.

n

a Z ag—ag[(n—1) o +p]

k=1

B X B ln=T) o £ B
__ ) f(x)=(x=by) (x—=ba)...(x—bn),
36 M= =8 P ()= (x—By) (x—Ba). .. (6~ Bu).
@)

357. xi=m)‘ where f(x)=(x—0y) (x—a). . .(x— o).
358, xg= Z (—fl,)(no:rsul ®s, i where f(x)=(x—oy)...(x—an);

sy 4= Z Opy Opge + Ohp, the sum is taken over all combinations ¢, ¢,, ..
t,s of 1,2, ...,i—1, i+l,...,n

—1\nti
359. xs= Z ( fl,)(“)u @i, s where [ (x)=(x—oy) (x—ay)...(x—ap);

Pl s= Z Ugy Agye oo Opy 5

here, the sum is taken over all combinations ¢, #4, ..., fy_i 0f 1, 2, ..., s—1,
s+1,

_(=Dtan_; ~1
360. H=——— where x"+a;x""+...+ap

=(x—1)(x—2)...(x—n).
361. ck.ck.
365. (a) It does not change or it increases by unity; (b) it does not change
or it increases by unity or by two.
366. 2. 367. 3. 368. 2. 369. 2. 370. 3. 371. 3. 372. 4. 373. 3. 374. 2.
375. 3. 376. 5. 377. 6. 378. 5. 379. 3. 380. 4.
383. The forms are independent. 384. 2y,— y,—y;=0.
385. y1+3y2— =0, 2y,—ys—y,.=0.
386. The forms are independent.
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387. y1+ys—ya—y.=0.

388. y1—yatys=0, 5y;1—4ys+y.=0.

389. The forms are independent.

390. The forms are independent.

391. yy+ya—ys—ye=0. 392. 2y;—y,—yy=0.

393. 3y1—y:—y3=0, »1—ys—y,=0.

394. The forms are independent. 395. y,—ys—ys—y,=0.
396. 3y;—2y;—ys+y4=0, y1—ys+2y;—ys=0.

397. A=10, 3y1+2y,—5ys—y.=0.

398, x;=2x,—x;, x4=1. 399. A=5.

400. The system has no solutions. 401. x;=1, x,=2, x3=—2,

402, x,=1, x;=2, xo=1. 403. x;=— ”7"“ , x2=—§_
404. The system has no solutions.
5 4
=0 x,=2 x,=2 ==
405, x, y Xa y X3 3,x4 3

406. x;=—8, x;=3+x,, X3=6+2.X4.
407. x;=2, xa=x3=x,=1. 408. x;=x,=X3=x,=0.

409, x, = 3x;—13x, e 19x5; —20x, .

17 > TR 17
7 X;
410. x1=6‘ X5 — X3, xz':g X5+ X3, x4=?5 .
411, x;=—16+x3+x,+5x5, x,=23—2x3— 2x,— 6x;.
412, %, = —4x48+7x5 = —43«:,,8+5x5 | xe= 43«74553«:5 .

413, x;=x,=x3=0, x;=xXs.
_ I+xs oz 1435+ 3% — 55

414, x, = 3+ M= 3
415, x, = 2-|:;x5 = 1+3x3—63x4—5x5 )

416. The system has no solutions.
417. The system has no solutions.

418. x1=_% ’x”:‘]—);—s , %3=0, x4=—1—% .
419. x1=l‘_|'_65ﬁ | Xy= 1—67x4 Cx= ]_|_65x‘1
420. The system has no solutions.
S T il i - AN i o il 4
2bc ! %ac , %b
At L _ Ol

422, If =) 0+2)#0, x=—375 , y=g=p , =3

If A=1, the system has solutions dependent on two parameters.
If A= —2, the system has no solutions.
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. A2+ 2042
423, If (A—1) A+ 3)£0, x=—~——T—
DS 2 Sl 7' 8 SRSl ook 2% 8
YETTRFS T3 0 T "t 3

If A=1, the system has solutions dependent on three parameters.
If A= —3, the system has no solutions.
424. If a, b, ¢ are all distinct,

x=abe, y=—(ab+ac+bc), z=a+b+c.

If among a, b, ¢ two are equal, the solutions depend on one parameter.
If a=b=c, the solutions depend on two parameters.
425. If a, b, ¢ are all distinct,

(b—d)(c—d) (@=d)(c=d) _ (a—d)(b—d)

T c~a) "' @b c=b) ' T @=c)(b-0)
If a=b, a#c, d=a or d=c, the solutions depend on one parameter.
If b=c, a#b, d=a or d=b, the solutions depend on one parameter.
If a=c, a#b, d=a or d=b, the solutions depend on one parameter.
If a=b=c=d, the solutions depend on two parameters.
In all other cases, the system has no solutions.

2% —1 | 2ab—4b+1
426, If b (a—1)50, x_b(a—l) ’ y—? ! Z—W

1
If a=1, b= PR the solutions depend on one parameter.
In all other cases, the system has no solutions.
a—-b ab+b—2
27. - 2 =z= =
427. If b(a—1) (a+2)#0, x=2z @1 (@+2) ’ y bla=D(a+d) -

If a=—2, b= —2, the solutions depend on one parameter.
If a=1, b=1, the solutions depend on two parameters.
In all other cases the system has no solutions.

_ = madmon—p
48 If (x= 1) (@+2)#0, x=-T =505y

_ hotn—m—p Z_:pac+p—m-_—n_
T er@- 0 T @@= -
If = —2 and m+n+ p=0, the solutions depend on one parameter.

If =1 and m=rn=p, the solutions depend on two parameters.
In all other cases the system'has no solutions.

} a2 (-1) _b(a*-1) -_a-l
429. If a(a=b)#0, x=—77=""=, y=—0 =5 = ;=g -

If a=b=1, the solutions depend on two parameters.

In all other cases the system has no solutions.

430. A=x2(A—1). For A=0, A=1, the system is inconsistent.

431. A=—20 If 20, x=1—-2, y=1, z=0. If =0, x=1, z=0, y is ar-
bitrary.

432. A=(k—1)2(k+1). If k=1, the solution depends on one parameter.
If k= —1, the system is inconsistent.
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433. A=a(b-1) b+1).
1 4

If a=0, b=5, y=— 30 FTF,x is arbitrary.

If a=0, b#1 and b+#5, the system is inconsistent.

If b=1, z=0, y=1—ax, x is arbitrary.

If b=—1, the system is inconsistent.

434. (a) A=—m(m+2). For m=0 and m= —2 the system is inconsistent.

(b) A=m(m2—1). If m=0, m=1, the system is inconsistent. If m =—1,
the solution depends on one parameter.

© A=2(x—1) A+ 1). If A=1, A= —1, the system is inconsistent. If A=0
the solution depends on one parameter.

435. (a) A=3(c+1) (c— 12 If ¢=—1, the system is inconsistent.

If ¢=1, the solution depends on two parameters.

®) A= —1 (A—2) 2—3). If A=2, A=3, the system is inconsistent.
If A=1, the solution depends on one parameter.

(©) A=d(d—1) [d+2).1fd=1, d=—2, the system is inconsistent. If d=0,
the solution depends on one parameter.

(@ A=(a—1)2(a+1). If a=—1, the system is inconsistent. If g=1, the
solution depends on two parameters.

x y 1
436, | x, y;, 1 (=0
x vy 1
437, Ifand onlyif | x;, y; 1 438. Ifand only if |a, by ¢,
X, ya 1 =0 a, by ¢, |=0.
X3 ya | a; by ¢

439. If and only if | x2+32 x, »o
X+yE o on

X3+Y: X2 s

I 224+ x5y

440. (x— 1D+ (y—1)2=1. 441. y*—y=0.

—_ e —

442, y=x*-1.

443. |y x* xt7l . x2 x|
vo X X7t L a2 x 1l=0
yn Xn xn ! xn xp 11

444. Ifand only if | % y, z 1
X ys zz 1 =0
Xs ya zz 1
Xy Yo 2zg |

445, x*+yr+ 22 —-x—-y—z=0,
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446. If and only if the rank of the matrix

xn n |
x y 1
xp yn 1

is less than three.
447. If and only if the rank of the matrix

a b o
a; by ¢y
as by cp

is less than three.
448. In one plane if and only if the rank of the matrix

X1 oz |

is less than four; on one straight line if and only if the rank of the matrix is
less than three.
449. All planes pass through one point only when the rank of the matrix

A, B, C D,

is less than four; through one straight line only when the rank of this matrix
is less than three.

450. ’ ay @g ... G, n-1 Gin |
az  Gas Gy, n-1 Qzn I=O_
dn1  Qna An,n—1 Qnn
453. No. 454. For example, /1 -2 1 0 0
1 =2 01 0]}
5 —6 0 0 1
455. Yes.
456. Soluticn. Let
O3 Oz ... Oip P ST ST P
A= ] %z %a % }J, B= Agy Ag Asr ,
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v
( Z Mg Usp .. Z Nys  Sgn

:—1 s=1

pa=| ",

.
LZ s o1 s Z Ars  Osn

s=1 s=1

It is immediately obvious that the rows of the matrix B4 are solutions of
the system. Besides, since | B|#0, 4=B"1(BA), i. e., the solutions written
down by the matrix 4 are linear combinations of the solutions written down

by the matrix BA.
457. Solution. Let

Oy3 O%yg ... Oip Yir Yz -«- Yin
A= | %1 %2 %n |, C={ Yo Yo “2n
Opy Xpg «.. Opp Yr1 Yra «.. Y

Since Cis a fundamental system of solutions, o3;=2A1;Y11F+AaYar+ ...+ 2yr
and so on, that is, 4=BC, where

On the other hand, A is also a fundamental system of solutions, and the-
refore | B |#£0.
459, For example,
Xi=¢1+ B¢y, X3=—2¢,—2¢,—6C3, X3==C1, X4=0C3, X5=C3
(see the answer to Problem 454).
460. x;=1lc, x3=c, x,=—7c.
461. No. 408. x;=x,=x3=x,=0.
No. 409. x,=3¢,+13¢;, x:=19¢;+20¢,, x3=17¢;, x4=—17¢;.
No. 410. x;=¢4-+7¢o, X3==— 1+ 5C5, X3= — €1, X;=2¢,, X5=6C».
No. 412. x3=¢,+7¢s, X3=C1+5¢Cs, X3=—0,—5¢;, X3=—2¢;; X;=8¢Ca.
No. 413. x,=0, x,=0, x3=0, x,=¢, x;=c.
462, x;=—16+¢;+cs+ e,
x3=23—2¢,—2¢,—6c¢3,
X3=0C13 X4=C3; X5=C3.
463. No. 406. x;= —8, x,=3+Fc¢, x3=6+2¢, x,=c¢
No. 414. x,=c¢3, x,=2-¢;+ ¢3—5¢3, Xa=¢1, X4= 3, X5=—1--3¢;.
No. 415. xy=1-+2cq, x3=1-c1— 3+ 5cy, X3=2¢1, x4=2¢3, x5=1+6¢4.
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CHAPTER 4
MATRICES

) (b) (—12 12)

3
@ (5 -

6 0 00 1 9 15
(6 ), (d)<0 0 0),(e)<—5 5 9),
8 0 0 0 12 26 32
<a+b+c a?+b%+c? b*+2ac )

464.

at+b+ec b2+ 2ac a?+ b2 +c?
3 at+b+tc atb+c

7 4 4 15 20 3 -2
9 4 3]), ) (C)< )
3 3 4 20 35 4 8
1 n cosng =—sinng
o 1) @5 .
1 sin no cos neQ
cos ¢ sing
466,
]/H_ (—sincp cos<p>

where tan o=

. Hence,

n
d n

=(1+°‘_2)5_( cosn sinncp>
n —sinng cosng

The limit of the first factor is equal to 1. lim np=o« lim —2 =« The-

3|

—

n—>a =0 taneg
refore
o n
. ! n cosa sina
lim = . .
o —sino  cos «

-1

467. (a) (4+B)*=A%*+AB+BA+B*= A*+24B+ B2
(b) (4+B) (A—B)=A%2— AB+ BA—B*= A42—B,
(©) The proof is by induction.

-10 — 4 -7 000
468. (a)< 6 14 4). (b) <0 0 0).
-7 5 —4 000
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469. (a) x—2y ) (x=y)E+y 4,

) (x—=y)E+y4,

y 0
( v 0) .
3t— 3x u t—=3y—v ¢

51 3 0 o
470. (a) 8 0 3), (b .
(-2 1 —2> <0 0)

471. 1t is verified by direct computation.

472. The polynomials F(x)=a,+ax+...4+a,x™, such that F(4)=0,
exist because the equality F (A)=aoE+alA+ <. tapA™=0 is equivalent to a
system of #® homogeneous linear equations in m+ 1 unknowns aq, 4y, ..., a,,,
which system probably has nontrivial solutions for m=r2 Let F(x) be some
polynomial for which F (4)=0 and let f(x) be a polynomial of lowest degree
among the polynomials having this property. Then F(x)=f(x)}q (x)+r (x),
where r (x) is a polynomial of degree less than that of f(x). We have r (4)=
=F (A)—f(A) g (4)=0, hence, r(x)=0, otherwise there would be a contra-
diction with the choice of f(x). Thus, F(x)=f(x) q (x).

473. Let

@y Qyg -+ Ain by - bin
A=l .- o , B=f ... X
Qn  Qng --- Gnn bpy - bnn

Then the sum ‘of the diagonal elements of the matrix AB is equal to
n n

Z Z a5y, The sum of the diagonal elements of the matrix BA is exactly

=1 k=1
the same. Hence, the sum of the diagonal elements of the matrix AB—BA
is equal to zero, and the equality AB—BA=E is impossible.

Remark. The result is not valid for matrices with elements of a field of
characteristic p #0. Indeed, in a field of characteristic p, for matrices of order p,

010..0 00 0.. 0

001..0 1 00.. (0
A= ¢ oo s B=

00 0..1 9.2..9."....9

000..0 00 0..p—10

we have AB—~BA=E,
474, (E—A) (E+A+A%+...+A*)=E—A*=E.
b
475. (" ), be=—a?.
c

—a
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476. If A®=(, then A%=0 also. Indeed, if 4*=0, then | 4|=0. Hence
(see 471), ‘A’—(a+d)A 0=A%=(a+d) A?=(a+d)* A, whence ‘a+d=0 [and
A2=0,

b
471. +E, (a ) a=1—bc.
[4

-a

478. If A=0, then Xis any matrix. If | A | #0, then X=0. Finally, if | 4|=0,
but A#0, then the rows of matrix A are proportional. Let o : 8 be the ratio of
corresponding elements of the first and second rows of the matrix 4. Then

{—Bx ax )
X= for arbitrary x, y.
=By ay

479. Let A=(a b).
c d

(1) If 4#0, but a+d=0, ad— bc=0, then there are no solutions;
Q) if a+d+#0, (a—d)*+4bc=0, (a—d), b, ¢ are not equal to zero simul-
taneously, then there are two solutions:

+ 1 ( 3a+d 2b ) .
T 2V 2(a+d) 2% a+3d
(3) if a+d+#0, ad—bc=0, then there are two solutions:

Yoy ] (a b) )
"7 Va+d \c d/’
(@) if ad—bc#0, (a—d)?+4bc+0, then there are four solutions:

z+a—d
¢ b
X~ 2
A N—a+d
¢ 2

where 7\=iVa+di2 Vad —be ; _
(5) if a—d=>b=c=0, then there are infinitely many solutions: X= + /aE

x
and X =( iﬁ) , where x, y, z are connected by the relation x*+yz=a.
z —

5 =2 1 d —=b
w.@ (5 1) o (7))
9 . 1 -3 11 -38
1 —_
0 -2 7
0 1 =2, @ s
0 0 1 0 1 -2
0 0 1

1 1 1 1
1 1 -1 -1
1 -1 1 -1
I -1 -1 1

© ( :
0
0

1 —4 -3 1

1 -5 -3 —

(—1 6 4) 4
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2—n 1 1 1
1 1 2—-n 1 1
) %= 11 2=n.. 1 |
1 1 1 1
1 1 et e~ ? gt
M n 1 e2 g4 g~nt3 4
[ entl gmmta | gm(rm1p?
l-n 1-(r=1) 1-(n=2) ... 1-1
o L-(a=1) 2-(n=1) 2-(n=2) ... 2-1
O =7 1 e-2 2.(-2 3.@-2)...3-1 "
l..l ..... 2131 ....... n. .1
2—n? 2+nt 2 2
0 g | 220 2 2 )
24n® 2 2 2—n?
b e t+d by ¢; by —c
1 biey bycstd by —cq
) g o

where d=a—byc;—bycy— ... —bycp,

f=fox®  xf—fix" ... X" fa X" X"

( ) 1 —fox"Tl f—fixnTl L. XN f— fr_ xhT1 xPT1
SR B o o
F\ —fix  —fix J A x

—fi ~fi s 1

where fy=ay, fi=@oX+ai, ..., fom1=@X" 1t tanoa, F=ax"+ax" "+
wota,,

N 0 L0 LIV VNN W W
@ [0 » 0 J_ 1 [ 2y 22 N Mn
0 0 M N0y W W W A2
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p=14+7+2+ ...+

B 14AB~'UVB~1 —\B~'U 1
) ( —A VB! A * "T a—VBT'U ¢
-3 2 0
2 93
481. (a) (0 8), (b)<—4 5 —2>,
-5 3 0
I =1 =1 0...000 0
1 1 =1 —-1...000 ©
@l0 1 1 -1...000 o0f,

~34 -18

(d)( 24 13>' © xep-"=b [0

[+a b
X:
® (—Qa 1—-2b

482. It is sufficient to multiply the equation 4B=BA on the right and on
the left by A7

483. .
-1 -1

484. If A*=E, then | 4 |>*=1, and, by virtue of its real nature, | 4 |=1.

), (g) X does not exist.

b
Set A=( “ d)' Then, equating 47! and 4%, we readily find that 4=F or
¢
a+d=—1, ad—bc=1.

a b
485. A=4F or A=( ), a®+bec= =+ 1.
c —a

b 0 1
486. ( ):aE+bI, where I=( )
a

-1 0

Then I*= — E and, hence, the correspondence aE+ bI—a-+ bi is an isomorphism,
a+bi c+di

—c+di a--bi

here I=(" 0) J—(OI)K(Oi) Th
were—(o_l_,—_lo,_io. en

B=2=K*=—E, IJ=-JI=K, JK=—-KJ=I, KI=—IK=J. Whence it fol-
lows that the product of two matrices of the form a+ bl +¢J+dK is a matrix
of the same type. The same holds true for a sum and a difference so that the

487. Set( >=aE+bI+cJ+dK,
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. . . a+bi c+di
set of matrices at hand is a ring. | Furthermore, |4 |= =

~c+di a-—bi
=a®+b%+c*+d?#0 as soon as A#0. Hence, every nonzero matrix has an
inverse, and from the equality 4,4,=0 (or 4,4,=0) for A4,#0, it follows
that 4,=0. The ring of matrices under consideration is a realization of what
is called the algebra of quaternions.

488. (@ E+byI+ ey J+d i K) (asE+byI+coJ+dsK)=(a,aa— b1b3— c1c3—
~ddy)E+(aybs+ bras+ eydy— dic)I+ (aic3—bids + 103+ dib )T+ (ayds +
+b163—c1bs+ diaz)K. Taking determinants, we get (a$+ b2+ c2+d?) (a2 + b2+
+3+dD=(mas— biby—c1c3—dids) + (a1bs + bras + c1dy— dico)®+ (arc,—
—=b,dy+c1a3+d b2+ (ayds + byca— crbs+ dyas)?.

489. Interchanging two rows of a matrix is accomplished by premultipli-
cation of the matrix

(1 \
'1
0 .. 1
.1
'1
1 0
1
\ 1)

Operation b is accomplished by premultiplication of the matrix

/1 \ (1 \

or

\ 1/ \ 1/
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Operation ¢ is accomplished by premultiplication of the matrix
/1 \

\ 1

The operations a, b, ¢ oncolumns'are accomplished by postmultiplication
of the same matrices.

490. Any matrix 4 can be reduced to diagonal form R by elementary
transformations @, b, ¢ on the rows and columns. Therefore, for 'the given
matrix A there is a matrix of the form Rsuch that R=U,U,... U, 4V 1 V... V3,
where Ui, ..., Up, Vi, ..., Vy are matrices of elementary transformations.
They are all nonsingular and have inverses.

Consequently, A=PRQ, where P and QO are nonsingular matrices.

491, By virtue of the results of Problems 489, 490, it will suffice to prove
the theorem for diagonal matrices and for matrices corresponding to the ope-
ration a, because matrices corresponding to the operation 4 have the requi-
red form. Itis easy to see that the operation a reduces to the operations b and c.
Indeed, to interchange two rows, we can add the first to the second, and then
from the first subtract the second, then add the first to the second and, finally,
multiply the first by — 1. This is equivalent to the matrix identity E—e;;—e;+
+egptey=(E—2¢,) (Etey) (E—ey) (E+ey). The theorem is; obvious
for diagonal matrices:

@113+ age52t ...+ ape,,

=(E+(@—1) en) (E+(a:—1) ena) ... (E+(a,—1) eyy) -

492, Let A=PR,Q,, B=P,R;(Q,, where P,, Q;, P,, O, are nonsingular
matrices and R; and R, are matrices having, respectively, r; and r, units on
the principal diagonal and zero elsewhere. Then AB=P,R,0,P.R;0; and
the rank of 4B is equal to the rank of R;CR,, where C= Q,P, is a nonsingular
matrix. The matrix R,CR, is obtained from the matrix C by replacing all
elements of the last n—r, rows and n—r, columns by zeros. Since striking
out one row or one column reduces the rank of a matrix by no more than
unity, the rank of R,CR, is not less than rn—(n—r)—(@m—r)=ri+r,—n.

493. It follows directly from the proportionality of all rows of a matrix
of rank 1.

494. On the basis of the results of Problem 492, the rank of the desired
matrix A4 is equal to 1 or 0. Hence

Mur M Mg
A= Japr M A Ha)
A Aspz haldg
Direct multiplication yields
0=A%=(Mlta+ oty + Agprg)A
whence it follows that Aju,+Asus+Agus=0.
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495, Let Ayield asolution to the problem different from the trivial A= + E.
Then one of the matrices A—E or A+ E has rank |. Let

M1 Mpe M
A+ E=| dat1 Me Xpyy J=B
Asity Asipe Agihs
Then A*=E—2B+B=E+(iL;+Agita+2rse3—2) B, whence it follows that
for A?= E it is necessary and sufficient that the condition Ay +Agpts+ Agprs =2

be fulfilled. The second case is considered in similar fashion.
496. Let there be adjoined to the matrix (4, B), where

gy ... Gk by ... by
A= -+ «.. s B={ «...... .
Amy -+ Amk bml “es bms

the column C= , the adjoining of which to the matrix B does not

Cm”
increase its rank. Then the system of linear equations

bunt...+bisys=cy,

byt .. +bmsys=cm

is consistent, but then also consistent is the system

Consequently, the rank of the matrix (4, B) is equal to the rank of the mat-
rix (4, B, C).

Now suppose that the columns of the matrix B are adjoined to the mat-
rix 4 gradually, one at a time. The rank can then increase by unity by virtue
of what has just been proved only when the rank of B increases. Hence, the
rank of (4, B) < the rank of 4+ the rank of B.

497. Let the rank of (E+ 4)=r,, the rank of (E— 4)=r,. Since (E+4)+
+(E—A)=2E, ry;+ry,=n. On the other hand, (E+ 4) (E—4)=0, therefore
0=r+r;—n. Hence, ri+ry=n.

498. The rank of the matrix (E+ 4, E— A4) is equal to n. From this matrix
choose a nonsingular square matrix P of order » and let its first » columns
belong to the matrix E+ 4, and let the other n—r columns belong to E—A.
Then, by virtue of the fact that (E+ 4) (E—4)=0 we have



CH. 4 MATRICES 211

Combining these equations, we get

=2P

Whence follows immediately what we sought to prove.

499, If AA~'=F and both matrices are integral, then | 4 x| A7 |=],
whence it follows that | 4 |= %1 because | 4| and | 4 |~! are integers. The
condition | 4 |= +1 is obviously also sufficient for the matrix 4™ to be in-
tegral.

500. Let A be an integral nonsingular matrix. There will be nonzero ele-
ments 1n its first column. By multiplying certain rows of the matrix 4 by —1,
we can make all elements of the first column nonnegative. Choose the smal-
lest positive one and subtract its corresponding row from some other row
containing a positive element in the first column. We again get a matrix with
nonnegative elements in the first column, but one of them will be less than in
the original matrix. Continue the process as long as possible. In a finite num-
ber of steps, we arrive at a matrix in which all elements of the first column,
except a positive one, are zero. Then, by interchanging two rows, carry
the nonzero element of the first column into the first row. Next, leaving the
first row fixed, use the same operations to obtain a positive element on the
diagonal in the second column, all elements below it being zero. Next turn to
the third column, etc. The matrix will finally become triangular. Then, by
adding each row an appropriate number of times to the above-lying rows (or
subtracting each row from them), we reach a situation in which the elements
above the principal diagonal satisfy our requirements.

The foregoing operations are equivalent to premultiplication by certain
unimodular matrices, whence immediately follows the desired result.

501. Let A=P,R,=P,R,, where the matrices P,R, and P,R, satisfy the
requirements of Problem 500. Then from the equation P;P;=R,R;* it fol-
lows that the integral unimodular matrix C=P; ! P, is also of triangular form.
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Let
Ay Qg ... Qin b b ... bin
Qog ... Qap bay ... by
Ry= L R SR
Qnn bnn
€11 Ci2z +++ Cin
Ca2 Can
C= :
. .
.
Cnn

Then from the equation R,=CR, we first of all conclude that b;;=cpay,

+sDun = Cunyn, Whence it follows that all ¢;; are positive. But ¢;1C33...Crn=
-I c|=z1, hence cy=ca=...=c,,=1 anc a;=>by;.

bip—asn
Qe

But 0<byp<bgs=0s5, 0<ayz<a,s, hence, | ci2 | <1, and therefore ¢;,=0.
Thus, comparing successively (by columns) the other elements in the matrix
equation CR,;=R,, we come to the conclusion that all ¢;;;=0 for k>, that is,
C=E. Consequently, R,=R,, P,=P,. Thus, in each class there will be one
and only one matrix of the form R.

The number of matrices R.with given diagonal elements dy, dj, ..., d, is
evidently equal to d.d3.. .d?=1 and so the number of matrices R with a given
determinant k is equal to F, (k)=2 d,dj...d"~1, where the summation sign

% is extended over all positive integers dy, d, ..., 4, satlsfymg the condi-
tion dyd;...d,=k. If k=ab, (a, b)=1, then each factor d in the equation k=
=d,d,...d, is uniquely factored into two factors «;, 3, so that 0y Q.. .0,=0,
By Bs...8,=b. Hence,

Furthermore, b;;3= 11813+ C120:3 =013+ C12a55, Whence ca=

Fa(h= D, dydd ... di"t

did,...d, =k

-1 ~-1
D A S N

Ay Olg ... O, =&
Bi1Ba... B,=b

= D ma.. oL D BB BT =Fu(a) Falh)

R BiPa... B,=b

From this we conclude that if k=p[™ ... p'sis a canonical factorization

of k into simple factors, then F, (k)=F, (p|™) ... F, (pys).

It remains to compute F, (p'”) To do this, break up the sum for the com-
putation of F, (pm) into two parts, in the ﬁrst of which d =1 and in the se-
cond of which d, is divisible by p, d,=pd’,. This yields the formula F, (™M=
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=Fy_, (™) +p" 7 E, (p™ 1), from which we readily establish, via mathe-
matical induction, that

my (pm+1_1)(pm+2_1) (pm+n—1_1)
S e Y O Pt

502. Choose the smallest (in absolute value) nonzero element of the mat-
rix and carry it into the upper left corner by interchanging rows and columns.
Then add the first row and the first column to all other rows and columns or
subtract them as many times as is needed for all elements of the first row and
the first column to be less than the corner element in absolute value. Then
repeat the process. It will terminate after a finite number of steps because
after each step the element which arrives in the upper left-hand corner is less
in absolute value than the preceding one was. However, the process can only
terminate in the fact that allelements of the first row and the first column (ex-
cept the corner one) will become 0. In the same fashion, transform the matrix
formed by the 2nd... nth rows and columns. The matrix will finally be reduced
to diagonal form. By virtue of the result of Problem 489, all the above-descri-
bed transformations are equivalent to postmultiplication and premultiplication
of unimodular matrices.

503. Premultiplication of the matrix 4™ is equivalent to adding the se-
cond row multiplied by m to the first. Premultiplication of B” is equivalent
to adding the first row multiplied by m to the second row.

a b
Let U =( a’) be a given integral matrix with determinant 1, Divide a
[4

by c:a=me+a;, 0<a;<|c!, then divide ¢ by a,: c=mya;+¢;, 0<cy<ay,

a, b
etc., until the division is exact. Then 4~"U= Ul=( ! a’l >, B~my,=
[4
a, b
= U,=( oo ) , etc. We finally arrive at the matrix Uy, of the form
Ca 2

b 0 »
(ak k ) or ( k1 ) Then, by virtue of the positivity of all ay,
0 diys cr dr

¢, and the unimodularity of Uy i, we have ay=d ;=1 in the first case, and

1 5 b
0 1k>=A k in the first case,

d
>=A‘1BA k=1 in the second. The proof of the the-

¢;=—>b41=1 in the second. Thus, Uk+1=(

0 -1
and Uk+1=(l di

orem is complete.

504. A matrix with determinant —1 is transformed into a matrix with
determinant 1 by multiplication by C. Each such matrix is a product of the
powers of A and B. But B=CAC.

505. Let | A |=1, A*=E, A+#E. Then (Problem 498)
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for some nonsingular matrix P. Define matrix P so that it is integral with the

2
smallest possible determinant. Since A+E=P< 0 > P71, the matrix 4 +
0

+ Eis of rank 1 and, hence,
A M A
A+E=} a1 Aapa 2efls
\ Aty Aglte Agitg
Here, Mty + Moo+ Aspg=2 (Problem 495). Since the matrix 4+ E is integral,
the numbers Xy, Ay, Ay and the numbers y,, @,, 43 may be taken to be integers.

Forming a system of equations for the components of the matrix P, it is
easy to verify that for P we can take the matrix

M 0 -3

A e
p=| ™ 5 "M

A =2 g

3 5 B

where 8 is the greatest common divisor of y.,, g and u, v are integers such
that up,+ops=3.

The determinant of the matrix P is equal to 2.

On the basis of the result of Problem 500, P= QR, where Q is unimodular
and R is one of the seven possible triangular matrices of determinant 2.

Consequently, Q7140 is equal to one of the sevén matrices

1
R< -1 >R“1.
-1

Of these matrices, there are only three distinct ones, and two of them
pass into one another by a transformation via the unimodular matrix. That
leaves the two indicated in the hypothesis of the problem.

9 3 10 246
506. (a) (10 3), (b)( 8), @{1 2 3), @13
507. 45. 36 9

508. As a result we get Euler’s identity:
(@2+b2+ch) (a3 +b%+c3)=(aa,+bby+ccy)?
+ (a1 by — a2 b1+ (a1 ca— a3 €1)2 +(by 3 — by 1)

509. The minor made up of the elements of rows with indices &, iz, ..., i,
and of columns with indices kl, kg ..oy k,,, is the determinant of the product
of the matrix made up of rows iy, i, ..., i,, of the first factor by a matrix com-
posed of the columns k4, ks, ..., k,, of the Second factor. It is therefore equal
to the sum of all possible mmors of mth order made up of the rows of
the first matrix with indices 1, i, ..., {,, multiplied by minors made up of
the columns of the second matrix with indices kl, kay ooy ko

510. The dlagonal minor of the matrix 44 is equal to the sum of the
squares of all minors of the matrix 4 of the same order made up of the elements
of the columns having the same indices as the columns of the matrix 44,
which columns contain the given minor. It is therefore nonnegative.

511. If all principal minors of order k of the matrix 44 are 0, then, by
virtue of the result of Problem 510, all minors of order k& of the matrix 4 are
equal to 0. Hence, the rank of the matrix 4, and also the rank of the mat-
rix A4, is less than k.
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512. The sum of all diagonal minors of order k of the matrix 44 is equal to
the sum of the squares of all minors of order k of the matrix 4. Also equal to
this number is the sum of all diagonal minors of order &k of the matrix AA.

513. It is obtained by applying the theorem on the determinant of a pro-

a, ay ... a
duct of two matrices to the product of the matrix <b1 bz b"> into
1 2 e n

its transpose.
514. It is obtained by applying the theorem on the determinant of a
product to

a; b}
<n, a ... a,,)l a b
by by ... by
a, b
515. It follows directly from the identity of Problem 513. The equal

aiy ... @
sign is only possible if the rank of the matrix < blbz b" ) is less than
102 ... Op

two, that is, if the numbers a,, as, ..., a, and by, by, ..., b, are proportional.

516. It follows directly from the identity of Problem 514. The equal sign
is only possible if the numbers ay, as, ..., @, and by, b,, ..., b, are proportional.

517. Let matrix B have m columns, and matrix C, k columns. By the Lap-
lace theorem, | 4 |=2 B;C;, where B, are all possible determinants of order m
constructed from the matrix B, and C, are their cofactors, which are equal (to
within sign) to the determinants of order £ constructed from the matrix C.
By virtue of the Bunyakovsky inequality (Problem 515), | 4 [’SEBI? = C%.

But, T B?=|BB|, = C/=|CC|.
518. Let

byy ... bim C11 -+ Cik
B=( . ..... , c={ .o i A=(B, O).
buy ... bpm Cn1 +.. Cnk
The inequality being proved is trivial if m+k>n; for the case m+k=n, it
is established in Problem 5]7. There remains the case m+ k< n. First assume

n
that Z b;j ¢;s=0 for arbitrary j, s. Then

i=]

_ BB 0 ) _ ~
AA= ] and, consequently, | 44 |=|BB|-|CC]|.
0 cC
In the general case, it suffices to solve the problem on the assumption
that the rank of the matrix A is equal to m+k, for otherwise the inequality is
trivial.

Complete the construction of the matrix 4 to the square matrix (4, D) so
that the rank of the matrix D is equal to r—m—k, and the sums of the pro-

ducts of the elements of any column of D by elements of any column of A
are 0. For example, this can be done as follows. Firstcomplete construction
of A4 to the nonsingular square matrix & =(d4, D’), which is evidently pos-
sible, and then replace all elements of the matrix D’ by their cofactors in
le’ |. The rank of the thus constructed matrix D will be equal to the number



216 PART II1. ANSWERS AND SOLUTIONS

of its columns n—m—k, for it is a part of the matrix made up of the cofac-
tors of the matrix ', which differs from the nonsingular matrix (¢°)'! in the
sole factor | ¢’ |.

Denote (4, D) by P, (C, D) by Q. Then, by virtue of the result of Problem
517, |PP|<|BB|-|QQ| But |PP|=|AA|-|DD| and | QQ|=|CC|
+ | DD |. Whence it follows that since | DD |>0,

|d41<|BB).| CC|.

519. This follows directly from the result of Problem 518 as applied to
the matrix 4.

520. The determinant of 4* A is the sum of the squares of the moduli of
all minors of order m of the matrix 4, where m is the number of columns of A.

521. This solution is similar to the solution of Problems 517, 518. For a
square matrix, the question is resolved by applying the Laplace theorem and
the Bunyakovsky inequality. It is advisable to complete the rectangular mat-
rix to a square matrix so that the sum of the products of the elements of any
column of the matrix 4 by the conjugates of the elements of any column of
the complementary matrix is equal to 0.

522. Applying the result of Problem 521 several times to the matrix 4 and
taking, for B, a matrix consisting of one column, we get

n n n
| A% A=l AIR< D, 1anl? - 0, Lanl® ... D, | ainlt<nn Mon
i=1 i=1 i=1
whence it follows that

n

NA4ll<n® M.
523. Complete the given determinant A to a determinant A, of order n+1
by adjoining on the left a column all elements of which are equal to 1\74’ and a

row of zeros on top. Then A= A% A;. Subtract the first column from all co-

lumns of the determinant A;. We get a determinant, all elements of which do
not exceed %’I Using the result of Problem 522 yields what we set out to

prove.
n
524, The bound n? M”"is attained, for example, for the modulus of the
determinant

n—1 2 ., . 9m
1 e ce. € where e=cos =~ +1i sin 2= .
n n

1 ermt ., glr—D?

525. Construct a matrix of order n=2" as follows. First construct the

1 1
matrix(1 1). Then replace each element equal to 1 by the matrix
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1 1
1 1

-1 =1
=( ) ) ) We obtain a fourth-order matrix,

1 1
and each element equal to —1 by the matrix —~(1 1):

1 1 1 1
1 -1 1 -1
1 I -1 -1
I -1 -1 1

Operating on this matrix in the same way, we obtain an eighth-order matrix,
etc.

It is readily seen that for the matrices thus constructed the sums of the
products of the corresponding elements of two distinct columns are zero.
Consequently,

n 0...0
Ada=[ 0 n ... 0 )y d4)=m, 4|=n".
0 0...n

The following equation holds for the matrix MA4:

n
| MA [|=M"2 .

526. We prove that all the elements of a matrix, the absolute value of the
determinant of which has a maximal value, are equal to +1. Indeed, if —1<
<a; <1, A=0 and 4;;, >0, then the determinant will be increased by substi-
tuting ! for a;, but if A>0 and 4;, <0, the determinant will increase due to
—1 replacing ;. If A<0, then the absolute value of the determinant will
increase when a;; is replaced by unity with sign opposite that of A4;,. Finally,
if 4;;,=0, then the absolute value of the determinant will not change upon a;;
being replaced by 1 or —1. We can say, without loss of generality, that all
the elements of the first row and the first column of a maximal determinant
are equal to | ; this can be achieved by multiplying the rows and columns by —1.
Now subtract the first row of the maximal determinant from all other rows.
The determinant then reduces to one of order n—1, all elements of which} are
0_or —2. This latter determinant is equal to 27~* N, where N is some integer.

527. 4 for n=3, 48 for n=>5.

528. For a singular matrix A the result is trivial. Let 4 be a nonsingular
matrix and let 4 be its transpose, A its determinant and 4’ its adjoint.

+1
Then 4'=ACA1C, where C= -1 . ; this follows directly

/
from the rule for constructing an inverse matrix. Therefore, | 4’| =A""?
and (4 =A""1.C(A) " 1C=Ar"1. A" 1 4=Ar"2 4.
529. Let the minor of the matrix 4', which is the adjoint of the nonsingu-
lar matrix 4, be made up of rows with indices i, <iy<...<i, and columns
with indices &y <ks<...<k,. Letiny1<imys<...<i, be indices of the rows
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not in the minor, let ky 1 <kmys<...<k, be indices of columns not in the
minor. Multiply the minor at hand by the determinant A of the matrix A4:
Big, - Ak

nt

A- N
Aimkl * A[m km
) . Ai ke, . Ak
_(_1)“+""'"l11+k"""'""km Al oo "l
Ail km ‘ Aimkm
Aiy k, Alm Ky Ai,n+1k1 Atan l
Ai k,, Aip by Aigyy ko Ai, kp, ]
I
ai, k, ai, kyy Aivky
aim Ay alm [ a’m kp
X| oo e e e e e e e .
ai, ky ik, iy kyy
A
A
aim-{-lkl e aim+1kr71+1 e aim+1 ky
G, k, inkmy1 iy ke i
aim+1 km+1 e aim+1 kp
=AM} oo e ..
i, Kmia iy k,

whence follows what we sought to prove.
530, 531. This follows directly from the theorem on the determinant of a

product of two rectangular matrices.

532. 1t is necessary to establish alphabetical ordering of the combina-
tions, i.e., consider the combination i, <i;<...<i, as preceding the combi-
nation j;<js<...<j,, if the first nonzero difference in the sequence i,—j;,
i—Jjs ..., is negative. Then each minor of the triangular matrix, the in-
dices of the columns of which form a combination preceding the combi-
nation of the indices of the rows, is equal to 0.

533. By virtue of the results of Problems 531, 491 it suffices to prove
the theorem for triangular matrices. By virtue of the result of Problem
532, we have for the triangular matrix A,

A | = P T ..=|AC,,m__11-
l m]— Aty Apdy - Fiyy iy ‘

i1<ig<s,..<i
1 2 m
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534. Properties (a) and (b) follow directly from the definition. To estab-
lish Property (c), it is convenient to denote the elements of the Kronecker
product, using for suffixes not the indices of the pairs but the pairs them-
selves. Let

C=(4'+ A% (B'+ B"), A’xB'=G, A"xB"=H.

Then
Ciy ki, iy Ko
n n
—_ ! LA 4 = 4 ’ 4 L . . ay e
—Z %, 9%, Z bi, x Ok, Z %, bk, 1 %, bi, Z 8ivky, ik hik,is by
=1

ik ik
whence C=G - H, which completes the proof.

535. The determinant of the matrix 4 x B does not depend on the way
the pairs are numbered, because a change in the numbering results in iden-~
tical interchanges of rows and columns. Furthermore,

AXB=(AXE,) : (E,xB).
Given an appropriate numbering of the pairs, the matrix AxE,, |is of

i=]

A
the form ’ , the matrix A being repeated m times. Conse-

A

quently, the determinant of 4x E,, is equal to | 4 [". In the same way (but
with the pairs numbered differently), we see that the determinant of E, x B is
equal to | B|" Hence, | AXB|=[A|"-|B|"

536. An element of a row with index « and-of a column with index J of
the matrix C;, is

mn

Ci-1)mia, (k—1)miB= Z A1) mia,s bs, (k—1) m+B

s=1
n m

=Z Z Qi ~) myo, G=1) mav D(j~1) myw, e=1) mype
j=1 v=1

But the inner sum in the last expression is an element of the matrix A;; Bjx
taken from a row with index « and a column with index (3. Thus,

n
C= Z Aij Bjk-
i=1

537. For n=1 the theorem is trivial. Assume that the theorem is proved
for matrices of “order”” n—1 and prove it for matrices of “order” n.
First consider the case when A,, is a nonsingular matrix:

Ay Ay ... Ap
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Multiply matrix C on the right by matrix D, where
E—Aj 4y .. —Apt A

Then C’=CD will be of the form

where A =Ap—AuA"% Ay

All submatrices of C, D and C’ commute with one another. It is easy to
see that when this condition is fulfilled the theorem on the determinant of a
product of two matrices is also true for formal determinants.

The matrix D has a formal determinant E, the actual determinant of D is
equal to 1.

Hence, | C =] C' |=| Ay -

’
w2 -+ Amn

and for the formal determinant of B we will have B=4,, - B’, where B’ is the
formal determinant of the matrix

and, consequently, | B|=| Ay | | B’ |=| C|, which completes the proof.
In order to get rid of the restriction | 4;, |#0, the following can be done.
Introduce the matrix

Au+rEy Ay ... Ay
cy=| 4 A ... A,

Anm Ans ... Ann

and denote its formal determinant by B ().

Since | Ap+AE, |=N"+...#£0, |C@)|. = | B(})|. Both these de-
terminants are polynomials in A, Comparing their constant terms, we
obtain | C|=]| B|. This completes the proof.
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CHAPTER 5

POLYNOMIALS AND RATIONAL FUNCTIONS
OF ONE VARIABLE

538. (@) 2x*—7x®+6x1—3x*~x3—2x+1,

(b) x*—x*—4x*+3x+1.
539. (a) The gquotient is 2x2+3x+11, the remainder, 25x—5.
—26x—2

(b) The quotient is 3x=7 5

9 7 , the remainder,

540, p=—g*—1, m=gq.
541. (1) g=p—1, m=0; (2) g=1, m=+12—p.
(x=2) ... (x=n)_
*2.3...n
543. (a) (x—1) (x*—x2+3x—3)+5,
() (x+3) (2x*—6x+13x*—39x+109)—327,
© (x+1+) [4x2—@+4i)x+(—14+7)]+8-6i,
(d (x—142i) [x*—2ix—5-2i]1—9+8i.
544. (a) 136, (b) —1—44i.
545. () (x+1)*—2(x+1)°—3(x+1)*+4(x+ 1D +1,
B (x— 1P +5(x—1)*+100c— 1)+ 10(x— 1)2+5(x— 1) +1,
(c) (x—2)*—18(x—2)+38,
(@ (c+2-2ix+°— (1 +8) (x+)2—5(x+i)+7+5i,
) (x+1—-20)*—(x+1—-2i°+20x+1-20)+1.

542, (—1) (’“1}

1 6 11 7

546. @) oot sy T —2p T ooy
. 1 4 4 2

® AT G T ey T G

547. (@) x*+ 11x3+45x2+81x+55,
(b) x*—4x*+6x2+2x+8.

548. (2) f(Q=18, [’ (=48, f"(D=124, f"@D=216, fV(©2)=240,
N @=120;

. ®) FU+2)=—12-2i, f* (1 +2)=—16+8i, f* (1 +2))=—8+
+30i, £ (1+2)=24+30i, f'Y (1 +2i)=24.

549, (a) 3, (b) 4.

550. a=—>5.

551, 4=3, B=—4.

552, A=n, B=—(n+1).
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555, For f(x) to be divisible by (x— 1)¥*1, it is necessary and sufficient
hat f()=ap+a+...+a,=0 and ' (x) be divisible by (x— 1)¥; for this it is
in turn necessary and sufﬁ01ent glven the condition f (1)=0, that fl(x) nf (x)—
—xf’ (x) be divisible by (x— 1)*. Regarding f; (x) forrnal]y as a poly-
nomial of degree n, we repeat the same reasoning & times.

556. a is a root of multiplicity k-3, where k is the multiplicity of a as a

root of f” (x).

557. 31256%+108a°=0, a#0.

5§58. b=9a?, 1728a5+cz—0

559. The derivative x" ™! [px"-+(n—m)a] does not have multiple
roots other than 0.

560. Setting the greatest common divisor of m and » equal to d, m=dm,,
n=dn,, we get the condition in the form

(= 1) (m—my ) =" pm g™ =™ ni.
562. A nonzero root of multiplicity k— 1 of the polynomial
ay xPta, x| dag P
satisfies the equations
ay xPtag xPrt .. agx k=0,
PrayxPirpyay XPr+ L proag xpk=0,
PiayxPryphay xPet .. +ph ax xpk=0’
pi2ay xPrpk=2a, xPr 4 +pk 2akx Ple=()

whence it follows that the numbers a; X, a, x72, ..., a; x7% are proportional
to the cofactors of the elements of the last row of the Vandermonde determinant

It is easy to verify that
A
A= l—I (pi—ps)=4¢"(m)-
s#Ei
From this it follows that the numbers g; x"t are inversely proportional to

9 (2, ie.
’ ‘. p;. ,
ay xP @’ (p)=a X @' (p)=...=arx * ¢ (pi)

All the foregoing reasoning is invertible.
563. If f(x) is divisible by f” (x), then the quotient is a polynomial of degree

one with leading coefficient L where 7 is the degree of f(x). Therefore,

nf ()=(x—x,) f' (x). Differentiating, we get (n—1)f" (x)=x—x0)f" (x),
and so on, whence

F@=E75 00 ()=, (e r

The converse is obvious.
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n

564. A multiple root of the polynomial f(x)=]+Tx+ oot z—! must

also be a root of its derivative
, x xn—1 xn
Hence, if f(x)=f" (x,)=0, then x,=0, but 0 is not a root of f(x).
565. If f(x)=(x—x0) cfl (x), where f; (x) is a fractional rational function
which does not vanish for x=x,, then direct differentiation yields

Fx)=rF (xg)=...=fED(x)=0, &) (x,)#0.
Conversely, if f(x)=f' (X)=...=f&= (x)=0 and f*) (xg) 0, then f(x)=

= (x—x0) kf, (%), f1 (x;) #0 because if it were true that f(x)=(x~—x)" q (),
q (x,) #0 for m+#k, then the sequence of successive derivatives vanishing for
x=x, would be shorter or longer.

566. The function

e =8 —r0—r )= L) roxg— - L2 oy
satisfies the condition
g(x)=g (xo)=...=8" {x,)=0.

Consequently, § (x)=(x—x,)"** F(x), where F(x) is a polynomial. This
completes the proof.

567. If f1 (x) f3 (xo)— 12 (x) f1 (xo) is not identically zero, then we can take

x
it that f; (x,) #0. Consider the fractional rational function ?g‘; - ;2 EXO;--
1 1 0
It is not identically zero and has x, as a root. The multiplicity of this root is
higher by unity than the multiplicity of x, as a root of the derivative equal to
A@) 2 (0)—f () fi(x)
AR
tion being proved.

568. Let x, be a root of multiplicity & for [ f* (x)]2—f (x) f” (x). Then f (xo) #
#0 because otherwise x, would be a common root of f (x) and f’ (x). From the
preceding problem, x, will be a root of multiplicity £+ 1 of the polynomial
F@) [ (xd—1f (%) f7 (x), the degree of which does not exceed ». Hence, k+1<
<n, k<n—1.

569. The polynomial f(x) f' (x0)—f(xo) f’ (x) must have x, as a root of
multiplicity #, that is, it must be equal to 4 (x—x,)”, where A4 is a constant.
An expansion in powers of x— x,, after the substitution x—x,=z, yields

(aotarz+a, 22+ ... +apz)ay— (@1 +2a, 24+ 3a, 22+ .. . +nay 2" 1) ag=Az"

whence immediately follows the truth of the asser-

and
ag=f (x0) #0.
2 3 n
a ay a;
Whence gy=—— , as5=—o+, ..., Qn= .
2 2a0 s 3 ag 3] H ’ n ag_l fl'

... a
Substituting -a—l =a, we get
(1]

) (x —xo) 2 (x—x,)* " (x—x,)"
f(x)=a0[1+ a xl 4+ S +...47 = ]
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570. For example, 8= is not suitable) .

1 /1
21 \20
1 1 . .

571. For example, 8=2—5 (2—4 is not su1table).
572, For example, M=6.

573. For exa.mple,3

3
/4 /4
(a) x=¢i, 0<9<1/ i; (b) x=p, 0<p<l/%-

574. For example, (a) x=1—p, 0<p<%;

4
(o) x=14p (cos QIE%)N—ﬂ'sin (216—;1)71) p<1/8;

1
c) x=1 + i, < — ="
(©) pi, P V3
575. Expansion of the polynomial £(z) in powers of z—i=h yields

442, 143 ¢
5—h+ 5 /1,].

f2)=(2—) [1+(1—i) ho—

Setting k=a (1 —i), we get

F@)=@—i) [1—4a3+4a3( R, At aa)]

whence .
1f(2) <V (Jl—4a3|+4a3 % 1/ %><1/”5

for 0<a<%-

576. Representing the polynomial in the form
f(@)=F(20) {14 (cos p+isin ¢) (z—2zo)* [1 +(z2—2) § ()]}

set z— zy=p (cos ®+isin ©), take O@= gmz—tp

1(z—2) $ (2) 1<1. Then
£ @) 1=1(20) 1] 14re* +re* (z2—20) § (2) | > £ (2).

577. The proof is like that for a polynomial, with use made of Taylor’s
formula for a fractional rational function (Problem 566) which should be ter-
minated after the first term with nonzero coefficient, not counting f (xo).

578. Denote by M the greatest lower bound of | f£(z) | as z varies in the
region under consideration.

By dividing the region into parts, we prove the existence of a point z, in
any neighbourhood of which the greatest lower bound of | f(2) | is equal to M.
If necessary, cancel from the fraction the highest possible power of z—z,.
After the cancellation, let f (Z)=% . Then ¢ (z,)#0, for otherwise, in a
sufficiently small neighbourhood of z, | f(z) | would be arbitrarily great and
the lower bound of | f£(2) | could not be equal to M in a sufficiently small
neighbourhood of z,. Consequently, f(2) is continuous for z= z, also by virtue
of the continuity of | f(z,) |= M, which completes the proof.

and take p so small that
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579. The lemma on the increase of the modulus is lacking.
580. Under the hypothesis,

@) #0, f(@)=...=fF"(a)=0, f*) (a)£0
and by Taylor’s fonnula,

(a)

F@=f@+L5L o 1+, 9 @=0.
Set
k
f:a) ' f(lifa) =r(cos p+i sing), z—a=p (cos O+isin ©).

Take p so small that | (2) |<1, rp¥ < 1. Then
£ @) 1=1f(@)! ] 1+re¥ [cos (p+k®)+isin (p+k®)]+rp* A I, where |A|<l,

For ®=%Ti):?,m=l, % ...kl f@I<|f@!
For O= 2””;“" ,m=1,2, ..., k,1f(2)|>1f(a)).

Thus, as ® varies from n;qJ to W_CP +2m, the function |f(z)|—|f@)]

changes sign 2k times. Since | £(z) |— | f(a) |, as a function of ® is continuous,
| f(@ | —|f(a) | vanishes 2k times, thus completing the proof.

581. As in Problem 580, show that Re (£ (2))—Re (f(a)) andIm (£ (2))—
~Im ( f (a)) for z=p (cos ®+isin ®) changes sign 2k times as © varies through

1
2r, provided only that p is sufficiently small. Setting -7 fE (@)=r (cosp+
+Ising), we obtain, by Taylor’s formula, f(z)—f (a)=re* [cos (p +4®)+
+1i sin (@ +4®)] [1 +9 (2)], ¢ (@)=0. Choosing p so that | ¢ (2) |<1, we ob-
tain the following, setting ¢ (2) =9, (2)+ip, (2):
Re(f(2))—Re( f(@))=rp* [cos (p +£B) (1+9:1(2))—sin (p+4®) 9, (2],

Im(f (@) —Im (f(@)=re* [sin (9+k0) (1+91 (2))+cos (p+k0); (2.
Putting ¢ + k0@ =mn, m=0, 1, 2, ..., 2k, we get
Re (f(2)=Re (f(@)=re* (—1)" (1 +5m)

where ¢, is the corresponding value of ¢, (2), | €, I <1.
Whence it follows that Re ( f (z)) —Re ( f (a)) changes sign 2m times as z

traverses the circle | z—a |=p. A similar result is obtained for Im ( f (z))—
—~Im (f(a)) by putting <p+k®=g+m1r, m=0, 1, ..., 2k.

582. (a) (x—1) (x—2) (x—3);

®) x—1-) (x—1+) x+1-0) x+14+0);

8. 1215
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/— —_ —_
© (x+1—]/1 22+1 —i ]/1/22 1) (x+1—]/v—22ﬂ
. -1 V2+1 V2-1
e V) (e V20 L
o) x+1+ 5 — +Hi )
x<x+l+Vv22+l—i V22—1);

@ G=V3I-VD e=V3+VDx+V3-V D (x+TV3+V D).

583. (a) 27 l—l (x—-cos (2_k-2_—nllc),

k=1
. in (0+ (2k-D= m
® 2] (x+sm.( DL )) o [ (-t £207),
k=1 Sin % k=1

584. () (x2+2x+2) (x*—2x+2);
) (®+3) (x*+3x+3) x*—3x+3);

© (x’+2x+1+]/ 52 (x+1) ]/ v 2+1)

(x’+2x+l+]/2+2(x+l) ]/VQH),
) ﬁ (x’—2i7_2xco (Sk“)” +12 )
k=0

(€ (*—xVa+2+1) (x®+x Va+2+1);
n—1

(f) l_l (x’—2xcos (3k21)2ﬁ+1)
k=0

585. (@) (x—1D(x—2)(x=N(x—1—=i)=x"—B+Dx*+ (24 +7)x®
—(B4+17)x2+(23+ 17D)x— (6 +61);

) (x+1)? (x—3) (x—4)=x"—4x*—6x2+16x*+29x+ 12;

© (=2 (x+1+D)=x+1—-ix2+ (1 —2)x~1—1.

n
Al A
k=1

587. (a) (x—1)2(x—2)(x —3)(x*—2x +2)=x"—Ox*+33x* —65x°
+74x3—46x+12;

(b) (x®—4x+13)°=x°—12x54-87x4—376x*+1131x2—2028x+2197;

© (®+1)* (x®+2x+2)=x5+2x°+4x*+4x> + 5x?+ 2x + 2.
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588. (2) (x—1)? (x+2); (B) (x+1)% (¥+1); () (x—1)2.

589. x?—1, where d is the greatest common divisor of m and 7.

590. x?+ a9 if the numbers % and % areodd; | ifat least one of them is
even; d denotes the greatest common divisor of m and n.

591X¢S (=17 (x+1), (b) (x~1) (x+1),

-1 is the greatest common divisor of m and n).

592. Denote 7\o= o xo) and factor f(x) into linear factors: f(x)=
=(x—Ag) (x~2A)...(x—2,_)). Then };#}, for j#0. Furthermore,
ux)\_ 1 _ — .
()= (s0=nv @) o (2@ =av )

v (x)

By virtue of the hypothesis and also of the fact that u (x))—N v (xp)=12 (x,)
Qo—N) ;éO the polynomlal u (x)—2, v (x) has x, as root of mult1p11c1ty k>1.
Hence, v’ (x) % v’ (x) has x, as a root of multiplicity k— 1. Furthermore,

f(;l:gD:—'lﬁl? (u’(x)—k0 v’ (x)) (u' (X)=Ag_1 0 (x))-

[ (x

All & (x)—7j v (%), j#0, do not, obviously, vanish for x=x, Consequently,

u (x .. o
f ( o E %) ) has x, as a root of multiplicity k— 1, which is what we set out to
prove.

593. If wis a root of the polynomial x2+x 41, then w®=1. Hence, w3+
+ w14t i=] L4 wi=0.

594. The root X\ of the polynomial x2—x 41 satisfies the equation A*=—1,
Hence,

A AL L QAIPF B (1) — (— 1) A (= 1)P 22
=(= 1" = (= DP+A[(=1)P (=171

This expression can equal zero provided only that (—1)"=(—1)?=(-1)",
that is, if m, n, p are simultaneously even or simultaneously odd.

I 595, x*4-x%+1=(x3+x+1) (x2—x+1). These factors are relatively prime,
x24+x+1 is always a divisor of x¥"+4-x3n*+14x%2+2 (Problem 593). It remains
to find out when divisibility by x2—x+1 occurs. Substitution of the root A of
this polynomial yields

(=17 (=D A+ (=P B=(=1)" = (= DP+A[(= )"+ (= 1)7].

This will yield 0 provided only that (—1)"=(—1)?=—(—1)", that is, if the
numbers m, 14 and n+1 are simultaneously even or odd.

596. If m is not divisible by 3.

597, All roots of the polynomial x*~1+x%~24 ... +1 are kth roots of 1.
Hence, Ekaiq E"”z+1+ +Eka"+k - 14+E+.. . FEF- '=0, whence fol-
lows the divisibility, since all roots of x*~ 14 .. +l are prime.

598. Substitution of the root w of the polynomlal x*+x+1 into f(x)=
=(14+x)"—=x"=—] yields (1+w)?—w"”—1. But 1+w=—wu2=2%, which is a
primitive sixth root of unity. Furthermore, w=22, whence f(w)=A"—N"—1,

8!
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For

m=6n  f(w)=—1+#£0,
m=6n+1 f(w)=A—-22—-1=0,
m=6n+2 f(W)=N+r—10,
m=6n+3 f(w)=-—-3+#0,
m=6n+4 f(w)=—A+2-1+0,
m=6n+5 f(w)=—2+2r—-1=0.

Divisibility of f (x) by x*+x+1 occurs when m=6nr+1 and m=6n+5.

599, For m=6n+2 and m=6n+4.

600. f(W)=m(l +w)" " 1—mw™ " 1=m[N"~1-22"~1)], £’ (w)=0 only for
m=6n+1.

601. For m=6n+4.

602. No, because the first and second derivatives do not vanish at the same
time.

603. For x=k, I<k<n,

f(k)=1—%+ k(lk_‘zl) (e Rl (lk_;—l?."'}c L _(-1ye=0.

Consequently, the polynomial is divisible by (x—1) (x—2)...(x—#n). A com-
parison of the leading coefficients yields

flp=C

n!

604. For m relatively prime to n.

605. If f(x™) is divisible by x—1, then £(1)=0, and, hence, f(x) is divi-

sible by x— 1, whence it follows that f (x") is divisible by x"—1.
t* 606. If F(x)=f(x") is divisible by (x—a)*, then F’ (x)=f" (x")nx"~1is
divisible by (x—a)*~ 1, whence it follows that £’ (x") is divisible by (x—a)* 1.
In the same way, f* (x*) is divisible by (x—a)* 2, ..., fF(&~1)(x") is divisible by
x—a. From the foregoing we conclude that f(a?)=f' (@)=...=f¢~D (g)=0
and, hence, f(x) is divisible by (x—a")*, f(x") is divisible by (x"—a™)*.

607. If F(x)=f; (x®)+xf, (x?) is divisible by x2+x+1, then F(w)=f; (1) +
+wfh(1)=0 (w is aroot of x2+x+1) and F(w?)=f; (1)+ w?f, (1)=0, whence
f (D=0, f2 (1)=0.

608. The polynomial f(x) has no real roots of odd multiplicity, for other-
wise it would change sign. Hence, f(x)=[f1 (X)I? f: (x), where f; (x) is a poly-
nomial without real roots. Separate the complex roots of the polynomial f;
into two groups, putting conjugate roots in different groups. The products
of the linear factors corresponding to the roots of each group form polyno-
mials with conjugate coefficients ¢, (x)+i, (x) and , (x)—iP, (x). Hence,

fa(x)=4% (x)+ 43 (x) and £ (x)=(fi $2)*+ (1 bo)*

1 1

1
609. (a) —x;,— X5, ..., —Xxn (b) }:, x—z, s s
n

(x—1)(x—=2) ... (x—n).

©) x1—a, x;—a, ..., x,—~a, ) bx,, bxs, ..., bx,.

610. One of the roots must be equal to —%. The desired frelation is

8r=4pq-—-p®.
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F612. a*—4ab+8c=0.

3 13. The relationship among the roots is preserved for arbitrary . Taking
== Z’ we get y+a'y*+b'y +c’y+d’ =0, a=0, &

= =0, a*—4a’b’+8c¢'=0, for
the transformed equation, whence ¢’=0.
614. a*d=c

615. Division by x® yields x*+ % +a (x+ —) +b=0

Making the substitution x+L—z, we get x*+ — =x”+#=zﬁ—
—2 —, whence, for z, we get the quadratic equation z8+az+bh—2 —

¢
““a
Having found z, it is easy to find x (generalized reciprocal equations)

0.
616. (a) x=1+173, 1+i V2, (b) x=:+2, —2+i;
—1+V3 —1+iVI1i L —3+YT7
@ = IEVE SLEVIL g gy, 23V
617. A= +6.
618, (1) =¢=0, (any a), (2) a=—1, b=—1, c=1.
619. (1) a=b=c =0; (2) a=1, b=-2, ¢=0; 3) a=1, b=—1, c=—1;
— 23
4) b=A, a=— 71\, c= 2 7\)\ , where A3—2A4-2=0,
620, A=—3.

621. ¢*+pg+g=0. 622. a%—2a,.
Qfmepp—
623. xy= =21y A==l

_——+ 5 hoi=1, 2, .

.., h where

h=l 12(n—-1ad
n

—24na_z .
n—1

(@) —7%» 3 g they indeed satisfy the equation
5 3 1

(®) =5, —5, —3 3 they do not satisfy the equation.

625. Let y=Ax+ B be the equation of the desired straight line. Then the

roots of the equation x*+ax®+bx?+cx+d=Ax+ B form an arithmetic pro-
gression. We find them in accordance with Problem 623

624. If the roots formed an arithmetic progression, then, by the formula
of Problem 623, they would be

2 5

Xij=— Z+ hoi=1, 2, 3,4
where

_1 ]///9a2—24b_l 3a°—8b
T2 5 -
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Whence
A—c=x1x; (X3+X35)F Xpx3 (X1 +X4)

=_( a® 2 hz) E_( a? L hz) a_ a®—4ab
2

16 4 2 \'16 4 g
1
d—B=1x;X; X, *1= 1550 (360 —11a®) (40 +a?).
Consequently
a®—4ab+8¢ 1
A= 2T= Bed— s (360—11a) (4b+aY).

The intersection points will be real and noncoincident if 342—8b>0,
that is, if the second derivative of 2(6x2+3ax-+5) changes sign as x varies
along the real axis.
ot 1 .

626. x*—ax®+1=0 where a= o

(0P—a+1)?
BCET

628, f' (x)=(xi—xD ... i—=X;— D) (X;—%;40 ... (x;—x); [ (x)=2 [(x;
—=X3) oo (=X D (G—X540D -o- (= x)F (X —xD (x;—%3) ... (G—x- D (%
=X 4D oo GG=XD)F o OG—=x) (= X2) . Ki—xm) (x40 ... (g

627. (x*—x+1)—a (x?—x)*=0, a=

—xn-l)]=2f'(xi) Z 7,}—-—& (if x5 x;).

s=1
(s#1)

629. It follows directly from Problem 628.
630. Let x;=x,+(i—1)h Then )
fr)=(=D""t =D m=Dl A"~

631. (a) x+1, (B)x?+1, (©x*+1, (d)x2—2x+2, () x*—x+1, () x+3,
@ +x+1, @) =21/ 2-1, O x+2, 1, & 22+x—1, O)x®+x+1.

632, (a) (—x—1) i)+ (x+2) fo(x)=x2-2,

®) —fiD)++D fax)=x"+1,

©) G—x) fi ()+(*—4x+4) f2(x)=x+5,

@ (—x?) fi)+G3+2x2—x—1) f (XD)=x%+2,

) (—x*+x+1) L)+ (F*+2x2—5x—4) f (x)=3x+2,

(f)— "gl £+ 2"2‘32"“3 f(M=x—1.

633. (a) M, (x)=x, M, (x)=—-3x*—x+1;
(b) My(x)=—x —1, M, (x)=x3+x*—=3x-2;
€ My ()=—2F2 M, (=220
@ My == ZEE g BRSO,
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€ M,(x)=3x"+x—1, M, (x)=—3x3+2x"+x—2;
6) M;(x)=—x3—3x"—4x-2,
M, (x)=x*+6x°+ 14x*+ 15x+7.
—16x”—!5337x+26’ My (9= 1627 =534~ 37x~23
3
b) M,(x)=4-3x, M,(x)=1+2x+3x%;
(©) M, (x)=35—84x+70x2—20x2,
M, (x)=1+4x+ 10x?+20x3.
635. (a) M, ()=9x*—26x—21,
M (xX)= —9x®+44x?—39x—7;
(b))  M;(0)=3x*+3x*—T7x+2,
M, (x)=—3x*—6x%+x+2.
636. (a) 4x*—27x*+66x2—65x+24;
(b) —5x7 4 13x8+27x%— 130x*+ 75x® + 266x2 — 440x + 197,
n{n+1)
1-2

634. (a) M, (x)=

x?

637. N(x)=1 +% x+

n(n+l) ... (n+m=2) ..
2. (m-n % 7

+..0+

M(x)=1+% (1—x)+”’(1’”%;1) (1—x)?

m(m+1) ... (m+n—2)

+..+ -2 ... (n=1) (1—-x)n—2
_m+)(m+2) ... mtn=1) m (m+2) ... (m+n=1)
h (n=1)! T (n=2)1
m(m+1) (m+3 ... m+n-1)
) (n=3)! ( * ) N
n—r mim+l) ... (m+n— n—1
. -+ (=1 =D xn1,

639. () (x+1)* (x—2)%, (b) (x+D* (x—4),

©) (x—1)? (x+3)* (x—3), (d) (x—2) (x*—2x+2)2,
(@) P—x*—x=2)p, () *+1)* (x—1),

(8) (x*+x*+2x2+x+1)2

640. (2) f(x)=x+1+§II x(x—1) (x—2) (x—3);
(®) f()=—x*+4x*—x*—Tx+5;
(© f(x)=l+% (x—l)-——l-(l)-g (x—1) (4x—9)

+% (x—1) (4x—9) (x—4),
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389 —
f(@=1 gz =1.4116 . . (V2=1.4142 . ..);

@) f()=x*—O0x*+21x—8.

641. () y=—% (x—2) (x—3) (x—4)
é (r—1) (6—3) (x—4) =2 (x— 1) (x—2) (x—4)
1 (x=1) (x=2) (x—3)= — %—x3+10x”—%5 x+15;

(b) y=% [o—(l—i)x——x’—(1+i)x3]

642. f(x)= n+l Z (l—zcot ——-) xk,

Solution. f(x)= Z w

5s=0

n—1 -1 n—-1
_1 (s+1)(1—=x" 1
= 71_,55 T Z 2 GHD et
s=0 k=0

—eg) neg

- n—l
1 1
= xk Z (s+1) el—’“=; Z (s+1)

k=0 s=0 s=0
n—1

— n—1

n—1
1 " _ n+1 x*
o x (s+1)e;s= —Z —erl
k=1 s=0 k=1
1= i
n+ e
= 9 —5 (l—zcot 7) xk

1

~
I

n n
_ ye{xn=1) 1 e (1—x"
643. f(x)— Z (x—E]() l’lE’}(_l - ]—xel:l .

k=1
f(0)= Z Ve

644, Set o (x)=(x—x1) (x—xp)...(x—x,).
Let f(x) be an arbitrary polynomial of degree not higher than n—1, let
Y1, Yas .+ ¥, be its values for x=xy, X, ..., X, Then

n
NitVet oo tIn S Vi (%)
n 9 (1) (xo—x;)

fxo)=
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Since yy, ya, ..., Y, are arbitrary,

P (x0) =_1 .
@ (%) (o—x1)

We consider the polynomial

Fx)=np (x)— (0] (xo—x) ¢’ (x).

Its degree is less than » and it vanishes for x=x,, x,, ..., x,. Hence, F (x)=0.
Expand ¢ (x) in powers of (x—x,):

n

P M= cx (x—xp)k.

k=0
i
We have Z (n—k)cy (x—x,)*=0. Consequently, ¢, =c,= =6y 1=0.

k=1

n —_—

@ (x)=(x—x0)"+Co, Xi=Xo+ V_Co-

n
x3 .
645. x*= Z _’_?& A comparison of the coefficients of x"~*
= (x—x) 9" (x:)

=1
yields

xn~1 yields

xn=1
Z —,’—=1.
; 9 (%)
i=1
1 ox ... xn=1

n
1 -1
647. ai=x D yi A where A=| ] % o
k=1

1 xp ... xn—!

A, is the cofactor of the element of the kth row and (i+ 1)th column of the
determinant A.

n—1 n n—1 n
o=, sk 5 % dri= 3, on A
i=0 k=1 i=0 k=1

where A, is the determinant obtained from A by substituting 1, x, ..., x*?
for the elements of the kth row.
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Evaluating the determinants A, and A as Vandermonde determinants
yields

ﬂ_ (x=x1) ... (x—x(_4) (x—x_/L.+1) s (x—xp)

AT oe—xy) oo (= Xi—y) (k—Xieq1) - .- (Xk— %)
o el
(= xk) @ (xx)
where @ (x)=(x—x1) (x—x4)...(x—x,).
Whence f(x) = Z %, which is what we set out to prove.
(x—1) x(x-1) ... (x—n+1)
STt -~ nri.

649. f(x)=1+(“"11)x+ (a_l)i)_céx_l)

648. f(x)=1+ T+ =

+;_‘+(a—1)ﬂx(x—lrzl (x__"+—1)

=1_2_1x 2x(2x—2)+ + 2x(2x—2) ... 2x—4n+2)

650. f(x) —-—1—.'2—" e (2”)'
x—1 (x=1)(x-2)
651. f(x)=1- o + 3
. =1 (x=2) ... (x=n+1)
— . (=1 pr

_nl=(1=x)(2=x) ... (n—x) |
B nl x

652. f(x)=“% where @ (x)=(x—x;) (x—x3) ... (x—x,).

653. We seek f(x) in the form

(x—m)(x—m-1)
+4, )

X—m

1

f(x)=A4s+4,

(x—m)(x—m—=1) ... (x—m—n+1)
n!

+...+4n

where m, m+1, ..., m+n are integral values of x for which, by hypothesis,

f(x) assumes integral values.
Successively setting x=m, m+1, ..., m+n, we get equations for deter-
mining Ag, Ay, ...y Ay

Al!:f(m))
k k (k-1
A=f (m+ k)= A= Al—% Ay— .. —kdp_y,
k=1,2, ..., n

from which it follows that all coefficients 4, are integral. For integral values
of x, all terms of f(x) become binomial coefficients with integral factors 4,
and for this reason are integers. Hence, f(x) assumes integral values for in-
tegral values of x; this completes the proof.
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654. The polynomial F(x)=f(x%) of degree 2n takes on integral values
for 2n+1 values of x=—n, —(n—1), ..., —1,0, 1, ..., n and, by virtue of the
preceding problem, assumes integral values for all integral values of x.

L4 9
12(x—1) 3(x+2) 4(x+3)’

S S NS S
6(x—1) 2(x—2) 2(x—3) 6(x—4) °
2 ~24i —2—i
© Tt 36 T EGEH
1 1 i i .
DT " IG+D) AG=) TAxED)
1/ 1 €3 1 ii/§ )
(e) §'(—tjr+'“"‘+”;:}é), 8—-—54' g
1 ( i+i 1—i | —l+4i —,1—1),

655. (a)

(b) -

x—l—i+x—1+i+x+l—i x+14+1i

€ 2k, . 2km
(2) Z S, Sk=C0s ——tisin —=;

X—E€L
k=0
| (2k—1) (2k—1)
Nk _ k—1)m . —-1)n
h) — — oy M=C0s S okisin St
k(___l)n k ) n (— 1=k Cp21+k
<'>Z 0N
k=—n
n o (=lyk-isin 21
1 Z 2n
K oo ST
k=1 X O %
1 x42 .
656 @) 3T T3 EAxrD
I 1 1
®) =y T BwiY T 2G4

1 x+2 1 x—2
8 x24+2x4+2 8 x2—2x+2"°
1

1 1 2 .
(@) 18 (x2+3x+3 t e 343 343 )

" x cos 2k(m+) =~ —eo 2kmm
© - L2y ¢ 9n+1 2
2n+1 x—1 = — 9 cos KT 2kn +1

Pnt+1
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" xcos 2k m+1) +cos 2kmmc
) (—1)m 1 +2 2n+1 2n+1
2n+1 x+1 X349x cOos 2kt +1 ’
=1 on+1
1 ) ) n—| X cos E—-1
(&) - -——+2 :
on x=1 x+1 k=1 X*—2xcos I;—Tr-i-l
" cos (2k-—1)mrr__xc0S 2k—1) em+1) =
_1 Z n 2n )
n k=1 ~2xcos Lk=1)m +1 ’
2n
n
(=1 x
@ (nl Z k)] (=R (B +4Y)
657, (a) |
! 4(x=1)2  4(x+1)?
1 1 1 1
® IG5 " Te=D T Te= T Ter
3 4 1 1 2 1

© Go T e T r=l T e xil T E=2

n—1
@ ’% [Z (x—ek — (=1 Z —Ek]

k=0
2km . 2km
Exg=CO08 —+tsn T;
n n(n+1) n{n+l) ... (n+m=2)
1 1 1-2 1.2 ... (m=1)
© mtmrt—m et x(
m m(m+1)
1 1 1.2
T Y= T =y
m(m+1) ... (m+n—2)
oot = (n—1)
—-x
9 (n+1) ... (ntk—1)
—k nn <ee (N —
(f) (—40’)" ZO (2(2)n i
ko=

X[M__;W+F;W];
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n—1

© (4;)’, ZO (2a)n—* n(n+1) k' (n+k-1)
k=

x [(a—ii)"‘k+(a+iic)"""] :

- £ (%) g (00 £ () =g () S ()
® 2 Frar—a T T e )

1 x—1 x+l
658- @) —JGern) T AGD) T T0eA Dy
1 7 3 6x+2 3x+2
®) -+t GHDE T XFxFl Ptx+Ip’
1 3 1 3
© Ba—p  T6w=D " B+ T 6GT)
1 1
e ) T
1 1 2n—1  2n—1
@ g [ G T T x=l T x4l ]
n—1 gjp2 fe (1—2xcos E)
+l n n
2 2
" k=1 (x’—2xcos k—:+l)
. km ( 1) P
—sin*® ——{n——4J xC0Ss —
n 2 n

hZ

659. (a) T () D=l o W EP-e ()9 (),

—2x cos E+l
n

?(x)’ ? (x) ’ fp (x)?
(2 | (1) 17
660. (a) 9, (b) — T-FT 5 (c) 17.

661. 0.51x42.04.  662. y=7 [0.55x2+2.35x46.98].

663. Substituting % into f(x), we obtain, after multiplication by g%,

ap"tay ptTlgt . dan_1pg" " an q"=0,
whence

n

2P _(@p .. A an 1 D@ an g7,

an q"

r =—(ap" t+ap"Tig+ .. as_19"7Y)
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The right sides of these equations contain integers. The numbers p and ¢
are relatively prime. Hence, a, is divisible by g, and g, is divisible by p.
Now arrange f(x) in powers of x—m:

fX)=ay(x—m)t+ e (x—m)" "1+ ... +en_y (x—m)+cn.
The coefficients ¢, s, ..., ¢, are integers, since m is an integer, ¢,=f ().

Substituting x=%, we get

ay (p—mg)*+c, (1>—m61)”‘1 +.ooiteny (p~mg) g +cn g =0

whence we conclude that is an integer.

p mq

p—mq_p

Since the fraction —m is in lowest terms, the numbers

q
p—mgq and g are relatively prime. Hence, c¢,= f(m) is divisible by p—mgq,
which is what we set out to prove.
664. We give a detailed solution of (a).
Possible values for p: 1, -1, 2, —2,7, —7, 14, — 14, Only | for g (we take
the sign to be attached to the numerator).
i £(1)=—4. Hence, p— 1 must be a divisor of 4. We reject the possibilities
=1, —=2,7, =7, 14, —14. It remains to test —1 and 2
F(—=D#0, £(2)=0. The only rational root is x,=2.
®) 6==3; ©n=-2 0=3; @ n=-3 xn=y;
5 3 . 1 2 3.
(e) Er —Zv (f)l _23 (g)25_§, 4)
(h) no rational roots; (i) —1, —2, —3, +4;
o1 1
(i 9 i K) Xxi=xe= ~5 i ) x=x=1,

X3=x,=—3; (M) x,=3, Xp=X3=X,=X;=—1; (0) x;=Xp=%x3=2.

665. According to Problem 663, p and p—gq are odd at the same time.
Hence, g is even and cannot equal unity.

666. By Problem 663, p—x;g= 1, p—x,9=+1, whence (x;—x,)g= 2
or 0. The value 0 is dropped because ¢> 0, x, #x;. Putting x, > x, for defini-
teness, we get (x,—x,)g=2. This equation is impossible for x,—x;>2. Now
put x,—x;=1 or 2. The only possible values for p and ¢, for which equation

(x;—x)g=2 is possible, are p=x,9+1, g= —x whence the sole possi-
S |

. . 1 X1+ X, .
bility for a rational root % =X+ i *LQ‘—Z— . The proof is complete.

667. The Eisenstein criterion holds:

(a) for p=2, (b) for p=3, (c) for p=3 after expanding the polynomial in
powers of x—1.

668. X, (x)=(x—l)1’_1+% (x—1)p=24
All coefficients Ck=p (p= 11)_ 2 (p;k+1)

p because k! Cy=p(p—1) ... (p—k+1) is divisible by p, and k! is re-
latlvely prime to p. Thus, after the expansion of X, (x) in powers of x—1, the
Eisenstein criterion holds for X, (x) for p prime,

—1
% (x—l)p_3+... +p.

, k<p—1, are divisible by
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669. Apply the Eisenstein criterion for the number p, setting x=y+1:

(y+1)P*—1
(p+hp-1-1

The leading coefficient of the polynomial ¢ is equal to 1. The constant.term of
@ (), equal to ¢ (0)=X ok (1)=p, is divisible by p and is not divisible by p2.
It remains to prove that the remaining coefficients are divisible by p. To do
this, we prove by induction that all the coefficients of the polynomial (y+ 1)P” ~
—1, except the leading coefficient, are divisible by p. This is true for n=1.
Suppose it is true for the exponent p"~1, that is, (y+1)1'"_1=y1’"—1+1+
+pw,_1 () where w,_, () is a polynomial with integral coefficients. Then
G+DP = (3" 14w, 1 (D) =" + 1) 240 (3) =p?" + 1 +pwn (3);
¢ () and w,(y) are polynomials with integral coefficients. Thus,

Xk (x)=0 ()=

K k— pkpk—1
_ ¥ pw (y) pk_pkTe wi () — y wi_1(»)
eV =—f= A==y +p
yP* 7 e pw _aly) J"’ " hpwi_y (»)
k_ pk—1
=y" " T4px (»).

The coefficients of the polynomial x () are integral, since y (y) is. thée
quotient obtained in the division of polynomials with integral coefticients,
and the leading coefficient of the divisor is equal to unity. Hence, all coeffi-
cients of the polynomial ¢ (»), except the leading coefficient, are divisible by
p. The conditions of the Eisenstein theorem are fulfilled.

670. Suppose the polynomial is reducible: f(x)=¢ (x) ¢ (x).

Then both factors have integral coefficients and their degrees are grea-
ter than 1, since f(x) does not have, by hypothe51s rational roots. Let

@ (X)=by xK+by XK1 ..+ by,
g k) =cox™+e, x4 L ey

k>2, m=2, k+m=n. Since byc,,=a, is divisible by p and is not divisible by
p?, we can take it that b, is divisible by p, c,, is not divisible by p.

Let b, be the first coefficient of ¢ (x) from the end that is not divisible by p,
i=0. Such exists since a,=byco 1s not -divisible by p. Then a,,;=b;c,,
+ b; 416,21+ ... is not divisible by p, since b;c,, is not divisible by p, and bl+1,
bits, ... are d1v151ble by p. This contradlcts the hypothesis because m+i=2.

671. Factoring f(x) into irreducible factors with integral coefficients
we consider the irreducible factor ¢ (x), the constant term of which is divisible
by p. Such exists since g, is divisible by p. We denote the quotient after the
division of f(x) by ¢ (x), by ¢ (x). Let

P (X)=bo X7 +by X" 1+ by,
§ (x)=cox ey xh 1+ oL tep

and b; be the first (from the end) coefficient of @ (x) not divisible by p; ¢y is
not divisible by p since a,=b,,c; is not divisible by p2.

For this reason ap4; b, ch+ bi+1c;,_1+ .. iIs not divisible by p, whence
follows h+i<k. Consequently, mzmt+h+i—k=n+i—kzn—k.

672. () F(O)=1, fFA)=—1, fF(-=-L

If £ (x)=e¢ (x) ¥ (x) and the degree of ¢ (x)<2, thenp (0)=+1,¢ (1)==1,
@ (—=1)= =1, that is, p (x) is represented by one of the tables:
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x| ? (x)

-1 1 1 1 1 -1 -1 -1 -1
0 1 -1 =1 1 ~1 1 1 -1
-1 -1 1 1 1 1 -1 -1

The last 5 tables may be omitted since the last 4 define polynomials that
differ only in sign from the polynomials represented by the first four tables,
and the fourth defines a polynomial identically equal to unity. The first
three yield the following possibilities:

PpX)=—02+x-1), p(X)=x2—x—1, @ (x)=2x2—1.

Tests by means of division yield

FE)=0+x~1) (x2—x~1).

(b) Irreducible, (c) irreducible, (d) (x*—x—1) (x2—2).

673. A reducible polynomial of degree three has a linear factor with ratio-
nal coefficients and therefore has a rational root.

674. The polynomial x4+ ax®+ bx?+ cx+ d has no rational roots and can
be factored (in case of reducibility) only into quadratic factors with integral
coefficients:

x4+ a3+ bx3+ ex+d=03+x+m) (x2+px+n).

The number m must obviously be a divisor of d; mn=d. A comparison of
the coefficients of x® and x yields
Au=a, mMt+mp=c.

This system is indeterminate only if m=n, c=am, thatis, if c*=a?d (see
Problem 614).

—_ _— 3

But if m#n, then A= Cn _ar;n =c_:1n—_:'112£_ and this completes the proof.

675. In case of reducibility, it is necessary that

x5+ axt+bx3+cxd+dx+e=(2+2x+m) (P+Nx*+Nx+n).

The coefficients of the factors must be integral.

A comparison of the coefficients yields mn=e, whence it follows that m

is a divisor of e. Furthermore, )

AN =a,
WFm\  =d,
mEAN N =b,

BEI'+mN =c¢

whence
m\ —nN =d—an,
A (M)A —nN)+ m¥N — BN =cm—bn
and, consequently, (d—an) A+ m? A’ — #\"=cm~bn. Solving this equation and
A+N'=gq, nh+m)\”"=d simultancously, we get
"= am®—cm®—dn-+be
T mP—nm*+ae—dm

which completes the proof.,
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676. (a) (x3—2x+3) (x*—x—23), (b) irreducible,

©) (x2~x—4) (x*+5x+3), (d) (x*—2x+2) (x*+3x+3).

677. Without loss of generality, we can seek conditions under which x*+
+px®+ ¢ can be factored into quadratic factors with rational coefficients,
because if the polynomial has a rational root x,, then —x, willalso be a
rational root and the linear factors corresponding to it can be combined.

Let x%+pa+g=(x*+ Ax+ ) B+ Agx+ pg).

Then
M+A=0, Mpet+iu=0,

ttM Xt ua=p, ia=q.

If =0, then 2,=0 too. In this case, for the existence of rational g, and p,
it is necessary and sufficient that the discriminant p*—4¢q be the square of a
rational number.

Let A, #0. Then A,= —A;, us=y, and furthermore

g=u}, 2u—p=>%

Thus, for the reducibility of the polynomial x4+ px3+gq it is necessary
and sufficient that one of the following two conditions be fulfilled:

(a) p*—4q is the square of a rational number;

(b) ¢ is the square of the rational number u,, 2y, —p is the square of the
rational number A;.

678. If x*+ax’+bx:+ex+d=02+px+q) (x*+p.x+qy), then, since
M+ps=a, we can write

2 — _ 2
x‘-"+ax"+bx2+cx+d=(x"+l ax+l) —(ux+ M)
2 2 2 2
where A=g,+ ¢,. Whence it follows that the auxiliary cubic equation has
the rational root A=g¢g;+¢,
679.Let f(xX)=p (x) ¢ (x) and ¢ (x), Y (») have integral coefficients. Since
f(a)=—1, it must be true that ¢ (a)=1, ¢(a)——1 org (@)=—1, ¢ (ag)=1
and hence ¢ (a)+d(a) =0, i=1,2,

If P (%) and ¢ (x) are both nonconstants, then the degree of ¢ (x)+ ¢ (%)
is less than n, whence it follows that ¢ (x)+ ¢ (x) is identically zero. Thus,
we must have f (x)=—1[p (x)]*. This is impossible since the leading coe-
fficient of f(x) is positive.

680. If f(x)=¢ (x) ¢ (x), then o ()= $ (@)= *1 since f(a;)=1. Hence,
if ¢ and ¢ are nonconstants, ¢ (x) is 1dent1ca11y equal to ¢ (x) and

f@=[p ()P

This is only possible for even n.
Thus, the only possible factorization is

(x—a) (x—ay)...(x—a)+ 1= [p).
From this we conclude (considering the leading coefficient of ¢ (x) positive) that
? W+ 1=(x—ay) (x—as)...(x—a,_,
p()—1=(x—ay) (x—ay)...(x—a,).

(In order to have the permission to write these equations, we must change the
ordering of the numbers a,, 4,, ..., 4,) And, finally,

(x—ad (x—ay)...(x—a,_)—(x—ay) (x—a,)...(x—a,)=2.
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n
Put a,>a;>...>a, ;. Substituting x=a,,, k=1, 2, ..., 5 in the latter
equation, we get
_(azk—lh) (azk“aa) (azk—‘a =2

n
which is to say that the number 2 must be factorable in 5 ways into
tegral factors arranged in increasing order. This is only possible when

2=-2-(-1)=1-2, and when %=1. These two possibilities lead to the

two cases of reducibility of the polynomial #(x) that are mentioned in the
hypothesis of the problem.

681. If an nth-degree polynomial f(x) is reducible for n=2m or n=2m+1,
then the degree of one of its factors ¢ (x) does not exceed m. If £ (x) assumes
the values +1 for more than 2m integral values of the variable, then ¢ (x)
also assumes the values + 1 for the same values of the variable. Among these
values, there will exist for ¢ (x) more than m values equal to +1 or —1. But
then ¢ (X)= +1 or —1 identically.

682, The polynomial 7(x) has no real roots. Hence, if it is reducible, its

factors ¢ (x) and ¢ (x) do not have real roots and therefore do not change
sign for real values of x. It may be taken that ¢ (x)>0, ¢ (x)>0 for all real
values of x. Since f(a)=1, it follows that ¢ (ap =19 (ep=1, k=1, 2,
If the degree of o (x) [or ¢ (x)] is less than n, then ¢ (x)=1 [or ¢ (x)— I] 1dent1-
cally. Hence, the degrees of o (x) and ¢ (x) are equal to n. Then ¢ (x)=1+
+oz(x @) ...(x—ay), $ (X)=14+B (x—ay) ...(x—an), where « and B are some
integers. But then

f)=(x—ap® ... (x—a)+1=14+(@+B)(x—a) ... (x~a,) +off (x—a)? ...
(x—a,)’.
A comparison of the coefficients of x2* and x” yields a system of equations,
aff=1, a+ =0, that has no integral solutions. Consequently, f(x) is irredu-
cible.
683. Let f(x) assume the value 1 more than three times. Then f(x)—1
has at least four integral roots, i. e.,
F)—1=x—a) (x—as) (x—as) (x—a,) h (x)

where a,, a,, a;, a, and the coefficients of the polynomial % (x) are integers.
For integral values of x, the expression (x—a;) (x—a,) (x—a;) (x—a,) is a
product of distinct integers. Two of them can be equal to +1 and —1, the
remalnmg two differ from +1. Hence, their product cannot be equal to a
prime number, in particular, —2. Thus, f(x)— 1% —2 for integral values of x
and, hence, f (x)£ —1.

684. Let f(x)=9 (x) $ (x). One of the factors, ¢ (x), is of degree < % and

n ] . n
assumes the values +1 for more than 5 integral values of x. Since 5} =0,

it follows that +¢ (x) or —¢ (x) takes on the value 1 more than three times
and, by virtue of the result of Problem 683, it cannot take on the value —1.

n
Thus, ¢ (x) or —¢ (x) assumes the value +1 more than 0] times, and hence,
o (x) or —o (x) is identically unity. Counsequently, f(x) is irreducible.
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Sharpening the reasoning, we can prove the validity of the result for n=8.

685. Let
ale P+be () +1=¢ (x) w(x).

One of the factors is of degree <r; ¢ (x) takes on the values +1 for x=ay,
a,, ..., a, and since n>7, all these values of ¢ (x) must be of like sign. Hence

dx)=xl+ax—a) (x—ap) ... x—a)=x1+ap (x).
If a0, then w (x) also has degree z and w (x)= + 1 + B¢ (x). But the equation
alp )P+ )+ 1=[+1+o0p ()] [+14+Be (N]
is impossible since the polynomial ax®4-bx+1 is irreducible by hypothesis.
R 4 Gn 1},
686. (a) f(x)=a,x (1 + 7o x +... +aox")

=A. Then for | x|>1

Let max’ Ll
dy
I Ixl—-1-4

If(x)lzlaox"l[l—m]-—laox"l |xl—l >0

for |x|>1+4+A4.

I x\? a x\7l g, [ x\PT? a

b) — f(x)=a (—) +-= (—) += (—) +oot—
®) o7 fx)=a {3 e \p P \p

By virtue of (a), for all roots

| x1 ay a
——<1+max\ ———I,whencc x| <p-+max ’——:—'
e aoPk ! e aoPk 1

k_

(c) Put p=max ]/ i
ao

k il

’ a, pk—1

. Thex_l

ak
a, Pk—1

<p, max ‘ <g¢.

ay

Consequently, the moduli of all roots do not exceed
k

p+p=2p=2max l/
k—1

- /——
(d) Put p=max l/l il
a

ax
20}

. Then |ag|<|aylek~?,

a
Y
a, P | a,

Hence, the moduli of the roots do not exceed

k—1
%: 70 +max ]/
687. Let f(x)=a, x"+a, x" " '+...+a,,
© ()=by X"— b x" "1~ ...~b,,
O<bo<laply By=layl, oo, by> la, i. Obviously, | F(X) 2 (x|

_ _ﬁ__ by _ _ bn
Furthermore, ¢ (x)=byx" (1 box Do box")

ax
a

a,

e+
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The expression in the brackets increases from— o to 1 for x varying from
0 to +co.

Hence, ¢ (x) has a unique positive root £ and ¢ (x) >0 for x> £. Because
of this, for | x | > € we have | f(x) |=¢ (| x |) >0, whence it follows that the
moduli of all roots of f(x) do not exceed &.

688. (a) Let A=max [ Z—k ‘ It is obvious that
0

n I S S
If(x)l?laoxl(l—“cl, EE len)
whence for [x[>1,
" _._A___.._
£ 1> a0 x7) (1_|x1"‘(lxl—l))
Iaox" ru - [aox|n—r+1 ,
NPT [1x] 1(IXI_1)_A]>—[;E|—_1[(lxl_l)—A]'

For |[x|>1+ ]/;1 we have | f(x) | >0.

) & f=a (Z) 42 (274 o

By virtue of (a), for all roots of f(x) we have

i <1+]/max

(c) Set p=max

ax
a, k="

[ whence | x |<p+ ]/max

. Then {ag < a,| ¥~ and themoduli of all

roots of the polynomial do not exceed

r r k—r

] r ’ (43
o=/ V |

,/ a, e 0 | ar

689. For negative roots of the polynomial the assertion is obvious. For

the sake of definiteness, set @, >0 and denote ¢ (x)=aox"— b x" "1 —byx" 23—
—...—b,, where b, =0 for g, >0, b, = —a, for a, <0. Then, for positive x, it

is obvious that
fG)=o ().

Furthermore, ¢ (x) has a unique nonnegative root £ (see Problem 687) and
¢ (x)>0 for x>&. Hence, for x> &, f(x)=9 (x)>0.

690. This follows directly from 688, 689, 686 (c).

692. Expanding f(x) in powers of x—a, we get, for x>a,

fx)=f(@+ r (a) (x—a) + ”(‘21) (x—a)2+...+f(’:# (x—ayn>0.

693. We obtain the upper bound of the roots by using the results of
Problems 690, 692. To determine the lower bound, substitute —x for x:

(@) 0<x;<3, (M) 0<x;<1, () —ll<x;<1l, (d) —6<x;<2.
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694. (@) f=x*—3x—1, fi=x*—1, fr=2x+1, fi=+1.

Three real roots in the intervals (—2, — 1), (—1, 0), (1, 2).

(b) f=x3+x2—2x—1, fi=3x*+2x—2, f,=2x+1, fyz=+1. Three real
roots in the intervals (—2, —1), (—1, 0), (1, 2).

©) f=x*—7x+7, i=3x2-7, fo=2x—3, fs=+1. Three real roots in the
intervals (—4, —3), (1, %), (%, 2)-

(d) f=x*—x+5, fi=3x2—1, fo=2x—15, fs=—1. One real root in the
interval (-2, —1).

(e) f=x*+3x—5, fi=x*+1. One real root in the interval (1, 2).

695. (a) f=x*—12x*—16x—4, fi=x*—6x—4, fa=3x2+6x+2, f3=
=x+1, f=1. Four real roots in the intervals (-3, -2), (-2, —1), (—1,0),
“, 5).

) f=x*—x—1, fi=4x*—1, fo=3x+4, fy=+1. Two real roots in the
intervals (—1, 0) and (1, 2).

©) f=2x*—8x*+8x2—1, fi=x*—3x*4+2x, fa=2x*—4x+1,} fe=x—1,
fu=1. Four real roots in the intervals (—1, 0), (0, 1), (1, 2), (2, 3).

(@) f=x4+x2—1, =2X+x, fa=—x*+2, fs=—x, fi=—1. Two real
roots in the intervals (—1, 0) and (0, 1).

(e) f=x*+4x*—12x+9, fi=x*+3x2—3, fo=x2+3x—4, fy=—4x+3,
fa=1. There are no real roots.

696. (a) f=x*—2x"—4x*+5x+5, f,=4x3—6x*—8x+5, fo=22x%—22x—
—45, fy=2x—1, fy=1. Four real roots in the intervals (1, 2), 2, 3), (-1, 0),

2, —1

(b) foxd =20+ x1—2x+1, fi=2x0—3xttx—1, fo=x+5x—3, fa=
= —9x+5, fy=—1. Two real roots in the intervals (0, 1), (1, 2).

©) f=x*—2x*-3x*+2x+1, f=2x>—3x2—3x+1, fo=9x2—3x—5, f3=9x+
+1, fa=+1. Four real roots in the intervals (—2, —1), (—1,0), (0, 1), (2, 3).

@) f=xt—x+x*—x—1, fi=4x*—-3x*+2x—1, fo=-5x*+10x+17,
fs=—8x—5, f,=—1. Two real roots in the intervals (1, 2), (—1, 0).

() f=xt—4x*—4x*+4x+1, fi=x*—3x*—2x+1, fo=b5x*—x—2, f=18x+
+1, fa=+1. Four real roots in the intervals (-2, —1), (—1, 0), G, 1), (4, 5).

697. (a) f=x*—2x*—T7x*+8x+1, fi=2x"—-3x*—-Tx+4, fo=17x*—17x—8,
fa=2x~1, fy=1. Four real roots in the intervals (-3, —2), (-1, 0), (1, 2),
@3, 4).

) f=x*—4x*+x+1, fi=4x*—8x+1, f,=8x*—3x—4, [f;=87x-28,
fs= +1. Four real roots in the intervals (—3, —2), (—1, 0), 0, 1), (1, 2),

©) f=xt—x*-x*—x+1, fi=4x*-3x*—-2x—1, fi=11x*+14x—15, f3=
=—8x+7, fa=—1. Two real roots in the intervals (0, 1) and (1, 2).

(@) f=x*—4x3+8x2—12x+8, fi=x*—3x*+4x—3, fy=-—x2+5x—5,

s=—9x+13, fa=—1. Two real roots x;=2, | <x,<2.

© f=x*—x*—2x+1, fi=4x*—3x*—2, f=3x2+24x— 14, fs=—56x+31s
J+=—1. Two real roots in the intervals (0, 1) and (1, 2).

698. (a) f=x*—6x*"—4x+2, fi=x*—3x—1, f,=3x*+3x—2, fs=4x+5,

fi=1. Four real roots in the intervals (—2, —%), (—%, —l),(O, D,

@, 3).
(b) f=4x1—12x*+8x—1, f[i=2x—-3x+1, f=6x3—6x+1, fy=2x—1,

1 1
fi=1. Four real roots in the intervals (-3, —2), (0, 7), (’2—. 1)
and (1, 2).
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©) f=3x*+12x34+92— 1, f=2x+6x2+3x, fo=9x2+9x+2, fs=13x +8,
2 2 1
fi=1. Four real roots in the intervals (—4, —3), (— 1, _§) s (— 375 ) )

©, .
(d) f=xt—xP—4x2+4x+1, fi=4x*—3x2—8x+4, fo=Tx*—8x—4, fa=
3 3
=4x—-5, fu=1. Four real roots in the intervals (1, E)' (5, 2), (-2,

-1, (=1, 0).
(e) f=9x°—126x2—252x— 140, fi=x3—T7x—7, f[2=9x2+27x+20, fa=

=2x+3, fu=1. Four real roots in the intervals (4, 5), ("'?' -1), —'g s
) (=3
699. (a) f=2x*—10x*+10x—3, fi=x*—3x*+1, fo=4x3—8x+3, f:=
3
=4x*+3x—4, fi=x, fy=1. Five real roots in the intervals (—'2, —5),

3 1 1
(—5, —1), (0, E)' (3, 1), (1, 2).

() f=x8—-3x5—3x*+11x%—3x2—3x+1, fi=2x5—5x4—4x*+11x3—2x—1,
[r=3x4—6x3—x2+4x—1, fy=4x*—6x2+1, [fi=26x2—26x+5, fi=2x-—1,

1 1
fs=1. Six real roots in the intervals (—2, —1), (-1, 0), (0' ‘2‘), (3, 1).

1, 2, 2 3.

(©) f=x°+x*—4x3—3x2+4+3x+1, fi=50x4+4x3—12x2—6x+3, fo=4x®+
+3x2—6x—2, fo=3x*+2x—2, fi=2x+1, fy=1. Five real roots in the inter-
vals (—2, —%) (-% —1) (-1 0, ©, 1), (1, 2.

(d) f=xP—5x3—10x2+2, fi=x'—3x2—4x, fi=x*+3x2—1, fo=—22+
+x+1, fi=—3x—1, fi=—1. Three real roots in the intervals (— 1,0), ©, 1),
@, 3).

700. (2) f=x*+4x2—1, fi=x, fo=1. Two realroots in the intervals (— 1, 0),
©, 1.

(®) f=x*-2x34+3x2—9x+1, fi=2x—3, fz=1. Two real roots in the in-
tervals (0, 1) and (2, 3).

(©) f=x4—2x%+2x*—6x+1, f1=2x—3, fo=1. Two real roots in the in-
tervals (0, 1) and (2, 3).

(d) f=x*+5x*+10x2—5x—3, fi=x*+4x—1, fo=56x—1, fz=1. Three real
roots in the intervals (0, 1), (—1, 0), (—86, —5).

701. The Sturm sequence is formed by the polynomials x%+px+ ¢, 3x2-+p,
—2px—3q, —4p®—274% If —4p*—274¢%*>0, then p<0. All leading coeffici-
ents of the Sturm polynomials are positive and so all the roots of x®+px-+g¢q
are real. If —4p%— 274%<0, then, irrespective of the sign of p, the Sturm sequ-
ence has, for — co, two changes of sign, and for + ¢, one change of sign. In
this case, x*+ px+ g has one real root.

702. The Sturm sequence is formed by the polynomials

1) —nq n—1
x"+px+gq, nx""'+p, —(n—1) px—ng, —p — (—) .
p P~ p ey

For odd »n, the sign of the last expression coincides with the sign of A=
=—(n—1y""pt—nt g"~L, If A>0, then necessarily p<0. In this case, the
polynomial has three real roots. If A <0, then, irrespective of the sign of p,
the polynomial has one real root.
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For even n, the sign of the last expression in the Sturm sequence coincides
with the sign of —pA, where A=(m—1)""1p"—n" g"~2, The distribution of
signs in the Sturm sequence is given in the following table for various combi-
nations of the signs of p and A:

f fi fa fe

1.p>0, A>0 —oo | + — + —
+oo |+ + - -

2. p<0, A>0 —oo | + — —_ +
oo |+ + + +

3.p>0, A<0 —oo | + - + +
+oo | + + - +

4 p<0, A<0 —-oo | + — — —
+oo | + + + -

From this table it follows that for A>0 the polynomial has two real roots,
for A<Q there are no real roots.

703. The Sturm sequence is formed by the polynomials f=x®—5ax®+
+5a?x+2b, fi=x*—3ax*+a?, fai=ax®—2a*x—b, fy=a(a® x®*—bx—a®), fi=
=a(a®— b¥)x, fi=1.

If A=a%—b2>0, then >0, and all leading coefficients of the Sturm poly-
nomials are positive. In this case, all five roots of the polynomial f are real.
If A <0, then, depending on the sign of g, the distribution of signs looks like

this:
f f fo i fi fs
a>0 - —‘|+ ‘—+{+;+
+oo | + + k-
a<0 —oo | — + + | - —‘+
+ o0 +’ + ‘——+!+

Consequently, for A <0, the polynomial f has one real root.

704. Let f and fo,; be two consecutive polynomials of a “complete
Sturm sequence. If their leading coefficients have the same signs, then their
values, for + o, do not constitute a change of sign, while the values for — oo
yield a change of sign, since the degree of one of the polynomials is even, while
the degree of the other is odd. Now if the leading coefficients have opposite
signs, then the values of f3 and f5 , , for + o yield a change of sign, and for
— o do not. Therefore, denoting by v, and v, the number of variations of
sign in the Sturm sequence, for — o and + o, we have that v,+v,=< On
the other hand, v,—v, is equal to the number N of real roots of the polyno-

. n—N L
mial. Consequently, v,= 5 which is what we set out to prove.

705. This is proved like the Sturm theorem, with the sole difference
that we have to see that there is an increase (not a decrease) in the number of
variations of sign per unit when passing through a root of the original poly-
nomial. ’
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706. The sequence of polynomials thus constructed is a Sturm sequence
for the interval xo<x< -+ o0 and satisfies the conditions of Problem 705 for
the interval — oo <x<x,. Hence, the number of roots of fin the interval (x,, )
is equal to v (x)— v (+ o), the number of roots of fin the interval (— co, xo)
is equal to v (xg)—v (— o0}, where v is the number of variations of sign of the
corresponding values of the polynomials,

The total number of real roots is equal to

2v (%) — v (+0)—v (— o0).
707. Applying the Euler theorem to

X _x . _x
5 dre ? 3 At (—xe 2)
Po=(—1pe? &€ _(_qpez 4_ (=X )
=(=1pe ? Sl (e St
yields
: < P ‘ —>
_ TN n—1, n—8,
Pn"(_l)n le X W'F(H—I)W
whence

P,=xP,_,—(n—1)P,_,.
On the other hand, differentiating the equation defining P,_,, we get

8 2
X X
) - X2 —

, .5 drimie 2 . 7 dre *
n—l=(_l)n 1 xe 7’1-:1‘——"'(—1)” le T
whence

P, _|=xP,_,—Pp

Comparing this with the previous formula, we get
P, _=(n—-1)P,_, and so P,=nP,_,.

It follows from the derived formulas that the sequence P,, P,_,, ..., Py,
Py=1 is a Sturm sequence for the polynomials P, since P,_, differs from P,
in the factor n alone, and P;_, is, to within a positive factor, the remainder
(taken with sign reversed) after division of Py, by Py.

All the leading coefficients of the polynomials P, are equal to +1. Hence,
all the roots of P, are real.

708. Differentiating the equation defining P,, we obtain

Py=(—tyer LD (g SR T
n x’l xﬂ
whence P
n(xn—le—x)
P =(—1)tne* ———nw——=.
n dxn
Furthermore,
d”(x-x”—le"")
—(— 1\ X
Pu=(=1)"e P
dn xt"te—Xx dn-1 n—1 5~ X x ,
=(—1)"e* [x (dx” )+n Lg'in—le )]=; P, —pPy_,
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whence
XP,=nPy+n® Pn_y.
On the other hand,
, dn—l [(n__])xn—ze—x_xn—le—x]
Pn=(—l)"ne" 1
whence P;=—nP,_ [ +nP,_,. Multiplying by x and substituting in place
of xP, and xP,_| their expression in terms of P,, P,_;, Py_2, We get

P,=(x—2n+1) P,_y—(n—1)* P,_,.

From these relations it is seen that consecutive polynomials P, do not
vanish simultaneously, and if P,_,=0, then P, and P,_, have opposite signs.

P, 1 xpP, . P,_
Furthermore, from —p=t=-—_—+—"% it follows that —5=1 changes
P, n ntPy P,
sign from minus to plus when going through a positive root of P,. Thus, the
sequence Py, P,_4, ..., Py, Py=1 is a Sturm sequence for P, in the interval

(0, o0). The leading coefficients of all P, are equal to unity. P, (0)=(—1)nl.
Hence, v (0)— v (4 00)=n, that is P, has n positive roots.

n
709. E/=E,_,. Also, E,,=E,._1—(—%)-

N
Therefore, the polynomials E,, E,_, and —% form a Sturm sequence for

E, on the interval (— oo, — ¢) for arbitrarily sma{ll ¢. The distribution of signs
is given by the following table:

—o | (==l (=1

—e | + + ( — l)n— 1
Hence, for even n, the polynomial E, has no negative roots, for odd n, the
polynomial E, has one negative root. Furthermore, for x>0, the polynomial
E_ (x)>0.

" 710. Use the Euler formula to transform the identity
1

dnt (xz e* )=d" [(Qx— 1) ei] .

dxn+1 dxn
We get

L L 1

dntie” dre* dr1e”

x? W+2(n+l)x W+(n+l) n vdx"h_l
L L
dre” dn—1e*
=(2x—1) T +2n PR

whence P,=2nx+1) Ps_;—n (n—1) P,_, x2. On the other hand, by differen-
tiating the equation defining P,_,, we get

P,=(@2nx+1) P,_,—x*P’

n—1*
Comparing the results, we see that P, _;=n(z—1) P,_, and, hence, P,=
=(n+1)aP,_,. By virtue of the established relations, the sequence of polyno-
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mials P,, Py, Py2, ..., Po=1 forms a Sturm sequence for P,. The leading
coefﬁc1ents of all P, are positive, Consequently, all the roots of P, are real.

711. Computmg
T B (Y
¥*+1 /) x*+1
dxn - dx™
by two methods, we obtain
P,—2xP,_ +(x*+1) P,_,=0.
. . x?+1
Differentiation of the equation defining P,_, yields P,=2xP,_,— — "
P;_, whence P,_,=nP,_, and, hence, P,=(n+1) P,_,.
It follows from the derived relations that P,, P, ..oy Po=1 form a
- Sturm sequence for P,. All the leading coefﬁcmnts of tﬁe sequence are positive

and so all the roots of P, are real.
The solution of this problem is straight forward. Namely,

11 ( 1 + 1 )
x2+1 2% \x—i  x+i
whence we find that

Pn (x)=—21—'_ [(x+i)n+1_(x_i)n+1].

. km
It is easy to compute that the roots of P, are cot ——, k=1, 2, ..., n.

n+!l’
712. Using the Euler formula to expand the identity
dn _xzil_ n—1 __x—
Va+l Va+l
dxn - dxn—1
we get

P,—(@2n—1) xP,_1+(n—1)* (x*+1) P, ,=0.
Differentiating the equation defining P,_,, we get
Pr—(2n—=1)xPy_+(x*+1)P,_,=0
whence
P, ,=(n—12P,_, and P,=n*P,_;

From the relations found, it follows that P,, Py_, ..., P,=1 form a Sturm
sequence.

Since the leading coefficients are positive, all the roots of P, are real.

713. The functions F(x), F’(x) and [/’ (x)]? form a Sturm sequence for F.
The leading coefficients of the sequence,3a2, 1242 and 9a, are positive. Hence,
the number of lost changes of sign when x passes from — o to + oo is equal
to two.

If fhas a double root, then F has one triple root and one simple root. If /
has a triple root, then F has a quadruple root.

714. If some one of the polynomials in the Sturm sequence has a multiple
root x, or a complex root «, then this polynomial can be replaced by a poly-
nomial of lower degree by dividing it by the positive quantity (x—x,)? or (x—
—a) (x—a’). Subsequent polynomials can be replaced by remainders (taken
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with reversed signs) in the Euclidean algorithm for the replaced polynomial
and the preceding one. Then the number of variations of sign for x=— o0
will be <n—2, where n is the degree of the polynomial. Hence, the number of
real roots is surely <n—2.

715, Let F(x)=(x*—1)". F(x) has —1 and +1 as roots of multiplicity ».
F’(x) has —1 and +1 as roots of multiplicity n—1 and, by Rolle’s theorem,
one more root in the interval (—1, +1), F”(x) has —1 and +1 as roots of
multiplicity n—2 and two roots in the open interval (—1, +1) and so on.
F( (x)=P, (x) bas nroots in the open interval (-1, 1).

716. Let xy, ..., x; be distinct roots of f(x) of multiplicity «y, &y, ..., %,

X; <X3<X3< ... <X, The function ¢ (x)=Lf(% is continuous in the open
intervals (— o, xy), (X1, X3), +.., (Xg_1, X;) and (x;, + ) and ranges from 0
to — oo in the interval (— o, x,), from + o to — oo in each of the intervals
(;—1, x;) and from 4 oo to 0 in the interval (xj, ) because ¢ (x)—> o as x—
x; and changes sign from — to + when passing through x;.

Consequently, ¢ (x)+2 has a root in each of the intervals (x;_,, x;) and,
besides, for A>0 one root in the interval (— o, x;), and for A<0, one root in
the interval (x;, + ).

Thus, ¢ (x)+ 2 and, hence, f(x) [p () +A=Af(x)+f’ (x) also has k roots
different from X;, X, ..., x; for A#0 or k—1 roots different from x,, x,, ..., X
for A=0. Besides, Af (x)+f" (x) has x;, X, ..., X as roots of multiplicity o;—1,
og—1, ..., % —1. Thus, tbe total number of real roots (counting multiplicity) of
the polynomial Af (x)+f’ (x) is equal to ay+ag+..., 40 for As#0 and
o+t ...4o—1 for A=0, thatis, itis equal to the degree of the polyno-
mial A fC)+f7 (x).

717. Let g (xX)=ay (x+A) (x+2y) ... (x4+7,), Fy()=aof(x), F(x)=
=Fy () +MFy ()=a, f(X)+a Mf" (X), Fa(X)=F (X)+ 7 Fi(x)=a, f(x)+
+ay M +29) [ () F ah A f” (), ete. Then F,()=F,_, (x)+}, F,_|(x)=
=apf (X)+af’ (X)+ ... +a,f (x) where a,, a,, ..., a, are coefficients of g.
By virtue of Problem 715, all roots of all polynomials Fy, F,, ..., F, are real.

718. The polynomial apx"+a,mx"~*+ ... +m(m—1) ... (m—n+1) a,=
=[ay X" +a, (X" +...4+a, (x™)"] x*~™ and all roots x™ are real.

719. The polynomial a@,x"-+na,_1x" " *4+n@—1)a,_sx" 2+ ... +aon!
has only real roots. Hence, all roots of gyn!x*+an(m—1) ... 2x"" 1+ ...
+nay_1x+ a, are real. Applying once again the result of Problem 718, we
find that all roots of the polynomial @,n!x"+a,n-n(@m—1)...2x" 1+
+amj(n—1) -n(r—1)...3x" "2+ ... +a,n! are real. It remains to divide
by nl.

. n nn—1)
720. All roots of the polynomial (1+x)'=1 +T x+—12— x2+...

+x' are real. It remains to use the result of Problem 719.

721. The polynomial f(x)=nx"—x""1—x""%2— _ . —1 hasareal root of 1.
Furthermore, let F(x)=(x—1) f(X)=nx"T1~(m+1) x"4+1. Then F’(x)=
=n(n+1) (x—1) x*~% For odd n, the polynomial F(x) has a unique mini-
mum for x=1 and, consequently, has no roots except the double root x=1.
For even n, the polynomial F(x) increases from —oo to 1 for —o0<x<0,
decreases from 1 to 0 for 0<x<1 and increases from 0 to oo for 1 <x< co.
Therefore, F (x) in this case has a unique root other than the root x=1.

722. The derivative of the polynomial that interests us is positive for all
real values of x. Hence, the polynomial has only one real root.
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723. Let a<b<c; f(—©) <0; f(@=B*b—-a)+C2c—a)>0; f()=
=—A%(c—a)—B? (c—-b)<0; f(+ ©)>0. Consequently, f has real roots in
the intervals (— o, @); (g, ¢); (¢, + ).

724. ¢ (a+bi)

(a—ar—bi)

-B+Z a+bz—ak B+Z T a—a )t

A
Tm (q; (a+bi)) = _bz (a—-T;cz-l-bz #0 for b#0 because all terms under
1

the summation sign are positive. Hence, ¢ (@+bi)#0 for b#0. The same
result may also be obtained from the fact that ¢ (x) varies from + oo to
— o0 as x varies from g; to g; . ;, ¢ (x) ranges from0 to — o0 for — 0 <x<ay,
@ (x) varies from + oo to 0 for a,<x< co. It is assumed here that

@G<ay< ... <4,
n

’ 1
725. ff (E:;) =Zl T where x, are roots of the polynomial f(x).
k=

Hence

S
[ P =f () f” (x)=1f (x)P Z T(x—xi)? 70
k=1

for all real values of x.

726. Let x;<x;< ... <x, be roots of the polynomial f(x), and let y,<
<y3< ... <y, be roots of the polynomial ¢ (x).

When the condition of the problem is fulfilled, m=n, n—1 or n+1. With-
out loss of generality, we can take it that x,<y;<Xx;<y;< ... <¥y,_1<X,
Of X;<P1<X3<Y3< 1o <Yp_1<X, <Y, We assume A#0. Rewrite the equa-
tion as

f(x) e
X)= = -
.4) (x) o () X
If m=n, then  (x) varies:
from —— to — o0 for — o0 <x<y,, vanishing for x=2x;

bo
from + 00 to — oo for y, <x <y, ;,, vanishing for x=x, ,;

a
from + o to 55 for y, <x < + co. Here, a, and b, are the leading coeffi-

cients of f(x) and ¢ (x), which we consider to be positive.
Due to the continuity of ¢ (x) in each of the intervals under consideration,

the equation ¢ (x)= ——;’: has » real roots if — # bJ and n—1 real roots
0
. a .
if — % =b—°. Thus, the number of real roots of the equation A f(x)+ ue (x)
0
is equal to its degree.
The case of m=n—1 is regarded in similar fashion.

727. The roots of f(x) and ¢ (x) are necessarily all real since f(x) and
¢ (x) are obtained from F (x) for A=1, u=0 and for p=1, A=0.
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Suppose the roots of f (x) and ¢ (x) are not separable. Without loss of ge-
nerality, we can take it that there are no roots of ¢(x) between two adjacent roots
x, and x, of the polynomial f(x). Then ¢ (x)= i((z))
<x<x, and vanishes at the endpoints of this interval. By Rolle’s theorem,
there is a point x, inside (x;, x,;) such that ¢’ (xg)=0. Then ¢ (x)— ¢ (x,) has
X, as a root of multiplicity £=2. On the basis of the result of Problem 581,
there are, on the circle | z—x, |=p, if p is sufficiently small, at least four points
at which Im (¢ @)=Im (¢ (x0))=0.

At least one of these points, z,, is nonreal. The number p= ¢ (z,) is real,
The polynomial F(x)= —f(x)+ o (x) has a nonreal root, a contradiction,

728. The roots &,<&,< ... <&,_; of the polynomial f’(x) divide the
real axis into » intervals:

(=0, &), s, &)y oo, Bya, &y 1), (€1, ).

By virtue of Rolle’s theorem, in each of these intervals the polynomial £ (x)
has at most one root. Furthermore, the polynomial f'(x) +X\f” (x) for any real A
has at most one root in each of the foregoingintervals. Hence, f (x)+Af" (x),
by virtue of Rolle’s theorem, has at most two roots (counting multiplicity)
in each of the intervals.

Separate all intervals into two classes. In the first put those which contain
a root of f(x). In the second, those without any root of f(x). Consider the
function ¢ (x)= j% . In the intervals of Class One, ¢ (x) has one simple
root and therefore changes sign. In the intervals of Class Two, ¢ (x) does not
change sign. In the intervals of Class One, ¢ (x)+A has an odd number of
roots (counting multiplicity). Hence, from the foregoing, ¢ (x)+A has only
one simple root and no multiple roots in the interval of Class One. Therefo-
re, §'(x) has no roots in the interval of Class One. Now consider the intervals
of Class Two. Let &, be a point in some interval of Class Two in which the abso-
lute value of ¢ (x) reaches a minimum, and let A,=¢ (&,). For definiteness,
we assume that ¢ (x) is positive in this interval. Then the function ¢ (x)—x
has no roots in the interval of our interest when A <2}, and has at least two
roots when A>3,

By virtue of what bas been said, the number of roots of ¢ (x)—X is exact-
ly egual to two for A >2, and both roots are simple. Furthermore, ¢ (x)—2,
has &, as a multiple (double) root.

Thus, ¢ (xX)—x has no multiple roots in the intervals of Class One and
has only one multiple root for one value of Aineach interval of Class Two. Fur-
thermore, each root 7 of the polynomial "2 (x)—f (x) f” (x) is a multiple root
for ¢ (x)— ¢ (v) since

is continuous for x;<

S )
G = =7 o

Thus, the number of real roots of f2 (x)—f(x) f” (x) is equal to the number
of intervals of Class Two, which is obviously equal to the number of imagi-
nary roots of f(x).

729. X f; (x)+w f3 (x) has all real roots for arbitrary real constants A and .
(Problem 726). Hence, by virtue of Rolle’s theorem, A f7(x)+u f; (x) has
all real roots. From this it follows (Problem 727) that the roots of f] (x) and
f7(x) are separable.
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730. Suppose f(x) has no multiple roots and let &, << ... <& _,

be the roots of £ (x). Consider the function ¢ (x)=;,((xyz) + xt A Ttis ob-
vious that lim %i) =%+—i— >0 if y>0 or if y<—n Whence it fol-
X—>0

lows that ¢ (x)—>+ 0 as x—>+ 0 and ¢ (x)—> — © as x— — co. Pesides Y(x)—
——c0 as x—&; from the right and ¢ (¥)—>+ 0 as x—»Ei from the
left. Thus, ¢ (x) varies from — o to + oo in each of the intervals (—co,
), B1, £9), vory (Bt ) remaining continuous inside these intervals,

Consequently, Y (x), and its numerator v f(x)+(x+2) ' (x) as well, has
atleast n distinct roots fory>0 ory < —n. But the number of roots of v f(x)+
+(x+2) f/(x) does not exceed n, because yf(x)+(x+2) f’ (x) is a polynomial
of degree n. If f(x) has multiple roots and xy, x;, ..., X, are distinct roots of
f(x), then f’ (x) has k—1 roots &, &,, ..., £,_1 d1ﬁ'erent from xy, x2, ..., X
Reasoning in like fashion, we are satisfied of the existence of & roots of nl) (x)
All of them, except — A if — A is among the roots of f(x), will be different from
the roots of f(x).

'+ Besides these roots, v f(x)+(x+2) f'(x) will have as roots xy, Xz, ..., x;
with the sum of multiplicities n—k [if —X is not a 100t of f(x)] or n—k+1
[if —A is a root of f(x)].

The total number of real roots of v f(x)+ (A +x) f’ (x) counting multip-
licities is again equal to a.

731, Let ¢ (x)=b;, (x+v) (x+7v2) ... (x+7vy). Every v; is either greater
than zero or less than —n.

It is obvious that the coefficients of the polynomial

FL ()= f)+xf" (x)
are g; (Y,+9). The coefficients of the polynomial
Fy (x)=v3 F1 ) +x F] (%)
are a; (Y:+17) (v2-+i) and so on, the coefficients of the polynomial
F, (X)=y; F1®+xF,_| (%)
are a; (Y, +i) (ya+i) .. (v, +0), i=1, 2,

On the basis of the result of Problem 730, all roots of all polynomials F;,

F,, ..., F, are real. But
ae D +aw (1) x+ ... +a,p (n) x"=b, F (x).

732. Suppose f(x)=f; (x) (x+2) where A is a real number and f, (x) is a
polynomial of degree n—1, all the roots of which are real. Suppose that for
polynomials of degree n—1 the theorem is valid; on this assumption, prove it
for polynomials of degree n.

Let fi(X)=bo+bx+ ... +b,_1 x" 77,
f=ap+a, x+ ... +a,x"

Then
ay  =Mby,
a, =ib,;+b,,
as =Aby+by,

n_1=Xbp_1+ by _s,

ap = by_y
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and
Gotayyx+ayy (y—1) x*+ ... +a,v(y—1)

ceo (y—n+1) x"=A [by+ by yx+byy (y— 1) x*

toe +b_y v=1) (. (Y- +2) X" 4+ xy [

+h (y—Dx+b(y—1) (t—2) x*+ ... +b,_, (y—1) (y—2)
e (y=n+ Dx" =10 (x) + x[yp (x)—x ¢’ (x)]
where ¢ (x) is used to denote the polynomial
byt byyx+byy(y—1) x*+ ... +b, 1y (y—1) ... (y—n+2) x¥*7

By hypothesis, all roots of the polynomial ¢ (x) are real. Tt remains to prove
the following lemma.

Lemma. If ¢ (x) is 2 polynomial of degree n—1 having only real roots,
then all roots of the polynomial ¢ (x)=2Ap+yxp—x%’ are real for y>n—1 and
for arbitrary real A.

Proof. Without loss of generality, we can take it that O is not a root of
@ (%) for if o=x*o,, ¢, (0)0, then

$ ) =x* Oy +(y—k) 2y~ x%p)=x*{,

and yv,=v—k exceeds the degree of ;.
Let x;, x5, ..., x,,, be distinct roots of ¢. The polynomial ¢ has among its

roots x,, X,, ..., X,, with sum of multiplicities n— | —m. Now consider
x* ¢’ (x)
w(x)=A+yx——"—2L.
(=2 v

1t is obvious that

ch") =y—(n—1)>0.

lim
X—>00

Hence, w (x)— — o as x—— o0 and w (x)— + o0 as x— + oo, Besides, w (x)—
-+ o0 as x—>x; from the left and w (x)—>—oco0 as x—x; from the right. For
this reason w (x) has roots in each of the intervals

(_ o0, xl)s (xl) xz); (ALY (xm— 1 xm); (xm’ + CD),

The total number of real roots of ¢ (x), counting multiplicity, is equal to
n—1—m-+m+1|=n, that is, it is equal to the degree of ¢ (x), which is what
we set out to prove.

733. If all the roots of the polynomial a,+ax+ ... +a,x" are real, then
all the roots of the polynomial agx"+ax” "'+ ... +a, are real. Furthermore,
all the roots of the polynomials

Y1 (=D .. (r—n+ D x"+ar v, (a— 1)
e (i—nt2) x4 L ta, X +a,
and
@GYi(ra—D ...(ri—n+D+a v (i~ 1)
() x+ L Ha, VX T g
- 4 An—1 n—1
[“°+ R ) [ S:) R co )
an
+
(n1=n+ ) (i—n+2) ... 1

xn] V(D) ... Ga—ntl)
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are real for v, >n—1. Setting v;—n+1=a>0, we find that all the roots of the
polynomial
a aa . an
Gt Xt w(etD) * teeed o(x+l) ... (@+n—1)
are real. Using the result of Problem 732 a second time, we get the desired
result.

734. 1. Suppose all the roots of f(x) are positive. Then the polynomial
Gtawx+ ... t+a, wr® x" cannot have negative roots. Suppose the theorem
holds true for polynom1a1s of degree n—1. Denote

@ (X)=bo+by wx+by whal+ ... b, win—1) x"71,

Let 0<x;<x3< ... <Xx,_; where x;, x5, ..., X,_; are roots of ¢ (x) and let

>wT3

Xi_—1

' Further suppose that f (xX)=0—x) (by+bx+ ... +b,_x""). The coef-
ficients of the polynomial f (x) are

a =Xy,
a; =A\b,—b,,
@y =Wpp—by,

Consequently,
Y (X)=ap+a, wx+a; WA X2+ ... +ap w x"=\(by+ b, wx
4ot by W=D XY —x (b w by wt x4+ by W XY
=2 (x) —xwo (xw?).

The roots of the polynomials ¢ (x) and x ¢ (xw?) are separated by virtue
of the induction hypothesis. Thus, all the roots of the polynomial A ¢ (x)+
+xwe¢ (xw?) that interests us are real. It remains to verify that the law of
their distribution is the same as for the polynomial ¢ (x).

Denote by z,, z, ..., z, the roots of § (x). It is easy to see that

0<z1<x;<xy W<z <X3<Xg W i<z < .0 <2y 1<X,_1<X,_; W i<z,

-2
Whence it follows that Z—' - =w~2, which completes the proof.
i—1 i-1

1l \m
x*log -
2. Consider ¢, (x)= 1—T .

For m sufficiently large, the roots of the polynomial ¢, (x), equal to
+ V ™ __ do not lie in the interval (0, n). Consequently (Problem 731),

log —

all the roots of the polynomial @ o, O +ap, 1)x+ . - +a,9, (n)x" are
real. But llm cpm (x)=w~", Hence, by virtue of the contmulty of the roots

as functlons of the coefficients, all the roots of ay+a, wx+ ... +a, w* x"
are real,
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735. Denote by x;, x3, ..., X, the roots of the polynomial f (x)=a,+ax+
... +a,x". Without loss of generality, they may be considered positive. Fur-
thermore, let
P (x)=as cosp+a; cos (p+0) x + ... 44, cos (¢ +nb) x?,

Y ()=a,sinp+a;sin(e+90) x + ... +4,sin (p+nb) x".

Then
n
¢ (x)+ i (x) =(ccs @ +i sin ¢) a, n (oex —-x3),
i=1
n
® ()~ ()=(cos o—isine) an | | (o« x—x)
i=1
where
a=cos 0+isin 0, o’=cos 0 —isin 6,
Consequently,
n
¢ (x)+iY(x) cose+ising ox —X;
D (x)= - = — , .
@ (x)—iP(x) cosp—ising I o x—x;

i=

Let x=pB be a root of the polynomial ¢ (x). Here, p=|x|; B=cos A+
+isin . Then | ® (x) |=1 and, hence,

n

1] 25 -

but
paf—xi P (peB—axi) (P’ BT —xi)
o opo B (e’ B—2x;) (pof” — x;1)
1+ pxi(oc—/-oc)(B -2—(3) 14 4§xis,1n®sm27\
| P B—x; [ poc’ B—x;
We disregard the uninteresting case of sin 8=0.
— s 2
If sin A0, then all m—ﬁ ) are simultaneously greater than unity
—Xi

or simultaneously less than unity and their product cannot be equal to 1.
Hence, sin A=0, which means x is real.
736. Let xy, x5, ..., X, be the roots of the polynomial

FX)=ay+ibg+(ay+ibdx+ ... +{(a,+ibr"=¢ () +i { (x).

The imaginary parts of these roots are positive, Let us consider the polyno-
mial f ()=¢ (x)—i (x). Tts roots will obviously be x/, x3, ..., x;,, which
are conjugate to x, X, ..., X,. Then
n
O (x)= @ (x)+: (x) l—[ X=X antiby

Ve T X257 a b,

i=

9. 1215
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If x, is a root of ¢ (x), then

‘(D(x0)|~l_l| z":;“ }:1.

i=1

But
xo—x; 1P (o=x) g—x)  (xi—x) (Xa—xg)
' Xo—X; ‘ h (xo“x;) (ap—xi) | Xo—x; 1?
—1— 4 Im (x,) Im (x;)
[ Xo—x; |2
Whence, if Im (x,) >0, thenJ —f"_—if ’<1 for all i; if Im (x,) <O, then
Xo— i
% l >1 for all i. (The same thing can be obtained geometrically with
0 —X;

ease and without computations.) Thus, the equation | @ (x,) |=1 is only pos-
sible for a real x, and therefore all roots of ¢ (x) are real.
Next, consider the polynomial

—80) [p )+ (=g () +BY (x)+i [x§ (x)—Bo (x)).

Its roots do not differ from the roots of the original polynomial and, hence,
its real part ap (x)+ B¢ (x) only has real roots for arbitrary real « and
B. But in this case, the roots ¢ (x) and ¢ (x) can be separated (Problem 727).

737. Let xy, X2, ..., X, be the roots of ¢ (x); ¥y, Ve, ..., ¥, the roots of ¢ (x).
Without loss of generality, we can assume that the leading coefficients of ¢
and ¢ are positive and

Xy P> Xe>Ya> eie DY 1> X, >V
(y, may be absent).
Decompose gz—g into partial fractions

wx)_AJé Ac 4G

e(x) x—xg " T @' (xk)

It is easy to see that all 4, >0. Set x=a+bi and find the imaginary part of

e+ ) Y@
¢ (0 T "

o (5t )=+ (3 i)

k=1

=-1-b Z m
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If =0, then Im (%(%—i)<0 and, hence, ¢ (x)+i{ (x)#0. Thus,

in the case at hand, all the roots of ¢ (x)+i¢ (x) lie in the lower half-plane.
The other cases of location of roots are considered in similar fashion.
738.

,; '(Ecx)) - Z ! , X are roots of f (x).

Let x=a—bi, b>0. Then

f’(a—bi))=é btIm(x) _,

Im ( Fla—bi) [ x—xx|?

Consequently,
[’ (a—bi)+0.
739. Let the half-plane be represented by the inequality
r cos (8—¢)>p, where x=r (cos ¢+ i sin ¢).
Put x=(x'+ pi) (sin 0—1i cos 0). Then
x'= —pi+x (sin 0+icos 0)=r sin (0—¢)+i [r cos (0—q)—pl.

Whence it follows that if x lies in the given half-plane, then x’ lies in the half-
plane Im (x")>0, and conversely. The roots of the polynomial f[(x"+pi)
(sin 06— cos 0)] are thus located in the upper half-plane, On the basis of Prob-
lem 738, the roots of its derivative, equal to [sin 0—icos 0] f/ [(x" +pi) (sin 6—
—icos 0)], also lie in the upper half-plane.

Thus, the roots of the polynomial f/ (x) lie in the given half-plane.

740. This follows immediately from the result of Problem 739.

741. The equation splits into two:

P

W1 1
f()+k—0 4T T

Decomposition into partial fractions yields
n
x; are the roots of f{x), which, by hypothesis, are real. Let x=a+ bi. Then

IIm ( —lxk) ' g (a— xk)2+bz |Ll

. . : 1 n
For the roots of each of the ejuations it must be true that % < I whence

| | <kn.

=0

4L
ki

n

g*
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742. All the roots of f’ (x) are obviously real. Denote them by &,, &,,
.s Ey—1. Next, denote by yy, »,, ..., ¥, the roots of the polynomial f(x)—b,
by x, X, ..., X,, the roots of the polynomial f(x) —a. Then

n<@<ya<by< ... <yn—1<gn_1<ym
X <8y <xp<Be< ... <xp1<E,_1<xn

From these inequalities it follows that intervals bounded by the points
x;, ¥; do not overlap since they lie in the nonoverlapping intervals

(—o, &), Gy, &), ..., G,_y, +0).

The polynomial f(x) takes on the values a and b at the endpoints of each of
these intervals and passes through all intermediate values inside the inter-
val. Consequently, f(x)—A vanishes r times on the real axis, which comple-
tes the proof.

743. If the real parts of the roots of the polynomial f(x)=x"+a;x" "1+
+ ... +a, have like signs, then the imaginary parts of the roots of the poly-
nomial

T f(—ix)=x"+iax" 1 —ax" " —iax" 3+ ...
3

also have like signs, and conversely.

For this, by virtue of the result of Problems 736, 737, it is necessary and
sufficient that the roots of the polynomials x"—a,x" "%+ aux"*— ... and
ax"l—ax" "3+ a;x" 75— ... be real and separable.

744. 1t is necessary that a>0 and that the roots of the polynomials x®—
~bx and ax®—c be real and separable. For this, the necessary and sufficient

Lo . c
condition is 0<~;<b or ¢>0, ab—c>0.

Thus, for negativity of the real parts of all roots of the equation
x*+ax*+bx+c=0

it is necessary and sufficient that the inequalities a>0, ¢>0, ab—c>0 be

fulfilled.

745. a>0, ¢>0, d>0, abc—c*—a*d>0.

746. Set x= }
of y is negative, and conversely.

Consequently, for all roots x;, x,, xs of the equation f(x)=0 to be less
than 1 in absolute value, it is necessary and sufficient that all the roots of

. i . . .
the equation f (—lﬂ)=0 have negative real parts. This equation is of

+y . .
—y It is easy to see that if | x|<]1, then the real part

the form
Y(—a+b—c)+y*@B—a—b+3c)+y(B+a—>b—-3c)+(1+a+b+c)=0.
Besides, in is easy to see the necessity of the condition

l—a+b—c=(+x) (1+x,) (1+x3)>0.
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On the basis of the results of Problem 744, we get the necessary and suffici~
ent conditions:

l—a+b—c>0, 1+a+b+¢>0, 3—a—b+3¢>0, | —b+ac—c*>0.
47. f(x) 1 —x)=a,+(a,_1—a,) x
+(@y_ 2=, ) x*+ ... +(ag—a)x"—apx"t 1.
Let |x|=p>1. Then
I fG) (1=x) |Zaee"* ' —| @, +(an_1—ay,) x
+ o H@—a) x| za et -0 (@, a, 1 —a,
+ ... +ap—a)=a, (" 1— M >0.

Comnsequently, f(x)#0 for |x|>1.

748. —0.6618. 749. 2. 094551.

750. (a) 3.3876, —0.5136, —2.8741; (b) 2.8931; (c) 3.9489, 0.2172,
—1.1660; (d) 3.1149, 0.7459, —0.8608.

751. The problem reduces to computing the root of the equation x*—3x+
+1=0 contained in the interval (0, 1).

Answer: x=0.347 (to within 0.001).

752. 2.4908.

753. (a) 1.7320, (b) —0.7321, (¢) 0.6180, (d) 0.2679,

(e) —3. 1623, (f) 1.2361, (g) —2.3028, (h) 3.6457, (1) 1.6180.

754. (a) 1.0953, —0.2624, —1.4773, —2.3556; (b) 0.8270, 0.3383,
—1.2090, —2.9563;

(c) 1.4689, 0.1168;

(d) 8.0060, 1.2855, 0.1960, —1.4875;

(e) 1.6357, —0.1537;

(f) 3.3322, 1.0947, —0.6002, —1.8268;

(g) 0.4910, —1.4910,

(h) 2.1462, —0.6821, —1.3178, —4.1463.

CHAPTER 6
SYMMETRIC FUNCTIONS
755. The following is a detailed solution of Example (f):
F(x1, Xo, Xg)=(x%+x3) (x3+x5) (x3+ x3)
The leading term of the polynomial F is x?- x3.
Write out the exponents in the leading terms of the polynomials that
will remain after a successive elimination of the leading terms due to

subtracting appropriate combinations of the elementary symmetric poly-
nomials. The exponents are:

4, 2,0, 1,1, @3, 30,3, 2 1)and (2, 2, 2).
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Hence, F=f2f2+Af{fs+Bf3+ C f.fof s+ Df? where A, B, C, D are nume-
rical coefficients. We determine them, specifying particular values for x,,
X3, X3-

X1 X2 X3 N fe fa F
1 1 0 2 1 0 2
2 -1 -1 0 -3 2 50
1 -2 -2 -3 0 4 200
1 -1 -1 -1 -1 1 8

We have the following system of equations for determining 4, B, C, D:
2=4+B,
50= —27 B+4D,
200= —108 A+16 D,
8=1-A—-B+C+D

whence B=—-2, D=—1, A=-2, C=4.
Thus,

(3 +x3) (3 +3) (B +xD) =f212 -2 s~ U3+ 41 Lo f s 17
The answers for the other examples are:
(a) F3=3fifo; (b) ifi=3fs; (©) f1—4f2fa+8fifs;
(d) fafe—=2f3fs—3Af3+ 6 2 fof s+ 32 s =112
(@) fifa—1fs; (8) 21 —9f1fa+21f3;
() fifi—4f2fs— 415+ 181 fuf5— 2712
756. () fifefs—fifa—1f3 (b) fifatf3—4fafs
() f2—4fifi+ 8.
757. (a) f2—2fy; (b) f2—3f. fa+3fs;
(© fifs—4fu; (A) f2=2ff s+
©) frfa—fifs=2f+4f; () fi—42fa+ 23+ 411 fa— 43
(8) fafs—3fifo+5f; (B) f2fs—2hfs—fifut5fs;
) f1if2=2f2f s~ fof o+ 5f i —5Fs;
0) £2fa= 3N = F2f s+ 5o fs+f1fu—Ofs;
(k) f2=5f8fo+5f1f3+ Bftf s~ o fa—5f1 fa+ 5fs;
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W) fifai— S+ (m) f5—2f fut 21 fs— 2

() f2fai— 2 fu—f1fs+6F;

(0) Lilefs=3f2fi— 33+ 4fo i+ TS5 — 12fs;

(O) f3=30 NS s+ 32N+ 33— 3f fi—3fi f + 3fss

@ fofs=3fifofs—SRfa 4 33+ 26 i+ 1 fs—OFss

(0) fEf3=2fs— 2P+ 4L fot 22— 33+ 26 /o — Of L fs + 6

6) Lh= 42— fifs+ U5+ Th L fo+ [ fi = 3fi— 6L fu = fiSs + 6fe;
() f1-61f+ 23+ 611 fi—2f,— 120, o s —Of2 1,

+ 3+ 6L fit 0N fs—

758. (a) nf2—8f,;

®) ~f' 4 =8 T (=2

759. (a) (n—1)f3—2nf;; (b) (n—1)f3=3(n—2)f, fu+ 3 (n—4)fs;
(©) (n=1)fi=4nf2fy+2 (n+6) f2+4 (n—3) f,fs—4nfi;

@ 20=D0=D @ity e-2) .

760. f;g_2fk—1fk+1+2fk—sz+2_2fk—afk+a+---

n n n

761. (n— 1)1 Z a2f*—2(n— 2)'[ Z (Z ”

i=1 = i=1

263

6f;.

=(n—=1)1 Sy 8,+4 (n=2)! I f,

where

n
Z Z x%; F2=Z aiﬂk;fz=z Xi X
i=1 i=1

i<k i<k
Kh=% o 2(RA=3/—20) .
762' (a) f ’ (b) .f].fz_fa ’
LAl 2= fafs+9f
(© 72

LS

2 _2 n—3sJjn —
fnfnl ; (b) fn—l f2f S : (©) flfn—fl fn :
ffn2 1—2f2f2 —2ifn_afat4fs fuz 2fn"nf2
(d) . 7 ;

() flzfn—l‘_2fzfn_1_f1fn Sofuoa—(n=1)fi fu
Sn Ju )

763. (a fifofs—f2fi—f2

764. (a)

; (D)

FH3fif —Ohfafs+ 6+ 20fs
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765. —4. 766. —35. 767. 16.
768. (a) —3; (b) —2p°—3¢% (€) —P°(¥i—X %= —p);

—2p—3q ) 2p?—4p —4pg+34*+ 69
l4+p—gq ’ (1+p—q)p )

(d) q*; (&

a*—2b
2

769. Let x2=xz+x2 Then 2x?=x?+x%-+xt=a?—2b. Hence, ]/

] 2— . . - . . .
or — ,/a 5 26 is among the roots of the given equation. For this, it is

necessary and sufficient that the following condition be fulfilled:
at (a®—2b)=2 (a®—2ab+2c)*.
770. a=—x;—Xx;— X,
ab—c=—(x,+x5) (x1+x5) (Xo+x3),
C=—X; X3 X3
If all roots are real and negative, then
a>0, b>0, ¢>0.

If one root x, is real and x, and x; are complex conjugate roots with nega-
tive real part, then x,+x3<0, x5 X3>0, (X;+X,) (x,+x3) >0 and, hence, also
a>0, b>0 and ¢>0. The necessity of the conditions is proved.

Now assume that a>0, 6>0, ¢>0. If x; is real and x, and x5 are complex
conjugates, then x, x;>0, (x;+x,) (x;+x3)>0 and from ¢>0, b>0 it follows
that x; <0, 2Re (x5)=X,+x3<0.

Now if x;, x,, x5 are real, then from ¢>0 it follows that one root, x;, is
negative, and the other two are of the same sign. If x,>0, x3>0, it follows
that

—X1—Xe>X3>0, —X;—Xx3>%,>0

and then —(x;+x,) (x,+x;5) (x3+x3)<0, which contradicts the hypothesis.
Hence, x,<0, x3<0.
An alternative solution is given in Problem 744.

c
- Vad@ab=a*=bc) '

771. s=% V a(@ab—a*—bc), R

772, a (4ab—a®—8c)=4c%

35 1,679

773. (a) % () 7. () — 55

774. (a) a3 a%—4ad a,— 4ad ao+ 180y a; a, ay— 27a% a2;

a, Gy

(b) aia;—a3ao; (c) =9; (d) atai—ata;—ata,

0Q3
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775. It is sufficient to give the proof for the elementary symmetric poly-

nomials. Let ¢, be an elementary symmetric polynomial of x,, x5, ..., x, of

degree k; let f;, be an elementary symmetric polynomial of x;, xz, e Xy

It is obvious that @, =/fk—X1 ¢x—1, whence it follows that
Pr=fc— X fe_1+ B fe—a— .o H(—x) T AF(=DF xE

(=D* pr=ak+ar_y X1+ ... +ayxk 14k
776. x,+x3=f1—x3,
(i—x) (i—x)(fi—x)=fi—f+hfe~Fs=Hlf~ T2

2x; — Xy — X3= 3%~ f1,
(3, —f1) (Bxa—1f1) Bxs—f1) =279/ o+ Qfl",
Xt Xy Xo+x3=f2—famf1 Xs,

X=X Xy=f1 X1~ Fs.

7. Z -% =(n—k) fr_x

778. Let F (xy, X3y -, X)=P (3, f25 .-, ). Then

oF o0 0o 0@
G =", (n_l)ﬁ_(972+“'+f"_15—ﬁ,

i=1

779. Let ¢ (@)=F (x,+a, x;+aq, ..., x,+a). Then

, OF (x,+a, x;+a, ..., xp+a
¥ (@)=, Tt nte nta)
12

Since ¢ (a) i 1s not dependent on a, then ¢” (a) is identically zero, whenceit fol-

6F_ OF (X1, X3, ..., Xp) .
lows that Z 0. Conversely, if Z ——T——— is iden-
i=1 i=1
- OF (x,+a Xnt+a)
tically zero, then ¢’ (a)= Z ! ax 2 h -2 =0 whence it follows

i=1
that ¢ (@) does not depend on a and ¢ (@)=¢ (0), that is,
F(x,+a, xo#+a, ..., x,+a@)=F (x;, X2, ..., X).

n

. . . d . .
By virtue of the preceding problem, the condition Z %:0 is equiva-
,

i=1
lent to the condition

od oo o0
n'a—f1 +mr—=1)fi = 6f Y A =0.
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780. Let F(x;, x5, ..., X,) be a homogeneous symmetric polynomial of
degree two. Then its expression in terms of the elementary symmetric poly-
nomijals is of the form ®=A4f24 Bf,. By virtue of the result of Problem 779,
it must be true that » - 2Af1+(n—1)Bf1 0, whence A=(n—1)a, B=—2n«
and

F(x, %o, ..., xa=al(n=1)fi=2nfil=a D (xi—xe)
i<k
781. The expression of a homogeneous symmetric polynomial of degree
three in terms of the elementary polynomials is of the form Af%+ Bf, fo+

+ Cf5. By virtue of the result of Problem 779, it must be true that 34nf7+
+nBfy+(n—1) Bf24(n—2) Cf,=0 whence

Flxy, xp oon, xn)=al(n=1)(n—-2)f]=3n(n—2) Afi+3rf]
782. (n—2)f2fi -2 (n—1)f7fs—4(n=2)f3
+(10n—=12) f fo f3—4 (n—1) f2.f—Onfe + 8nf, £
783. We can take

S
k=i (x1 —%, K= E, xn—% :
Each function ¢, has the required property. Furthermore, if F (xy, X, ..., X,)=

=F(x;+a, xa+a, ..., x,+a) and F(xy, X3y ..., X)=D (fi, fo, .., [;)» then
F(x;, X2, .0, ,)=D (0, @2, Py -0, @)
784. (a) —493—27¢2, (b) 1842
785. (a) 8¢,
(b) —4p3 P2+ 1604 ¢, — 2705+ 144 @, ¢ ¢, — 12803 i + 256¢3.
786. s,=J2—2f;;
s3=f1—3fi fo+ 3fs;
sy =f1—4f2 L+ 2340 — s
55=fis—5fi’fz+5f1f§+5f12fa“5fzf3—5fif4+5fs§
se=f1— 60 o+ I+ Ofifs— 23— 121/ fs

—6f2f,+ 3f3 + 6f, i+ 6f1 f5 - bfs.
787. 2f;=5%—s;

6f =53 — 351 52+ 2533
24f,= 51— 653 53+ 85, 55+ 353 — 6,5
120 fy=53— 10525, + 2052 55+ 1 5s; 53— 205, 55— 305, 54+ 24s55;
720f; =58 — 155% 5, + 4053 5, + 45 52 53— 120 5 55 55
— 1553 —90s2 5, + 40524905, 5,4 144 55 55— 1205,

788. 5;=859. 789. s3=13. 790. s1,=621.
791. s1=—1 s2=5;= ... =¢5,=0.
792. This is readily proved by mathematical induction by means of the
relation
asy+bsy_1+cs;_.=0
where si=x¥+x5.
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793. 55— 53=5(fi—f2) (fs~f102); $a—si=3(fa~f1f).
794. 55=—D5fofs; 53=3f3; 52= —2f2.
795. s;= —Tfofs; 52=—2fa; 55=5fs

796. x"—a=0.
_2 n— A e _ ar _
797, x* lx” +1.2x” o ( 1)"7!—0.
798. xn+P‘—l(°‘) X" 1+P22( %) ”—2+...+P';1—('"')=0,whereP1,Pz,...,Pn
x!
X2

are Hermite polynomials: P, (x)=(—1)* e 2 — & > aisa root of the
Hermite polynomial P, ., (x).
Solution. Let the desired equation have the form
XM+ a; X" g, x4 +a,=0.
By virtue of Newton’s formulas
a, =a,

2a, =0a,—1,

0 =aa,—an_;.

From these relations it follows that g, is a polynomial of degree k in «.
Set kla,=P, (). Then, taking Py=1, we get

P=cand P —a Pp_1+(k—1) P,_,=0,
—abP,+nP,_,=0.

The first relations show that P, is a Hermite polynomial in « (see Problem
707). The latter yields P, ., («)=0.

799. 3 (53— s08):

n k
800. D (x+x)k= D Crsi_mx™,

i=1 m=0

Z Z (x]+xl) —Z Cmsk n Sm,

i=1 j==1

k
Z (x,+x,)k=§ (Z Cl’fsk_msm—Z" sk) .

i<j
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2k
|
801. Z (XI—Xj)2k='2‘ Z Cg;(('—l)'”SmSzk—m-
i<j m=0

802. Multiply the second column by —s,, the third by s,, ..., the kth by
(—DF—1 5y—1 and add to the first. By Newton’s formulas, we get

| A 1 0 0
B A A T e o
(k=1) fies fuca o fi 1
kfk fk-l f1|
! 0 1 0 .0
! 0 fi 1 .0 '

| 0 fk—z fk—a oo
D=1 s feor feme -2 fid

803. Multiply the second column by —f;, the third by fs, ..., the kth by
(—1D*71f,_, and add the results to the first column. Newton’s formulas yield
the desired result.

804. n! (x"—fix" "1+ fox" "2+ L.+ (= D).

805. LZ)~ (%) where d is the greatest common divisor of m
*(7)
and .

806. By virtue of the result of Problems 117, 119, it suffices to consider
the case n=p; py ... py, Where py, ps, ..., p; are distinct odd primes. In this
case, s;=s53=5,=(—1)%; 5,=2 (—1)*~1 if  is divisible by 3, and s;=(—1)*
if n is not divisible by 3. Computations by Newton’s formulas yield:

I—(=1)*
(=e—1—y
f3=—§—— if n is divisible by 3,
(=DF=1 .. .
fs= — if n is not divisible by 3,

(=nk-1—1
fi= — if » is divisible by 3,

1)kt
fom 7L it wis not divisible by 3.
807. s,=s5,=s3= ... =s,=a. Hence, for k<n

kfi,=afy_1—afi—2t+ ... +(— 1)k,
(k=D fioi=af—ot+ ... +(=1DF7%,

Ke=la—k+ D fir fi=2EL g

whence
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Obviously, f;=a; therefore,

a(a—1) a(a—1) ... (a—k+1)

f‘2=_1—.2 1 ~--1fk= 1.2 . k
and $0 xy, X, ..., X, are roots of the equation
w @ uoq, Gla=1l) _wafa=l) oo {a—n+1)
-7 x +;1.2 X (=) o =0,
a(l—a)(2—a) ... (n—
bpima 210 C=a) . (1=a)

n!
808. (x—a) (x—b) [x"+(a+b) x" 1+ .. . +(@*+a"" 1 b+ ...+ )] =
=(x—a) [x" T +ax"+a® x" "1+ ... +a* x=b (@"+a"" ! b+ ...+ D]
=x"ti— (@t a" b+ ..+ Y xtab (@ +a" T b+ ...+ bY).
The power sums 6;, Gy, ..., 6, for the new Kpolynomial are obviously equal

to zero. But o, =5, +a* +b*. Hence, 5, = —(a* +b%) for 1 <k<n.
809. 5, = —ak— bk for odd %,

k k

2
Sk= —(a 2 _p? ) for even k.
810. (a) (x+a) (x*+ax+b)—c=0;
(b) x (x—a*+3b)2— (a®b*—4aPc— 46+ 18abc—27¢%)=0;
) X*+@Bb—a®) x*+b3b—a®) x4+ b*—ac=0;
(d) x® (x—a®+3b)+(a® b2—4aPc—4b*+ 18abc—27¢?)=0;
(e) x*—(a®—2b) x*+(b*—2ac) x—c*=0;
(f) x®+ (a®—3ab+3c) x*+(b*—3abc+3¢*) x+ 2=0.
811. »2+(2a*—%ab4-27¢) y4(a*—3b)=0.
ab—3c ot b3+a3c—6abc-|;_9_c2'_20.

812. 2 —

c c?
. ab—3c _,  b*—5abc+6c? "
813. ) z »+ po ¥
_ a2b2—2b3—2¢z32b+6abc—7c2 o b“’—SaCt;c+602 - ab:Bc y+1=0.

814. (a) y°*— by +(ac—4d) y—(a*d+c*—4bd)=0
(Ferrari’s resolvent),
(b) »*— (3a2—8b) y*+(3a*—16a%b+ 1662+ 16ac—64d) y— (2
—4ab+8c)t=0
(Euler’s resolvent),
(c) ¥—by*+(ac—d) y*—(a*d+c*—2bd) y* +d (ac—d) y*— bd?%y
+d®=0;
(@) 1°+3ay’+(3a2+2b) ¥4 4-(a®+4ab) y* 4+ 2a2b+ b +ac—4d)y*
+ (ab?+ atc—4ad) y+ (abc— atd— ¢?)=0.
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—at Vo — 4+ 4+ Va— b+ 4y, Va — 46 + 4y,
. :

The signs of the square roots must be taken so that their product is equal to
—ad+4ab—8c.

816

3 a 3 B
Lot ]/ 4a+7/ B2—64a® + ]/4:1 +e Vb= 64a® + ]/4a+521/ b?—b4a®
= . ‘

815. x=

s=—§+

1,i13
-

The signs of the square roots are taken so that their product is equal to —b.
817. (y+a)* (3*+6ay+25a%) + 31256%y=0.
Solution. The roots of the desired equation are:

Y1=0x1 Xo+ X0 Xg+X3 Xt Xg X5+X5X1) (X1 Xg+ X3 X5+ X5 Xo+ X5 X+ X4 X1);
Va=00, X3t X3 XoFXoX5+Xs XatXgX1) (X1 Xo+Xs Xgt X4 X5+X3 X5 +X5 X1);
Ya=(Xg Xo+X2 XatXg X3+ X3 X1 +X1 X5) (%5 X424 X1+X1 XaF 25 X3+ X3 X5);
Va=0g X1+ X, X3+ X3 X5+ X5 X4+ X5 X3) (g Xg+XgXs+ X4 X1+ X1 X5 +X5 X2);
V5= 005 Xg+Xg X2+ X Xt Xg X1+ X1 X5) (K5 Xp+2g X1+ X1 Xg+ X5 X+ X4 Xs);

Ve=0%g X1+ Xy XaF X4 X3+ X3 X5+ X5 X3) (g Xg+ X4 X5+ X5 X1+ X, X5+ X5 X2).

The sought-for equation is obviously of the form
Yo+ c1ay® + eyt +e30%y% + c,ay? + (65a° + €60%) y +(620° + csab?) =0,

where ¢, ¢, ..., ¢z are absolute constants. To determine them, put a= —1
b=0, and a=0, b=—1. We get
|
a b | x| Xe | X3 | X4 | X5 | Y1 | Y2 | Y5 | Ve ¥s | Ve
|

-1 —i| 0 1 [3—4

|
1 1 ‘3+4i 1

|
0 | -1 1 € ! g? g3 et 0 -5 ‘ —bBet | — 5e? —5e? | —5¢e
|

J

In the first case, the desired equation is of the form
(y—1* (»*—6y+25)=0.

In the second case, y°®+3125y=0, whence we determine all the coefficients,
except cg. It is easy to verify that ¢,=0. To do this, we can, say, take a= —5,
b=4. In this case, x;=x,=1, and the remaining roots satisfy the equation
x*+2x%+3x+4=0 and all the necessary computations are performed with
ease.



CH. 6. SYMMETRIC FUNCTIONS 271

818. Let f(xX)=(x—xy) (x~xz) ... (x—x,), where x;, x,, ..., x,, are inde-
pendent variables. Also, let

T (X)=f (%) qr (x)+re(x) and  rr (X)=crtere X+ ... +Cpn XL

The coefficients ¢;; are obviously some polynomials in x;, x,, ..., x,.
Furthermore,

€11 Ciz Cin 1 1 1
Ca1 Coz Can X X Xn
Cn1 Cng Cnn xi"_l XQ‘_I xz—l
| ry(x)  ra(xe) ry (Xn) |
=| r: () ra(xs) ry (Xn)
r (%) rn(x2) ... ra(xn)
; @ (x1) @ (x5) s @ (xn)
=’ X1 ¢ (x2) X@ () ... Xz @ (xn)
Pt le(x) xTle(x) L. x e (x)
| 1 1 U
=¢ (x1) ¢ (xa) ... ¢ (xn) Jfl. .. ’.Cz ..... ?Cn. .
xn—1 xgz—l xn—1
whence it follows that
lC1n Cps Cin
[ m o G =) @ (a) . 9 (m)=R(f @)
{ Cm  Cns Cnn |

The last equation is an identity between the polynomials in the indepen-
dent variables x;, x,, ..., x, and therefore remains true for all particular values
of these variables.

819. First of all, satisfy yourself that all polynomials ¢, (x) are of degree
n—1. Introduce the following notations:

fre@)=apx* 71+ . +ap_,,
fr=ax""*+ ... +ap,

@ (xX)=by x*~14+ .. +by_,,

B (X)=bg x" K+ ... +bp

Then
F@)=x""k+1 fi (x)+fi (%),
@ ()=x""5+1 op (x)+ P (%),
bie () =fie () x5 HT @ () + 8k ()] =i (%) [x" 5+ i (x)
+fic (N =Fc (%) =0k fic ()= (a0 br—byar) x" 1+ .. .
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Suppose Y, (X)=cpi+cpex+ ... + ¢, x" "t and let xi, xp, ..., X, be the
roots of the polynomial f(x). Then

Ci1 Cr2 Clni i l 1 1 i
Co1  Co2 Can 1| X1 Xo Xn 1
Cni Cns Cnn i ' x=loxn=l L xnd i
$r () b1 (xa) oo du (xa) |
= bal) $a () o e ()
$n () dnx) - Gn(xa)
filx) o (x) filx) @ (x) .. Xn) @ (xn) :
=i falx) @ (x) falxa) @ () .. ) @ (xn) :’
S () @ (x1) S (x2) @ (x5) ... fu(xn) @ (xn) :
PAGx) filxe) oo filxn)
=0 (x)p(x) ... ¢ (xn)- fo(x1) fa(xa) - fa (-x,,.) i
In (xl) Su(xa) oo fu(xn) |
a, 0 0 ; 1 1 l 1
=em)eln) .ol @ W Ol m ™
| Gn_y aGn_s aol !x"—' xg—l xn—1
! 1 1
=9 (x1) ¢ (x;) ‘P(xrz)ao'lJfl..‘J.cz......x'.l.
L xn—] xg=1 xnl

€ €13 --- Cin |
|

1 fn e G |=apo(x) o (x) ... @ (=R(f @)

Cm Cne ... Cnn i

820. The polynomials y, have degree not above n—1. This is obvious
for 1 <k<n—m, and for k>n—m it follows from the fact that x, are Bezout
polynomials ;. _,, ,, for f(x) and x"~" @(x). Let x, (x)=cp+cpex+ ... +
+epx" "1 and

! 1 1 1 i
acim mo x|
[ gt g
Then
€y C12 ... Cin | Xo (%) xa () oo (xn

)
€1 Caa .. Coan i A= Yo (X1) A2 (%) ... 2 (xa)
Cni Cnz -.- Can | Pxn (X)) oa(xe) oo Xa (xn)
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1 1 oo

Xy Xy Xn
% xlll——m—l ngm—-l o xﬁ*m——l
xp=m fo (x1) X3 ™ fi (xa) coe XIS (Xa)

X oy (X)) KT 1 (X)L XTI i (x)

1

=9 (xl)‘P(Xz) @ (xn) A-

-1 n_ga .. Oy

=al ¢ (x) ... @lxa) A

whence immediately follows the desired result.

821. (a) —7, (b) 243, (¢) 0, (d) —59, (e) 4854, (f) (by ag— by ap)*—(by a;—
—by ap) (by ay— b, ay).

822. (a) For A=3 and A=—1;

N Vzzl/4V2-2
—o-Vo+iVeVZ+2.
2 2
©r=+V=2 r=+V-1i2
823. (a) y*—4y*+3y'— 12y +12=0,
(b) 5y°—T7y*+6y°~2*—y—1=0,
(©) y*+4yt—y—4=0.
824. () x,=1, x,=2, x3=0, x,=—2,
Y1=2, y2=3, y3=—1, yo=1.
(b) x1=0’ x2=3a x8=2a x4=23
=1, y.=0, y;=2, y.=—1.
©) xi=x,=1, x3=—1, x4=2,
Pi=ya=—1; ya=1; y,=2.
(d) x1=0$ x2=03 X3= 1’ x4=1, x5,6=2,
n=1, y2=3, ys=2, »=3, ys=1%i V2.
(e) xl=0, x2=0: x8=2’ xd=x6=2s Xe= _4:
y1=2s y2=_2: ya=0; J’4=J’s=2, y6=2:
X =4, %= —6, X3=—2[3, y,=6, ys=4, y,=4/3.

A=

10. 1215



274 PART III. ANSWERS AND SOLUTIONS

825, aga:*l.
826. Let f(x) =a (x—x;) (x—x3) ... (x—x,);
P1OY=byxk+ ... +b; P () =co X"+ ... +ep.
Then

R(f, 91- 432):06"'”‘ n @1 (x2) pa (x3)

i=1

=[a6" Ii[ @ ( x,)][ n s (x1) ] R(f, @1) R(f, @)

i=1

827. Only the case n>2 is of interest. Denote by d the greatest common
divisor of m and n; §&,, £,, ... are primitive nth roots of unity; 0, n,, ...

are primitive roots of unity of degree g Then,

R, »=D=]T @& -n=]Ta-z

@ (n) 9l
~[TTa-m]*™ waye™
If m is divisible by n, then R (X, —1)=0. But if m is not d1v1s1ble by n,

then n;# 1, and, by virtue of Problem 123, Xp (D=1 for nm#p*, X (D=p
for n,=p* (p is prime). And so

R (X, x™—1)=0 for n1=§=1

>

9 (n)
R(Xp, xm=1)=p ™ for m=2=p",

R (X, x"—1)=1 in all other cases.

828. It is obvious that R(X,, X,,) is a positive integer which isa divisor
of R (X, —1) and of R(X,, x"— l) Denote by d the greatest common di-
visor of m and n. Xf m is not divisible by n, and n is not divisible by m, then
% and —- are different from | and are relatively prime. By virtue of the re-

sult of the preceding problem, R (X, x™—1) and R (X,,, x"—1) are in this
case relatlvely prime, and therefore R (X,, X,)=1.

It remains to consider the case when one of the numbers m, n is divisible
by the other. For definiteness, say » divides m.

If m=n, then R (X,,, X,)=0.If —’5 is not a power of a prime, then
R(Xpy, x"—1) = land, hence, R (X, X,)= 1. Finally, suppose that m=np*, Then

R Xm Xo)= [] R(Xm # —1”( )

8/n
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All factors on the right are equal to unity, except those for which rg’ is a po-

wer of the number p.
If n is not divisible by p, then there is only one factor different from unity
when 8=n and
2 (m)
R(Xm, Xn)=R(Xm, x"—1)=p ®/n) =pem),

If n is divisible by p, then there are two factors different from unity: when

8=n and 8:}'—:. Then

o {m) o (m)

R (X #'=1) _ ynim s o)
R(Xp, x"P—1)

R (Xm, Xn)=

1 1 @ {m)
¢ m [>p)‘_l(p—1) _p}‘( —1) ] A e
=p P =p P =p¥in).
Thus,

R(X,, X,)=0 when m=n,

R(X,, X,)=p*® when m=np,

R(X,,, X,)=1 otherwise.

829. (a) 49, (b) —107, (c) —843, (d) 725, (e) 2777.
830. (a) 3125 (b2 —4a%)?, (b) M (4A—27)3,

(©) (b*—3ab+9a%%, (d) 4 A2—8x+432)%

] iV§>;

831. (a) 2= +2; (b) A, =3, 7\2,3=3<_§ Y

(© 2=0, 2A;=-3, 2A3=125;

@ Ny=—1, Ag= — 2

832. In the general case, if the discriminant is positive, then the number
of pairs of conjugate complex roots is even, if the discriminant is negative,
then it is odd.

In particular, for a third-degree polynomial, if D>0, then all roots are
real; if D<0, then two roots are complex conjugates.

For a fourth-degree polynomial for D >0, either all roots arereal or all
roots are complex. For D <( there are two real roots and one pair of conju-
gate complex roots.

833, f=x"+a, f'=nx""1,
=l
R(f", fy=wrant, D(fy=(=1) ? na*

10*%
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834. f=x"+px+gq, f'=nx""'+p,

n—2 n—1
oo n—1 P K
ko= T] (2500 | 5 )
k=0
27 . 2r
where £=cos +isin
n—1 n—1

=p" qn—1+(_1)n-1(n_ 1),,_.
nn—1) (n—~1) (n—2)
D(f)y=(=1) * mgrre(-1) 7

(I’l —_ l)n - 1pn
835. Let the greatest common divisor of m and » be d. Introduce the no-
tations: m=—0r, = %, ¢ is a primitive nth root of unity, n is a primitive

nith root of 1, apx™ " +ax"+a,=f(x). Then f'(x)=(m+n) axm+r"14
+ma;xm 1, The roots of the derivative are £,=,= .

m—1—\
/ may P
Emy k= l T © =Enek, k=0, 1, ..., n—1
Furthermore,
n—1
R, N=(nsnysnagrnap=t [ [a+ 22 gpetn ]
k=0

_(m+n)m+nam-fnam—l [l__[ ( )Em“f} ]d

"y gty g tn Y4
=(m+n)m+"am+" am—1 a”1+(—1)’"1+"1—1 n'm'™ ah _1‘
0 2 2 (m+n)”'1+"1 06"1

206 ag,—l [(m+n)m1+”1 af)nl ag,+(_ 1)’"1 tm =1y gy arl11+"1]d

and, hence,

(mtn) (myn=1)
D(f)=(—1) 2 ag=1am=1 [(m+nym+m am g
+ ( _ l)ml Tm—1 g g am +n,]d.
836. The discriminants are equal.
837, xyxgtxgXy4— X1 X3—Xg Xa=(X1—x)(Xs—X3),

Xy Xg+Xp Xg—X1 Xg— Xz X5= (%1 —X2)(X3—Xy),
X1 X4+ Xg Xg— Xy Xo— X3 Xg=(X1—X5) (X4 —X3).

Squaring and multiplying these eauations, we get the required result
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838. Let f(x)=a, (x—x;) (x—x3) ... (x—x,). Then
D (f(x) (x—a)=ad" (a—x1)* (a—x5)?

a2 [ 1 co—xr=0 (10) trare
i<k
839. Let us denote ¢ (x)=x""14-x""2+ ...41. Then (x— 1) p(x)=x"—1,
whence it follows that
(n—1) (n—2)
D@) [ (MP=D(x"—1)=(-1) *

Consequently,
(n—1) (1=2)

D(@=(=1) * =
840. Let ¢ (x)=x"+ax" '+ax"" 24 ... +a. Then ¢ (x) (x—1)=x"*+1 +
+(a—1)x"—a. Hence,
nn—1)
(ra+ 12D ()=(—1) 2 @ [(n+1)"+1a+nn (1 —a)*t).
Thus,
nin—1)

—(_ 9 -1 (n+1)n+1a+nn(1__a)n+x
D(@)=(-1) a Tas

841. Let f(x)=ay (x—x) (x—x3) ... (x—x,),
¢ (X)=by (x—y1) (Xx—pys) ... (X—ym).

Then
D (fo)=(ao by)Pm =2 ﬂ (i — xx)? ﬂ (i)
i<k i<k
n m
xﬂ l_[ ykz_azn 2 ﬂ (x,-—xk)2b§’”'2
i=1 k= i<k
< [T vimser|ay oy ﬂ ﬂ xi=9)| =D() D) (R, 2P
i<k i=1 k=
842. X m(xl’ h —1) xpm—l Consequently,
P

DX D" =R =1, XP=D (2 - 1).

Substituting the values of the known quantities, we get
m m—1 —;pm_l(p—l)
D (X p)=p™ —(nthr (—1) .

P

843. X, | | (x8—1)“(?):(xn_1) I1 (xs_l)"'(F).

8/n 3fn
3£ n
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Let ¢ be a root of X,. Then

X(@)=nenr [ | (2-1)" (%)

8/n
8#£n

To simplify computations, let us first find the absolute value of the dis-
criminant of X:

=] 1x@i=mew [1 1 -y (5)

8/n z
3#n
% (n) u n\
n 3
z£ )
¢
o w,or ()
Sin 3
8§#n

n
Now, X, (1) differs from 1, provided only that 3 is a power of a prime
B

number. On the other hand, (—n-

3

is not divisible by the square of a prime. Thus, in the latter product we

)is different from 0, provided only that
n
3

. . n
must retain only those factors corresponding to §=p1, P, ..., Dy, where

D1, Des ..., Py are distinct prime divisors of the number n.

Thus,
ne (ny

[T »e e .

pin

ID(Xn)|=

Since all roots of X, are complex, the sign of the discriminant is equal
P (n)

to (—1) 2 . Finally,
o (n)
D (X)=(-1) ?

n®
PP (Mlp—1

pln

1T
844. E,=n! (1+ x+...+i) ,
1 n!

, x x’l_]
a1+ A
E, n.(1+1+...+(n_1)!)
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Hence
Ep,=E,—x",

R(Em En=] | (=xm=(=1y (= ) nlln=(atyr,
i=]
nin—1)

D(E)=(=1) 2 (a)
845. It is easy to establish that

(a=-1) ... (a—n)=0‘

(nx+n—a) Fp—x (x+1) Fa+ a

n!
Let x;, X», ..., X, be roots of F, Then
. c a(a-1) ... (a—-n
Fn (Xi)zm where c= ( )m ( ).
L I .
Hence
" ch _ on
R (Fn, Fr) = Ox 0 (x;+ 1) a(a=1) ... (a—n+1) (a—1) ... (@a—n)
n! ’ n!
_ an—l(a_l)n—z(a_g)n—z (a_n+1)n—z(a_n)n—1
- (nh)n—2 ,
"("2_ D an(a— 1yt (@a—2)n"2 . (a—n+ )2 (@—n)n—t
P ()= (=1 (nlyi—® :

846. P,=nP,_,. Hence
R(P,, P)y=n"R(P,, P,_)).

Furthermore
P,—xP,_;+(n—1)P, ,=0.

Consequently, P, (§)=—(n—1) P,_, (£) if £ is a root of P,_,, and therefore
R (P, Pn—l)z(_l)"_l (n— 1)"—1 R(P,_s, P,,—l)
=(=1)""1(n—-1)""t R(P,_1, P,_2)
It is now easy to establish that
n(n—1)
R(Py Poop)=(=1) % (a=1y~t(n=2y~% ... 2.1

Finally
D(P)=1-22-32...(n—-1)""1n"
847. D(P)=1-29-35 ... mn1,
848, D(P,)=2""n".
849. D(P)=(n+ [)r—1. 2n(n=1),
850. D(P)=1-28-3%.. . pmn"t.]2(n7 D). =y . (2n-3)%
851. D(P)=2%-3' ... " 2. (n+1)""L
832. Let f(x)=x"+ax" 4 ... +a,=(x—x) (x—x9) ... (x—x,).
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D(f)=TI (x;—x,)% We seek the maximum of D (f) by the rule for finding a
relative maximum by solving the system of equations

x24x3+ ... +xp=n(n—1) R,

9 (2t o . )_
- (1) AR+ .. x| =0.
It is easy to see that
0D _ Df*(x)
Ox; ()

We thus have
f7(x) D=2xx; f'(x;)=0fori=1,2, ..., n
Thus, a polynomial f(x) that maximizes the discriminant must satisfy
the differential equation
¢f () —22xf"(x)+ Df " (x)=0

where ¢ is some constant. Dividing by % and comparing the coefficients of
x", we find that the differential equation must have the form
nf () —xf'(x)+c’f” (x)=0
where ¢’ is a new constant.
Comparing the coefficients of x”?~* and x"2, we find ¢;,=0, a;=
= —# ¢’. Now we can determine ¢’. Indeed,
n(n—1) RB=x2+xi+ ... +xp=a2—2a,=n (n—1) ¢’

whence ¢’ = R2.
Continuing to compare the coefficients, we find that f(x) is of the form

n(n—1) nn—1)n—-2) (n-3)
2

44— 4
5.4 Rix

flx)=x"— R:x"~2% 4

It is easy to see that
x

re)=R Py (%)
where P, is a Hermite polynomial.
D(f)y=Rr(»=1.1.22.3% .., nn
This is the desired maximum of the discriminant.
853, 222 (— 1) a, ay, [D (f)12.
m (m—1) n

854. m™(~1) 2 am-lanl[D(f)™

855. F(x)= n (¢ () —x1).
i=1
Hence

2

p@=T1 pew-x [T re@-x0m-x0].

i=1 i<k
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It is furthermore obvious that

R (@ ()—x; @ ()—x)=(x;—x)™.
Therefore

pR=]1 pem-x) [] w-xm =0 [] pew-x

i=1 i <k i=1
which completes the proof.
856. (y+1) (»—5) (y—19=0.

857. (a) Solution. x*=3x+4. Let y=1+x+x* where x is a root of the
given equation. Then

yx =x+x2+xl=x+x2+3x+4=4+4x+x2,
yxi=A4x+4x*+x3=4x+4x  +3x+4 =4+ Tx+4x2.

Eliminating x, we get

4 74—y
1*—9y24+9y—9=0;

(b) »*—T7y2+3y—1=0;
(©) y*+ 508+ +7y—6=0;
(d) y4—12y2+43y2—49y+20=0.

22
858. (a) »*—2)2+6y—4=0, x= —yTy-H ;

2 2
(b) y2—9y°+31y2—45y+13=0, x= y_??:i ;

(©) y*+2y8—y*—2y+1=0, there is no inverse transformation.

859. y®—y*—2y+1=0.

The transformed equation coincides with the original one. This means
that among the roots of the original equation there are roots x; and x, con-
nected by the relation x,=2—x3.

860. Let x;=¢ (x;), where @ (x,) is a rational function with rational coef-
ficients. Without loss of generality, we can take it that x,=ax?+bx; +c.
The numbers ax®+bx;+c, axi+bxs+c, axi+bx;+c are roots of a cubic
equation with rational coefficients, one of the roots of which coincides with
the root x,=ax}+bx,+c of the given equation. Since the given equation is
irreducible, the other roots must coincide as well. Thus, either ax3+bx,+c=
=x3, axi+bx;+c=x,, or axi+bx,+c=x,, axi+bx;+c=x,. The latter
equation is impossible since x; cannot be a root of a quadratic equation with



282 PART III. ANSWERS AND SOLUTIONS

rational coefficients. Thus, on our assumption the roots of the given equation
are connected by the relations

xy=ax2+bx,+c¢,
xs=axi+bx,+c,
x,=ax2+bx;+c.
Consequently
VD =(a—x1) (x3—x3) (1= x5)
=lax?+(b-1) x+¢j laxi+(b—1)xs+c] lax3+(b—1) x;+c]

is a rational number, being a symmetric function of x,, x,, x, with rational
coefficients. The necessity of the condition is proved.

Now suppose that the discriminant D is the square of the rational number
d. Then

d d

(r1—X2) (1 —x5)  3x3+2ax,+b

Xo— Xz=
On the other hand,
X+ X3=—a—x;.

From this it follows that x, and x; are rational functions of x,. This
proves the sufficiency of the condition.

861. (a) gﬂ_iiﬁ,
V2-Vi
~3+7V2-V1
®) R )
4 o = 4 .
© 1+3V2 +2V/2-V%8.
a?—oa+1
862, () X0 (b) 1702—3x+55, (c) 3— 100+ 8at— 303,

3
(d) the denominator vanishes for one of the roots of the equation.
(pm —bm?+ amn — n?) x, + (amp —np — cm?)

63. 2 = .
8 mx3+nx;+p T ma—n

864. If
_ax +B
= Yx1+8 !
then
o X tB
o sz+8
e axg+B (4 By) X+ (x+8) P
Ty td T (a+d) v Ry 8
On the other hand, x,= :Y%’ whence follows the necessity of the
—
relation

ad—By={(x+8)%
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865. Let
ax"+a X" L ta=ap (x—Xy) (Xx—x3) ... (x—x,).
Then
apx"—ax" "t L+ (= Da,=a (x+x) (x+x5) ... (x+x,).
Multiplying these equations, we get
Az (x—x3) (x2—xD) ... (x2—x})
=(ap X" ay X" P — (g X" T ay xR
From this we conclude that in order to perform the transformation y=x2,
it is necessary to substitute y for x% in the equation
(@ x"+agx" 2+ ... P —(@ X" T a,x" 24 ... 2=0.
866. The desired equation results from a substitution of y for x® in the
equation
(@ox"+as X" 34 .. P+ (a X" 1a, x" "4+ ...)°2
+(ag x"~ '+a5x" S+ P =3 (@ X +as x4 )
x(@y X" ba, X" L Y (@ xR xP T84, L) =0.
867. There are only a finite number of polynomials x"+a,x" 1+ ...
with integral coefficients the moduli of whose roots do not exceed |, because
the coefficients of such polynomials are obviously restricted:
nin—=1) ... (n—k+1)

lag |l<— ol

Let f=x"+a,x"~*+ ... +a,, a,#0 be one of such polynomials and let
X1, Xz, ..., X, be its ToOts. Denote f,=(x—x7") (x—x7) ... (x—x). All po-
lynomlals [ have integral coefficients and all their roots do not exceed |
in absolute value Hence, there are only a finite number of distinct roots among

them. Choose an infinite sequence of integers my<my<ma<... such
that fme=fn,=fm,= .... This signifies that
x| =,
Xy b= XY,
mi n
x, =x’a":
where (a4, o, ..., %,) is some permutation of the indices 1, 2, ..., n. Since there

are infinitely many exponents m; and only a finite number of permutations,
there will be two (and 1nﬁn1tely many) exponents m; and m; to which cor-
l

responds one and the same permutation (e, oy, ..., ). For such expo-
nents we have the equations

m. .
x, 1,=x1 i

My
Xg =Xy

'2
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which show that x,, x,, ..., x, are roots of unity of degree mi,—m; because
Xy, X2, ..., X, are nonzero, by virtue of the condition a,#0.

868. Let F (x4, x3, ..., X,,) be a polynomial which changes sign under odd
permutations of the variables. Since F(x;, X, X3, ..., X)=—F (X1, X2, ...,
x,)=0, F(x1, X2, ..., X,,) is divisible by x,—x,. In similar fashion we prove
that F(xy, xs, ..., Xx,) is divisible by all the differences x;—x,. Hence, F (x,,

Xz, ..., X,) is divisible by A= n (x;—x;) equal to the Vandermonde deter-
i>k
minant. Since the determinant A changes sign under odd permutations of

the variables, £ is a symmetric polynomial.

869. Let ¢ (xy, x5, ..., X,) be a polynomial that does not change under
even permutations of the variables. Denote by ¢ (xy, x5, ..., x,) a polynomial
obtained from ¢ (xy, X3, ..., x,) by means of some deﬁmte odd permutation.

It is easy to verify that for every odd permutation, ¢ goes into ¢, ¢ goes
into ¢. Hence, p+& does not change under all permutations, —¢ changes
sign under odd permutations,

Next,

¢+ ?— ;
o= “2—— + 2 = F1+ } ‘s A
where A is the Vandermonde determinant. On the basis of the result of Prob-
lem 868, F, is a symmetric polynomial; F, is also a symmetric polynomial
since it does not change under all permutations of the variablcs.

870. (fi—f) A, where f;, f, are elementary symmetric polynomials in
X1y Xzy oevy Xy
871. w4a (a+P+y) 2+ +B2+v2) b+ (af +ay+BY) (@@—b)u

e (e +B+y0)+ '%2‘—‘ (%3 + B2+ Py + ay? + B2y + L)

+afdy (a®— 3ab+6¢) + (x—B) (B;Y) {r=2) ]/_A_ =0

where A is the discriminant of the given equation.

872. u*—3pp’u—

the given equations.
_ 873. Let y=ax*+bx+c be the Tschirnhausen transformation connec-
ting the given equations. Then, for some choice of numbering,

Xt X2 Yot X ya=a O+ xi+x) + 6 3+ x2+x2) + ¢ (x3+ x4+ x3)
will be a rational number. Hence, one of the equations

27qq £ VTA'
e —

——0, where A and A’ arc discriminants of

u—3pp’ u— =0

(Problem 872) has a rational root. Whence it follows that 1/ AA” will be a
rational number. This proves the necessity of the condition.
Conversely, let the equation

Tqq + /AN
—3pp’ u— gﬁ%:o *)

have a rational root u.
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It is easy to see that the discriminant of equation (*) is equal to
272 - - . -
e (q]/A’— VA ¢')® and, consequently, differs from VA by a factor
equal to the square of a rational number. Hence, the difference v’ —u”’ of
the second and third roots of the equation differ by a rational factor from
VA.
For y., ¥2, ¥; we have the system of equations:
n+y:+y,=0,
Xy y1+X2 Y2t X3 ys=u,
(x2—x3) Y1+ (X3 —X1) Y2+ (32 —Xg) yg=u' _’4”=VVA-
From this system we find
—Bux;+(xa—x5) rV/ A
6p
But (x;—x3) 'I/Z is expressed rationally in terms of x;. This proves the suf-
ficiency of the conditions.
874. The variables x,, x5, ..., x, are expressible linearly in terms of f;,

M1 Mas -+ -» Np—1- HeNce, every polynomial in xy, X, ..., x, may be represented
as a polynomial in f1, M1, May - o, Mp—1t

=

F(xy, X3 ..., x,,):Z Afommngs  qengl

In a circular permutation of the variables x;, x,, .., X,, the monomial
Afpnfang | myny! acquires the factor e~ (¥ 2t +(1=1)%,—1). Hence,
so that F(x;, x;, ..., x,) should not change in circular permutations of
the variables, it is necessary and sufficient that o;+20,+ ... +(r—1) o,
be divisible by n.

875. We can take fi, 1%, 72 N2 s Moy 0D,

\ 1 V3

876. Let My=x;+x.e+x5€, Mp=X;+x; 2 +x;¢c where e= — ) +i 5

2 —

Then %1 =<p1+i]/ 3 ¢, where @, and ¢, are some rational functions of x,
2

X,, X3 With rational coefficients that do not change under a circular permu-

tation of x;, x,, x5. It is easy to see that every rational function of x;, x,, X3
that remains fixed under circular permutations of the variables is expressible
rationally in terms of fi=x;+x,+x3, @1 and @,.

1t is sufficient to prove this for v, m~ % and %} But

1

My P= e
! @, +iQ, V3
n2\2 7? . 7 : 3
"hz(»;}]l.) ' /; = (. +ip2 V3)2 (@1“"?21/3)'
2 1

877. For n=4,
M=X1+ X —X3— Xy,
Ne=X1— Xy +X3— Xy,

Ny=X1—IXy— X3+ ixg.

1t 1215
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Ny
2ut By=1, 1y, O+ ify=—L2 9, if,=—2" 9 6, 6, are rational

3 1
functions (with rational coefficients) of x,, x,, x;, x, that do not change under
circular permutations. It is easy to see that together with f=x,+x,+x;+x,
they form a system of elementary functions. Indeed,

6,—i6 0, —i6
n,N—2= 2 73 8= 2 IT3
ub Yll 01 » s Yll O! (62+I63) E
i D1 (B2t i60)
! 0,—i04

878. Let n,=x;e+x,e2+x583+ x,64+ x5,
Na=x;6%+ x4+ x36+ x,63 + x5,
N3=X182+ Xpe+ X384+ x,62+ x5,
Ny=X164+ X083+ x84+ x4+ X5.

. . . n ..
Let us consider the rational function 7\1=%‘—2 and arrange it Iin po-

3
wers of ¢, replacing 1| by —e—e?—e?—¢*:
A =e@,+ e, +e%py+ ',
The coefficients of ¢,, ¢., @3, ¢4 are rational numbers. Substituting €2, ¢* and
et for ¢, we get
Ay = el e Prtet patepy+e®qy,

R

A= ’n:]nl =& @+ ey +et py+e? @,
4
A= _71_2713 =c o+, +e? gy teq,
2
For the “‘elementary functions® we can take f, ¢,, ¢s, ¢35, ¢4 Indeed Ay,
As, As, A can be expressed rationally in terms of them. Furthermore,
2= A A AT, =TI AT I

M 3=2 2 R AL =N AL A A2,

CHAPTER 7
LINEAR ALGEBRA

879. (a) Dimensionality r=2, the basis is generated, for example, by
X, and X,;

(b) r=2, the basis is generated, say, by X3, and X,;

(c)r=2, the basis is generated, say, by X; and X..

880. (a) The dimensionality of the intersection is equal to one, the basis

vector
Z=(5, =2, =3, —4)=X1—4X,=3Y,—Y,.
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The dimensionality of the sum is equal to 3, the basis is generated, say,
by the vectors Z, X,, Y,. )
(b) The sum coincides with the first space, the intersection with the se-

cond.
(¢c) The sum is the entire four-dimensional space, the intersection consists
only of the zero vector.

881. (a) (; + —711) ®) (1, 0, —1, 0),
882. (a) x,= x1+x2;x3—x4 . xi= xl——xz-;—xu—n )
X = xl—x22—x3+x4 , x;=—x1+x22+x3+x4;
(b) X =xy—x3+Xy, Xp=—X1+X Xy=Xs X=X —Xp+Xs—Xg.

s

883, x’lx;+x3x4=§.
884. Let ay+a, cosx+a, cos’>x+ ... +a, cos” x=by+b, cos x

+by cos 2x+ ... +b, cos nx.

Then ay=by—b,+b,— ...,

ap=2k~1 [bk

+ Z (=) (k+2p) k+p—=1)(k+p—-2) ... (k+1)

,D! bk+2p],

=217k (ak+ Z 27w C/’?+2pak+zp)~

885. The point of intersection with the first line has the coordinates

(134, %, g, 191), with the second, the coordinates (42, 1, 7, 11).

886. The straight lines X,+tX,, Y,4+tY, lie in the manifold X,+ ¢ (¥Y,—
- X))+ X+,

887. For the problem to be solvable for the straight lines X,+tX;, Yo+
417, it is necessary and sufficient that the vectors X, Y,, X;, Y; be line-
arly dependent. This is equivalent to being able to embed straight lines in a
three-dimensional subspace containing the coordinate origin.

888. The planes X,+ ¢, X+, X, and Y,+4,Y,+¢,Y, can be embedded
in the manifold X,+t(Yo— X))+t X+ 16X, +4,Y1+14, 7,

889. There are 6 such cases;

"
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(1) the planes have no common points and cannot be embedded in a
four-dimensional linear manifold (the planes cross absolutely);

(2) the planes have no common points, are contained in a four-dimen-
sional manifold, but are not embedded in a three-dimensional manifold (they
cross parallel to a straight line);

(3) the planes have no common points and are embedded in a three-di-
mensional manifold (the planes are parallel);

(4) the planes have one common point. In this case, they are embedded
in a four-dimensional manifold, but cannot be embedded in a three-dimen-
sional manifold;

(5) the planes intersect along a straight line;

(6) the planes are coincident.

In three-dimensional space, only cases 3, 5, 6 are realized.

890. Let Q= X,+ P be a linear manifold, let P be a linear space. If X; € Q
and X,€Q, then X;=X,+ Yy, X.=X,+ Y, where Y; and Y, belong to P.
Then aX;+(l—a) X;=X,+aY;+(1—o) Y,€Q for any «. Conversely, let
QO be a set of vectors containing, together with the vectors X, X,, their li-
near combination aX;+ (1 —«) X, for arbitrary «. Let X, be some fixed vec-
tor from Q and let P denote the set of all vectors Y=X—X,. If YeP, then
c¢YeP for any ¢, because cY=cX+(l +¢) X,— X,. Furthermore, if ¥;= X;—
—X,€P and Y,=X,— X,€P, then aY1+(l—a) Yo=aX;+(l —o) X,— X, €P
for any o. Now let us take some fixed «, «#0, a1, arbitrary ¢;, ¢, Then

¢ s
-LYeP,
o

T—x Y,eP for any Y;, Y,€P, and, hence, also

¢ c
i+ Y,=u ?1 Y+ (1l —a) l—zoc Y,eP.
Consequently, P is a linear space and Q is a linear manifold.
Remark. The result is not true if the base field is a field of residues mo-
dulo 2.
891. (a) 9, (b) 0. 3

892. (a) 90°, (b) 45°, (c) cos @p=-~

Vit

893. cos <p=i—/-1;l-l.
5 8 ]/"2
894. A=-—, B=——, cosC=—-V 7.
cos ng cos V78 0S 3

895. V n
896. For odd » there are no orthogonal diagonals. For n=2m, the num-

ber of diagonals orthogonal to the given one is equal to C;’;:_‘l-
897. The coordinates of the points are represented by the rows of the matrix

1 0 0 0 0
] 1,3
s Voo 0 0
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n -
898. R= ]/2"@7;15 '

The coordinates of the centre are
1L . L
(5’ Vi 7 Vean=1) ]/2(/1+I)n>
3 1 2 1
(i v v i)

1 )
900. (0, Vs V3 0)-

901. For the other two vectors we can take, say,

L 0, =4 3 1)and —= (=13, 5, 6, 2.

V26 1/
902. (1, 2,1, 3), (10, -1, 1, =3), (19, —87, —61, 72).
7 3 -4 —2)

0
. le, .
903. For example (39 _37 5 _99 5

904. The system is interpreted as a problem in seeking vectors ortho-
gonal to a system of vectors depicting the coefficients of the equations. The
set of sought-for vectors is a space orthogonally complementary to the space
generated by the given vectors. The fundamental system of solutions is the
basis of the space of the desired vectors.

1
905. For example, —— (1, 0, 2, —1), ﬁ(l 12, 8 17).
Ve /498
906. (a) X'=@3, 1, —1, —2) eP, (b) X'=(,7,3,3) eP,
X"=@2,1,-1,49 1P, X'=(-4, -2, 6, 0) LP.

907. Let 4,, A, ..., A, be linearly independent, and let P be the space
spanned by them. Furthermore, let X=Y+Z, YeP, Z | P.

Set Y=ci Ay tec; Ayt ... ‘e, Ay,

Form a system of equations to determine ¢,, c,, ..., ¢,,; to do this, use scalar
multiplication of the latter equation by 4;, i=1, 2, ..., m and take into ac-
count that Y4;=X4,.

We obtain

A2+ di Ao+ - - - FemArAm=XA,,
Az Ayt A3+ - - o FoepAaAm= XA,

e AmAr+ caAmAst - - - oA = XA

m
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The determinant A of this system is nonzero by virtue of the linear indepen-
dence of A4;, Asy ..., Ay,

We find ¢y, ¢, ..., ¢, and substitute them into the expression for Y. This
yields

0 -4, —4, A
X a4, - Ay

Y=-x | X4, A4, A AxAm

XAm  Apdy AmAs 2

and

X A Ay - Am

|l Aax 4 A, ArAm

Z=7 | AX A4, A AsAp

AnX Ay Andy - - A

These equations are to be understood in the sense that the vectors ¥ and Z
are linear combinations of the vectors in the first row with coefficients equal
to the corresponding cofactors.

From this we finally get

0 — X4, —XA, - -+ —XA,
1 A1X AE A1A2 e AlAm
VP=Y(X-2)= YX=« l A X AgA, At Ay
AmX AmA, AmAs - - - A,zn
and
X2 X4, XA, XA
|| AX A2 A4, Ardm
2 __ = —
ZP=Z(X— Y)_ZX_X A X A4, Al AsAm !
AnX  AmAr AmAs A2

908. Let Y be some vector of the space P and let X bz the orthogonal
projection of the vector X on P.

Then

XY XY _1X|-[Yi-cos(X, Y)

cos (X V)= T3 YT T w Y XY

_1X]
X

cos (X' Y)

whence it follows that cos (X, Y) attains a maximum value for those Y for
which cos (X’, Y)=1, that is, for Y=aoX’ when o>0.
909. (a) 45°, (b) 90°.
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910. ]/ﬂ.
n
911. | X— Y= (X-X)+ X' -Y)|?=| X=X'|*+ |[X'- Y |*=
>| X— X’ |2. The equation is possible only for Y= X".

912. (a) V7, (b) ]/g .

n!

(+1) (1+2) ... 2o+l

914. The required shortest distance is equal to the shortest distance from
point X,— Y, to the space P+ Q.

915. Let one of the vertices lie at the origin of coordinates and let Xj,
Xy, ..., X, be vectors emanating from the origin to the other vertices. It is

1

easy to see that Xi=1, X,-Xj=7
m+1 vertices is a space #; X1+ ... +1,, X,,. The manifold passing through
the other n—m vertices is X, +¢,11 (Xp1—X) + .0 1,1 (X, _1— X).
The desired shortest distance is the distance from X, to the space P genera-
ted by the vectors Xy, Xg, ..., X, Xy— X i1 ooy Xp— X1

Let

X,=t: X+ ...+t X+t (X=X )+ o F 0 (X~ X200+ Y

. The manifold passing through the first

where Y| P. Forming the scalar product X, by X;, ..., X, X,— Xpio
..oy X,— X, _,, we get the following system of equations for determining 7,,
N P

1 1 | 1 ! 1
h+ 2 L+ +§ Im= é v It ’2‘ fm+2+ +’2’ 1= '2')
lt-i-f-f— +‘l'l‘ ——1 'I*t +t + +*1'—t _l
9 hth o Im=75 s 5 Imt1Thnye 5 1% 5
Il‘+lt+"'+t——l~ 'l*t +lt + - + t —1'
ot oh m=7 s o lme1t o Imye n=1% o>
hncet—t—---—t—l t =tppe= - =li_1= !
wne 1=0L= = m—;n’_‘_’l’ s Imy 1= lng 2= Shia=,
Consequently
Y='f‘f(ll+1+Xn1+Z+ o "l'_i/_n_ X1+A_/2_fif_' C +Xm .
n—m m+1

Thus, the common perpendicular is a vector connecting the centres of
the chosen faces. The shortest distance is equal to the length of this vector

I VAL
! YI—]/ 2(n—m(m+1)
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916. (a) The projection of the vector (¢;+2t,, t,—2t5, t,+5¢,, t,+2t5)
on the first plane is (¢, +2¢,, t,—2¢,, 0, 0). Hence,
213+ 813 23438

20— =
O = e T, + 3718 D2+ 1401 37

where 7\— t_ This expression attains a maximum equal to § for A=—4.
(b) The angle between any vector of the second plane and its orthogonal

projection on the first plane remains fixed and is equal to g

917. The cube is a set of points whose coordinates satisfy the inequali-

ties —% <x< %, i=1, 2, 3, 4. Here, a is the length of a side of the cube.

We pass to new axes, taking for the coordinate vectors, ¢;= ( %, % %, —;),

(T S e A e
-2“) 2’ 2’ 2 L 2’ 2) 2) 2 n 94—

- (i 1 _1)
V2 2 2 2f
These vectors are orthonormal and their directions coincide with the direc-

tions of certain diagonals of the cube. The coordinates of points of the cube
in these axes satisfy the inequalities

e,=

—asx+x,tx,;+x;<a, —as<x{+x,—x,—x;<a,
—asx;—x;+x;—x;<a, —as<xi—x,—Xx;tx;<a

We get the intersection that interests us by setting x;=0. It is a solid lo-
cated in the space spanned by e;. ¢;, e;. and the coordinates of the points of
which satisfy the inequalities + x;+ x;+x,<a.

This is a regular octahedron bounded by planes intercepting segments
of length a on the axes.

| B? BB, ... BB, !
918. V2[B, B, ..., Byl=| B:Bi Bi ... ByBm

This formula is readily established by inducticn if we take into account
the result of Problem ©07. Frcm this formula it follcws immediately that
the volume dces not depend on the numbering of the vertices and that

V[cBy, By, ..., Byl=lc| VI[By, B, ..., B,

Now let B,=B/+ B!, C,, Ci, C[be [the orthogonal projections” of the
vectors By, B, and B] on the space that is orthogonally complementary to
(B,, ..., B,y). It is obvious that C;= C{+ C{. By definition,

VIBy, By, ..., Bnl=| Cy| - VIB,, ..., B,l, VI[B, Bs, ..., B,l=
={Cy | VIBs, ..., B,l, VB, By, ..., B]=1C/ |- VB, 5 B,
Since | C1 1<) Ci 14| Cil, it follows that VI[By, B, ..., B,J< VI[B], B,

B+ VIB", B, .. B ) The equality sign is only possible if o and (04
are collinear and in the same dircction, which, in turn, occurs if and only 1f
B}, Bf lie in a space spanned by By, B, ..., B, and the coefficients of B, in
the expressions of B, B, in terms of Bl, Bz, ..., By, have the same signs;
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that is, B;, B}’ lie ““on one side® of the space (B,, ..., B,) in the space (B,

B, ..., B,).
B} BB, ... BB,

919. V*[B,B, ..., Bil= B,B, B} ... ByBy :ll_?Bl-——lB]‘”.

where B is a matrix whose columns are the coordinates of the vectors By,
By, ..., B,

920. The following two properties of volume are an immediate conse-
quence of the definition:

(@) VI[B+X1Bs, ..., B, J=VI[By, By, ..., B,]

for any X belonging to the space (B,, ..., B,,) because the points By, B+ X
are at the same distances from (B,, ..., B,).

© VB, By ..., B<IBi |- VIBy, ..., Byl

This follows from the fact that the ““height”, that is, the length of the com-
ponent of vector B, orthogonal to (B, ..., B,,) does not exceed the length of
the vector B, itself.

Now let C;, Cs, ..., C,, be orthogonal projections of the vectors B,, B,,
..., B, on the space P. Assume that the inequality V[C,, ..., C,I< V[B,,
..., B,,] has already been proved. Denote by B] the component, orthogonal
to (B, ..., B,,), of the vector B,, by C its projection on P. Since B{—B;€
(B,, ..., B,), we conclude that Ci—Ce(C,, ..., C,,) and, hence, that ¥V [C,
Cyy ..., Cll=VIC, Cyy ..., C<IC{| - VIC,, ..., Ciy]. But obviously,
CiI<|B; | and, by the induction hypothesis, V' [C,, ..., C, ISV [B,, ...,
B,l. Consequently, V[C;,, Ci, ..., CLI<I|B| - V[By ..., Bl=VIBy,
B,, ..., B,]. Thereis a basis for induction, since the theorem is obvious
for one-dimensional parallelepipeds.

921. From the formula for computing the square of a volume it follows
that V[A4y, ..., 4, By, .., Bl =V {[A, ..., 4,1 VI[By, ..., Bj] if each vec-
tor A; is orthogonal to every vector B;. In the general case, we replace the
vectors By, ..., B, by their projections Cy, ..., Cy on the space that is ortho-
gonally complementary to (4, ..., 4,,). By virtue of the result of the prece-
ding problem, V[C,, ..., C,I< VB, ..., B}, whence
V{Ay .y Ay By, ooy Bl=V 1Ay, ..., Ay, Ciy oy Cil
=V[Ay .., Ayl VICy, ..., ISV [Ay, ..., Ayl - VIBy, ..., Byl

The content of this problem coincides with that of Problem 5]18.

922. This follows immediately from the inequality ¥ [4,, ..., 4, ]<| A | x
x V[A4,, ..., A,], which, in turn, is an immediate consequence of the defi-
nition of a volume,

This problem coincides, in content, with Problem 519.

923. A similarity transformation of a solid in »n-dimensional space im-
plies a change in volume proportional to the nth power of the expansion
factor. For a parallelepiped, this follows immediately from the volume for-
mula, for any oth=r solid, the volume is the limit of the sum of volumes of
the parallelepipeds. Hence, the volume ¥,(R) of an n-dimensional sphere of
radius R is equal to ¥, (1) R™

To compute V, (1), partition the sphere by a system of parallel (n—1)-
dimensional “planes‘‘ and take advantage of Cavalieri’s principle.

Let x be the distance of the cutting “plane‘ from the centre. The section

is an (n—1)-dimensional sphere of radius /1 —x*
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Consequently,
1 1 n—1

Vo (1)=2 f Vao f(VT=58) dx=2V,_. (1) f (1 —x?) 2 dx

= "ﬂ”ft%l*ﬂ>;w nﬂ)BU;{ é)

(3r(s)

=nﬂuy~~;z%+q

From this it follows that

o

_n .

h
T ( 7+ )

924. The polynomials 1, x, ..., x" form the basis. The square of the vo-
lume of the corresponding parallelepiped is

Va(l)=

L pnrer.oap
RE2 |\ T a2 L (2 )

ntl n+2 7 dntll
925. (a) M =1, Xi=c (1, —1); Xe=3, Xo=c (I, 1);
M) M= 7, Xi=c(, 1); Aa=—2, X,=c(4, —5);
(c) M =ai, Xi=c (1, i); hy=—ai, X,=c (1, —i);
@xr =2 Xi=c (1, 1,0,0+¢, (1,0, 1, 0+¢, (1, 0, 0, 1);
A=-2, X,=c(, -1, -1, —~1);
©r =2, X=c¢,(-2,1,0) +¢, (1,0, 1);
)Yx =—1, X=c(l, 1, —1);
@n =1, Xi=c¢, (1,0, )+¢;, (0, 1, 0); 2y=—1, Xo,=c(1, 0, —1);
(A =0, Xi=c (3, =1, 2); hgo =%V =14,
Xoa=c(3+2V =14, 13, 2731/ =19);
BOr =1, Xi=c(3, —6, 20); 2,=—-2, X,=¢ (0, 0, 1);
G) M=1, Xi=c(l, 1, 1); A,=¢, Xy=c(3+2¢, 24 3¢,
3+ 3¢); Ag=¢?, Xy=c (3+2¢2%, 24 3¢, 3+3¢?)

where
1 V3
)

E=—
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926. The eigenvalues 4~! are reciprocals of the eigenvalues A. Indeed,
from | A7'—X E |=0 it follows that | E—XA4|=0, ’ A—;\- E ‘:0‘

927. The eigenvalues of the matrix 4% are equal to the squares of the ei-
genvalues for 4. Indeed, let

A=A E[=(—2) (=2 ... (0, —N).
Then
[A+XE =0 +2) Gat D) ... O+ 0.
Multiplying these equations and substituting A for A%, we get
| A2=RE [=(3—2) (M—2) ... B2—2).
928. The eigenvalues of 4™ are equal to the mth powers of the eigenva-

lues of A.
To see this, the simplest thing is to replace in the equation

A=A E|l=0=2) 0= ... (,,—2)
A by Ae, Ae?, ..., Ae" L, where
2 . . 2n
e=cos — +isin —,
n n

multiply the equations and substitute A for A%
929. f(A)=by (A—E,E) ... (A—EE), hence

M) =b- | A=EEl ... | A=EnE|=brF(£) ... F(n).
930. Let
FQ)=] A=XE|=0y—2) Ou—A) ... \,— )
and
FX)=by (x—E) (x—E&) ... (x— Em)
Then
iryi=o [1 T1 a-g0=ro0res ... row.
i=1 k=1
931. Put

P (x)=f(x)—2
and apply the result of the preceding problem.

We get
[fD-2EI=(fR)=N(fR)=D ... (f G2
whence it follows that the eigenvalues of the matrix f(A4) are f(0), f(}y), ...,

F ().
932. Let X be an eigenvector of the matrix A corresponding to the ei-
genvalue A
Then
EX=X,
AX=2X,
A2X=22X,

AHIX: }IHX'
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Multiplying these vector equations by arbitrary coefficients and combining,
we get for any polynomial f

. fADX=fM X
i.e., X is the eigenvector of f(4) corresponding to the eigenvalue f(}).

933. The eigenvalues of 4% are n and —n of  multiplicities '%1 and

—1 . . = - -~

7 respectively. Hence, the eigenvalues of 4 are + ]/ n, —]/ n, + ]/m'

R . g n+1

and — ]/m. Let us denote their multiplicities by a, b, ¢, d. Then a+b= 5
n—1

c+d= 5 The sum of the eigenvalues of a matrix is equal to the sum of

the elements of the principal diagonal.
Hence

n

[a—b+(c—d)i} Va=l+ete+ ... +e 1"
The modulus of the right side of this equation is equal to ]/; (Problem 126).
Consequently

(a—bR+(c—dr=1.

Since the numbers ¢—d and c¢+d are of the same parity, we conclude that

a—b=0, c—d=+1 if '-’;—1 is odd

and

a—-b=+1, c—d=0if n—gl is even,

Hence, for n=1+4k

c=d=k, a=k+1, b=kora=k, b=k+1
for n=3+4k
a=b=k+1, c=k+1, d=quc=k, d=k+1.

Thus, the eigenvalues are determined to within sign. To determine the
sign, take advantage of the fact that the product of the eigenvalues is equal
to the determinant of the matrix. Using the result of Problem 2£€9, it is ezsy
to find that for n=1+4%&

a=k+1, b=k,
for n=3+4k
c=k+1, d=k.
Thus, the eigenvalues are completely determined.
934, | +etet+ ... +€(”"1)‘=+]/n for n=4k+1,
l+e+et+ ... +e=9=1;Vn for n=4k+3.
935. (a) Put %:oc”. Then
gy — ot
A=
k=Y 1—0(8,;-

2 e
where e;=cos %ﬂ'sin % k=01, ..., n—1.
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n—1

() Me=aytasertael+ ... taneg
km

re=2i —_ =1. 2
(c) M ICOS’[+I,/€ 1,2 ..., n
936.

apB—\E,, a,sB anB
AXB—AEn= ay, B o B—2Epn ... aynB
an B an,B cov @upB—AEp

whence it follows, by the result of Problem 537, that

[ AXB—2E,,, |= 19 (B) |

where
n

2 (=1 Ax—2E, (=] | (wix—2.

i=1

By the result of Problem 930,

m n m

@B i=]Te@)=]] [] @t
k=1 k=1

i=1 k=
Thus, the eigenvalues of 4 x B are the numbers «;8,, where «; are the ei-
genvalues of 4, and {8, are the eigenvalues of B.
937. If A is a nonsingular matrix, then
| BA—ME|=|1A7Y(AB— M E)A|=| A7 |- | AB—AE| - | A|=| AB—)AE|.

It is possible to get rid of the assumption that A4 is nonsingular by passing
to the limit or by using the theorem on the identity of polynomials in many

variables.
It is also possible, using the theorem on the multiplication of rectangular

matrices, to compute directly the coefficients of the polynomials
| AB—XE| and | BA—\E|

and satisfy yourself that they are equal.

938. Complete the matrices 4 and B to the square matrices 4’ and B’
of order n by adjoining to 4 n—m rows and to B n—m columns made up of
zeros. Then BA=B'A’ and A’B’ is obtained from 4B by bordering with ze-
ros. Using the result of the preceding problem yields what we set out to

prove.
The solutions of the Problems 939, 940, 941 are not unique. The answers

given below correspond to a transformation that least of all deviates from
the “triangular‘‘.

939. (a) x>+ x;2+x;2, (b) —x{24+x.2+x32,
x;=x;+ Xy, X =X,
X5 =X, +2x3, X5=x,—2%,,

x5 = Xa, X=X, X
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(c) xi2—x*—xg?, (d) x4 x%—xg?,
- + : + 1=X1—Xa+
X = D] X1 5 Xz T X3y X1 =X1— Xpt X3 — Xy,
. ! 2 =Xa+ X3+
=g X1 9 Xa. Xg=XgT X3+ Xy,
Xy = X3, X5= X3 — X3+ 2%,
x;= X4,

(€) x7*—x®+x3° —x?,

1
x;=x1+ 45 X

2
, 1
x2='2" X2,
, 1 1
=g xa+'2 Xa,
, 1 1
.X4=>2> Xz — ’2 Xq.-
I B nt+l
940. x1”+zx2”+€ x4+ ...+ B, x}2

The variables xj, x;, ..., x,are expressed linearly in terms of x,
Xg,-..., X, With the matrix

Lol 1 I
2 2 2
1 1
0 1 33
1 1
0 0 1 T 7
0 O 0 0 1
2 . \2
941, (—"!-Jr"-“ T +x,,) —(»3‘—‘»2’—‘% )
( + Lt + L )2
Xt g Xt o g X
3 1 1\ -1,
—Z(X4+SX5+ ce +§xn)— —2—(’[‘_—2))6".

942, The matrix of a positive quadratic form is equal to 44, where 4
is a nonsingular real matrix carrying the sum of squares to the given form,
The positivity of the minors follows from the result of Problem 510,
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943. Let f=a;xi+ ... +apxixn
+amxnxi+ ... +a,,,,xf,
be a quadratic form. We denote
fK)=auxt+ ... +auxxe
+aixpx+ + aprx;,
an - ik .
Ap=| « v v , ¥ is the rank of the form f.
(31 73
Let
S=oxtoxi®t L. o)t
where
X, =%1+b1oXe+ + bynxn,
Xy = X3+ .+ boyxy,
X, = Xn

Since the determinant of a triangular transformation is equal to 1, Dy=
=A, =02, ... &, Putting

Xki1= ... =%,=0
we get
f(k)=oa1xik)’+ot2x;k)z+ R +oth;(k)2
where
xflk) =x1+bypxe+ ... Fbyxe,
x;k) = X+ ... Fbhuxy,

Whence it follows that Ay=o,e, ... o, and that a necessary condition for
the possibility of a triangular transformation to diagonal form is

A #£0, A #0, ..., A, #0,
It is easy to verify that this condition is sufficient.

Furthermore, otk=-»A»-~15~ for k<r, o =0 for k>r.
k-1
The discriminant of the form
JeKppn o0, Xp)=f—ax?— ... _O‘kx;(z
L TRt 7 S
i 1t B
1S equal to o 1 0f s ... Q=
+ + "= A

944. The necessity of the Sylvester conditions was proved in Problem
942. The sufficiency follows from the result of Problem 943.
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945. Let [ be a linear form in the variables x;, x,, ..., x,. Transform the
form f by means of a transformation with determinant unity, taking the form
[ for the last of the new variables. Then perform a triangular transformation
of the form f to canonical form.

The form f becomes

f=oaxFtax®+ . X!

and x, =1,

The discriminant of the form f is equal to oy, ... o,. The discriminant
of the form f+ 1% is equal to a o, . . .os_1(ay+1). It is greater than the discri-
minant of the form f; since all the coefficients o, «,, ..., o,_;, «, are positive.

946. f(x1, X3 ..., Xp)

=ax?+2ap,x, X+ ... +2a5x:x0+ @
gy a 2
=au(x1+—x2+ e 2 x,,) +f (s ..., Xn)
2331 apn
where
Qgy am z
f1=cp—au<— Xe+ ..+ — xu].
an (4%}

The form f; is positive and its discriminant is equal to a_f where Dyis the
11

discriminant of £ On the basis of the result of Problem 945, Dsi= f—f,
11

which completes the proof.
947. The proof is the same as for the law of inertia.
948. Form the linear forms

le=u, +uxp+ ... +u,,x;:'l, k=1,2 ..., n

where xy, X, ..., X, are roots of the given equation,

To equal roots will correspond equal forms, distinct roots are associa-
ted with linearly independent forms, real roots are associated with real forms,
and conjugate complex roots are associated with conjugate complex forms.

The real and imaginary parts of the complex form /=%, +p i will be
linearly independent among themselves and also relative to all forms corres-
ponding to roots distinct from x;, and xj.

Form the quadratic form

n

fl, ..., u,.):Z (ur+mxi+ ... +u,.x;-’_l)2.
k=1

The rank of this form is equal to the number of distinct roots of the given
equation, The matrix of its coefficients is

So Si -e. Sp_g
51 S Sn
Sn—1 Sn ... Sap_2

The sum of squares of the conjugate complex linear forms /=X, +
+iy and ;=27\, —iy, is equal to 233 —2p?. Hence, the number of negati-

ve squares in any (by the law of inertia) canonical representation of the form f
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is equal to the number of distinct pairs of conjugate complex roots of the gi-
ven equation.
949. This follows from the results of Problems 948, 944.
950. The operation (f, ¢) is obviously distributive. It is therefore suffi-
cient to carry out the proof for the squares of the linear forms.
Let
S=lux+ogx+ oo Fox,)E
=1+ Paxs+ ... +B,x,)2
It is then easy to see that

(fp)=(2Brxs+oaBaxat ... +0,B,x,)2=0.

2 1
951, (a) 4xT4 -2 Xi=g Xi— g Rt g %,

3
, 2 1 2
xz——3—x1+§ X3 §x3’
,_ 1 2 2
X3 §x1+§x2+—3-x3,
2 1 2
(b) 2xf—x? +5x7, Xj=g i— g Xy,
, 2 2 1
xz=§x1+§x2+§x3.
, 1 2 2
¥a=g X1~ g X+ g ¥si
© TXP AR b X b nt 2o ox
c XPHAxd+xt, xi= g oatg b g X,
, 2 1 2
x2=§x1+-§xz+§x3,
, 2 2 1
== g Xt g Xt g Xy
/ L L 2 2
(d) 1002 4 25 + 5%, xj=g X1t g Xa— 3 X,
,_2V5 5
27 V§'7 1= _‘5'7 29
21/5 _  4V5 /5
X3= liE.T-x1+--ll/5—xg+]’3~ Xy
(6  —~Tx\2+2x.+2x7 X=1x +gx2—2-xa
L 2 3 1 3 1 3 3 )
215 5
xXy= l{-)— xl'—l'/E-;' Xg,
,_2V5 4V5 Vs
3= 'ﬁ"xl-" g %t g X
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2 1 2
) 2x?+ x4+ 8x%,  xj=vy ot 3 %t 3 X
, 1 2 2
Xo= £ x1+§xz—§xa,
, 2 2 |
X3= 5 Xo— g Xo = g X
o Ve V2
® 7=+ xi='5om—g %
, 2 1 2
Xa=73 x1+—3- X2+ 3 Xa
2 2V
2 2 1
(h) 11x {24 5x;2 — x32, x;=—3 f—y X 3 X
2 1 2
x;——3— x1+—§~x2+§x3,
, 1 2 2 .
X3= g Xt g X g Xa
. , , 1 1 1 1
i) xP2—x32+ 3x2+5x.2, X(=q X1+ g Xt Xt 5 X,
, 1 1 1 1
x2=-§ x1+‘§ X '2“ X3 —2‘ Xa,
1 1 1 1
x;=—2-- X 5 x2+~2 x3—§x4,
1 1 1 1
Xe= g X B Kot g X

0 xP4+x’—xP—x? xi="5 0 at v2-—xa,
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, 2 2
V7 &

(k) xPZ4+x?+3x2—x% x . + e X,
. V2 2
x2=V2 : x1+]/2" X35
o 1 1 1
X3 = 9 X+ 5 x“_f xa—-§- X4,
.1 1 1 1
X;= 9 X+ 5 Xz + 9 X3 9 Xa3
2 2
O spexerxa-d w- Ll ne Ul
2 2
X, = ]/2,, xd+1/2—— X3,
1 1 1 1
Xy = 9 Xy — 9 X+ D) X3 — 9 Xy
o 1 | 1
x4='2x1 2x2_2x3+‘2x4;
‘ , 1 1 1 1
(m) x2—x?+7x2-3x7, xi= ) x1+§ xz+’2— xa+§ Xg 5
, 1 I 1 1
xX=y x1+>§ X3~ g Xa Ty Xs
, 1 1 1 1
Xy = 9 noy x2+§ Xa— g X4,
M- 1 1, 1 +1 X,
x;—2x1 2xz 2x3 g X
(n) Sxit—Bxpt 3535 xi= L mt )t L b x
hiad | 2 3 4 1 2 1 2 2 9 3 2
1] 1 1.
xz-2x1 2x). 2x3 9 X»
, 1 1 I 1
x3=2x1—2x:+2x3 2x4:
, 1 1 1 1
Xy = 9 X170y x)._’2 X3+ 9 Xy
I 1
952. (a) " xy (TEXEE . XD
~1 | ,
(b) ’-l»—z— x2— 5 (x2+xi+ ... txD)

303



304 PART [11. ANSWERS AND SOLUTIONS

where

= (ntxt ... tx)
n

X=X+ ®ipXp + ... FinXp, I=2, ..., 00

where (o3, @;3, ..., ;,) is any orthogonal and normalized fundamental sys-
tem of solutions of the equation

xit+xt ... +x,=0.
953. x2cos —~ +x32cos — 2n +x,? cos LN
! n+ 1 st o n+l’

954, If all the eigenvalues of the matrix A4 lie in the interval, [a, b], then all
the eigenvalues of the matrix 4—AE are negative for A>b and positive for
A<a. Hence, a quadratic form with matrix 4—X\FE is negative for A>5) and
positive for A<a. Conversely, if the quadratic form (4—AE)X - X is nega-
tive for A>5 and positive for A<a, then all the eigenvalues of the matrix
A—\E are positive for A< a and negative for A> b.

Consequently, all the eigenvalues of the matrix 4 lie in the interval [a, b].

955. The following inequalities hold for any vector X:

aX+  X<AX - X<cX X, bX - X<BX' X<dX- X
whence (@a+b) X' X<(A4+B) X- X<(c+d) X X. Therefore, all the ei-

genvalues of the matrix 4+ B lie in the interval [a+c¢, b+d].
956. (a) This follows from the result of Problem 937,

B) | AX 2=A4AX - AX=X - AAX< | X2 | A2
The equal sign occurs for the eigenvector of the matrix A4 belonging
to the eigenvalue || A4 {j2.
©@IA+B)X < [AX [+ BX{<( AI+IBI) | X|
for any vector X. But for some vector X,
f(4+B) Xyl=(l A+B) | X, |.
Consequently
lA+Bl<ll 41+l Bil.
(d) | ABX <l A1l 1 BXi<liAll-I1BII-| X}
Applying this inequality to the vector X,, for which
lAB|l -1 Xy |=| ABX, |

we get
lABl<li A6~ BIl.

(e) Let A=p+4i be an eigenvalue of the matrix 4, X= Y+iZ the corres~
ponding eigenvector.
Then
AY=pY—qZ AZ=qY+pZ
whence
|pY—gZ < 4IF | Y3
1qY+pZ P 41P | Z
Combining these inequalities, we get
INPGYPH Z®)=@+@) (Y RH ZDSHARP(Y 2+ Z1)
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and, hence,
FaI<li 4.

957. Let 4 be a real nonsingular matrix; then 44X - X=|A4X |?-is a
positive quadratic form which can be brought to canonical form by a trans-
formation of the variables with the triangular matrix B which has positive
diagonal elements. Therefore, 44=BB, whence it follows that 4B~1 - AB™ 1=
=E, that is, AB~'=P is an orthogonal matrix. From this we have 4=PB.
Uniqueness follows from the uniqueness of the triangular transformation of
a quadratic form to canonical form.

958. A4 is a symmetric matrix with positive eigenvalues A, ..., A,
Consequently,
-
/
_ Ay
AA=P7! P
*n
We construct the matrix
M
Lo
B=pP1 P

n
where y; is the positive square root of ;. It is obvious that B is again a sym-
metric matrix with positive eigenvalues and B2=44. Whence it follows that
AB™1=Q is an orthogonal matrix, 4= QB.

959. After carrying the coordinate origin to the centre of the surface, the
surface must contain point — X along with point X, and, hence, the equation
must not contain the running coordinates to first powers. After a parallel
translation of the axes X=X,+ X”, where X, is the translation vector, the
equation of the surface becomes

AX - X'+2 (AX,+B) X'+ AX, - Xo+2BX,+ C=0.

Therefore, for the existence of a centre, it is necessary and sufficient that the
equation 4X,+B be solvable with respect to the vector X,, for which, in
turn, it is necessary and sufficient that the rank of the matrix 4 be equal to
the rank of the matrix (4, B).
960. After carrying the origin to the centre, the equation of the surface
becomes
AX » X+v=0.

If r is the rank of the matrix 4 and a4, ..., o, are nonzero eigenvalues, then

after an appropriate orthogonal transformation of the coordinates, the equa-
tion takes on the canonical form

ouxi+ ... Fopxi4y=0,

961. The surface has no centre if the rank of (4,! B) is greater than the
rank of A4, which is only possible if r=rank 4<n. Denote the whole space
by R, the space AR by P and the orthogonal complement of P by Q. Then
for any YeQ we will have 4Y=0 because

|AY |2P=AY - AY=Y - AAY=0
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since 44AYeP. Let
B=B,+B,, B,€P, B,e(Q.

Then B,#0, otherwise B would belong to P and the rank of (4, B) would
be equal to r. Let B,=AX,. After the translation X=X,+ X", the equation
of the surface becomes
AX - X' +2B. X'+ ¢’ =0.
Make one more translation X’=aB,+ X*. Then
AX’' - X'=a?AB, - By +2aAB, - X"+ AX" - X'=AX" - X"’
because AB,=0 and, hence, the equation becomes

AX7 - X'42B, X" +2a | By 12+ ¢" =0.
Take

.

- _° _.
T 21By®
Then the equation becomes
AX" - X"4+2B, X" =0.

Now perform an orthogonal transformation of the coordinates, taking
pairwise orthogonal unit eigenvectors of the matrix 4 for the basis of the space,
including in them the unit vector that is collinear with the vector B, and in
the opposite direction. This can be done because B, is an eigenvector of A.
On this basis, the equation becomes

M4 FRxE—28,x,,=0

where B,=| B, [. It remains to divide by B,.

962. Under a linear transformation with the matrix 4, the space is map-
ped onto the subspace spanned by the vectors 4, A, ..., 4, whose coordi-
nates form the columns of 4. The required result follows immediately.

963. Let e;, e,, ..., e; b2 the basis of Q. Th3a Q' is a space spanned by
e, e .ns el’l, where e}, e;, ..., eé are the images of ey, e,, ..., e, under the li-
near transformation thus performed. Hence, ¢'<q. Besides, it is obvious
that ¢’ <r because Q' lies in R’. Furthermore, let P’ be the complementary
space of O, of dimension p=n—gq, and let p’ be its image under a linear trans-
formation. Its dimension p’ does not exceed n—gq. But P+ (O’=R’, hence,
p’'+q =r. From this,

gzr—p'zrtqg—n

964. Let the rank of 4 bz r,, the rank of B be r, and let BR= Q. The di-
snsionality of @ is equal to #,. Then p, which is equal to the rank of 4B, is
the dimensionality of ABR=AQ. By virtue of the result of the preceding
problem, r,+r,—n<p< min (r,, ry).

965. A double performance of the operation of projection is equivalent
to a single performance. Indeed, in the first projection, all the vectors of the
space R go into the vectors of the subspace P, which under the second projec-
tion remain fixed. Hence, 42=4. Conversely, let 42°=A4. Denote by P the
set of all vectors Y=A4X, by Q the set of vectors Z such that AZ=0. It is
obvious that P and Q are linear spaces. Their intersection is the zero vector,
because if A X=2Z, then 4 X=A42X=AZ=0. Furthermore, for any vector X
we have the expansion X=A4X+(E—A4) X, It is obvious that (E—4) XeQ
because A (E—A4) X=(4— A%) X=0. Therefore, P+ Q is the whole space,
that is, P and Q are mutually complementary subspaces. The operation AX is
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a transition from the vector X to its component in P, that is, it is the opera-
tion of projection on P parallel to Q.

966. Let P Q. Choose an orthonormal basis of the whole space by com-
bining the orthonormal bases of P and Q. In this basis, the projection matrix
will have the diagonal form

0
In any other orthonormal basis, the projection matrix is equal to A=
=B"'A’B, where B is some orthogonal matrix. Obviously, 4 is symmetric.
Conversely, if A is a symmetric matrix and A2= A4, then the spaces P=AR
and Q=(F— A) R are orthogonal, because
AX(E-—A) Y=X - A(E-A) Y=X (4— 4% Y=0.

967. Let A be a skew-symmetric matrix. It is easy to see that 4AX - X=0
for any real vector X, because

AX X=X -AX=X (—AX)=—-AX - X.
Let A=a+Bi be an eigenvalue of the matrix 4 and U= X+ Yi its corres-
ponding eigenvector. Then
AX=aX—BY, AY=PBX+aY.
From this it follows that «(| X |24+]| Y[2)=A4AX - X+AY - Y=0 and «=0.
Furthermore, BX - Y+o! Y|2=A4Y - Y=0, whence X  Y=0 for B#0.

Finally, from the equality B(|X|2—l Y|2) AY - X+ AX - Y=AY - X—
—X-AY=0 follows | X|=|Y

968. Let
0 5% Ain
A= — 1 0 ap
—n — sy 0

be a skew-symmetric matrix. If all its eigenvalucs are equal to zero, then 4=0.
Indeed, the sum of the products of all eigenvalues taken two at a time is equal

to the sum of all principal minors of the second order Z al, and the
i<k
fact that this sum is zero implies a;, =0 for any i, k, that is, 4=0.
Let A have a nonzero eigenvalue A,=a,i. Normalize the real and imagi-
nary parts of the eigenvector belonging to it. Because of the equality of their
lengths, the normalizing factor will be the same, and the equations

AX=—a,Y, AY=0,X

will hold for the resulting vectors.
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Form an orthogonal matrix by putting the vectors X and Y in the first
two columns. Then

0 o
—-—a; 0

-1 —
P 4P= 0 0
0 0

Since the matrix P~1AP is skew-symmetric, all nonindicated elements of
the first two rows are zero, and the matrix of the elements of the 3rd, 4th,
..., nth row and the 3rd, 4th, ..., nth column will be skew-symmetric. Argu-

0 a
ing in similar fashion, we isolate yet another submatrix< 02>. The pro-
—a,

cess is continued until the lower left corner has a matrix all eigenvalues of
which are zero. But all the elements of such a matrix are zero. The problem
is solved.

969. Let

B=(E—A) (E+ A,
Then 3
B=(E+A) ' (E—A)=(E— A" (E+A)=B"1,
Furthermore
B+E=(E—A) (E+ A+ (E+A) (E+A)1=2(E+A)!

and, hence,
| B+ E |#0.
Conversely, if

B=B7'and | B+E|[#0

then for 4 we can take (E+B)~* (E—B). It is easy to sze that A4 is a skew-
symmetric matrix.
970. Let A be an orthogonal matrix. Then

AX  AY=X - AAY=X-Y
for any real vectors X and Y. Let
A=a+Bi
be an eigenvalue of the matrix 4, and
U=X+Yi
a corresponding eigenvector. Then

AX=aX—-BY, AY=aY+pX
whence

[ XP=X+ X=AX " AX=c?| X *+B2| Y2~ 2oBX - Y,
| Y=Y  Y=AY AY=0?| Y|P+ |X >+ 228X - Y.
Adding these equations, we get «?+{3%=1.
971. For 0, we get, from the last equations of the preceding problem,
Bl X -] Y[)+2aX - Y=0.
On the other hand,
X - Y=AX AY=(c2—P) X Y+aB (| X [>—| Y%
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whence
e (| X2~ YH—-2BX- Y=0.
Therefore
X-Y=|X]P—| Y|*=0.

972. 1. Let A=a+Bi=cos¢e+isine be a complex eigenvalue of the
matrix. Form an orthogonal matrix A4, the first two columns of which cons-
titute the real and imaginary parts of an eigenvector belonging to 2. Then

cos¢ sing ...

—sin¢g cos¢ ...
Q- 140= 0 0
0 0
0 0

Because of the orthogonality of the matrix Q "'4Q, the sum of the squa-
res of the elements of each row is equal to I, and, hence, all nonindicated
elements of the first two rows are equal to 0.

2. Let A= +1 be a real eigenvalue of the matrix 4, and let X be a nor-
malized eigenvector belonging to A.

Form an orthogonal matrix, the vector X constituting the first column.
Then

All nonindicated elements of the first row are zero since the sum of the
squares of the elements of cach row of the orthogonal matrix Q 724 Q is equal
to unity.

Applying the foregoing reasoning to the orthogonal matrices which remain
in the lower left-hand corner, we get the required result.

973.

@ /1 0 0 ® /-2 0 0 © /-3 00
<02 o), (010), (011>,
00 I \ 0 0 1|
0
]
0

0 0y (/2 10 ) /2 0
( 1), <o g 1), <o - o),

o I 00 2 0 0
2.0 0 hy /=1 1 0\ @) /-1 00
(o 9 o), < 0 —1 o), ( 0 0 1),
000 0 00 000
010 k) /1 1 0 /10 0
(oo 1), (o | 1), 0 i o),
000 \0 0 1 00 —j
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(m) y3 O 0 m) /2 0 O (0,0 1 0
0 -2 0], ( 0 0 0]}, 00 0)-
00 -1 \0 0 0 0 0O
974.
@ 11 ® 11 ) .¢
01 01 1 c?
oy 01 1) .
0 1 0 1 \ iC"_l !
where £=cos 2n +1{ sin 2—”
n n
975. The submatrix . ), 1 cannot be periodic.
PYIE
. ) 1
N

Remark. The result is not valid in a field with nonzero characteristic. For
example, in a field of characteristic 2 we have

1 1\2 E
01/

976. Let A be a given matrix and let B=C'AC be its reduction to Jor-
dan canonical form. The canonical matrix B is of triangular form and its
diagonal elements are equal to the cigenvalues of the matrix A, each one
being repeated as many times as its multiplicity in the characteristic equa-
tion. Furthermore, B, =(C,) 4, C; (Problem 531). Consequently, the
characteristic polynomials of the matrices 4, and B, coincide. Given an
appropriate numbering of combinations, the matrix B;, has triangular form
and, hence, its eigenvalues are equal {0 the diagcnal elements. They are also,
evidently, equal to all possible prcducts of the eigenvalues of the matrix 4
taken m at a time.

977. The matrices A— AE and A—AE obviously have coincident elemen-
tary divisors. Therefore, 4 and A are convertible to cne and the same cano-
nical matrix and, hence, they are interconvertible.

978. If A=CD, where C, D are symmetric matrices and the matrix C is

nonsingular, then A= DC and, hence, A=C™4C. Thus, the matrix C should
be sought among matrices that transform A into A.
Let A=SBS™!, where B is a canonical matrix:
» B, A 1

B, A 1
B= . where B;= .

By - A
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Then A=5"1BS. Denote by H; the matrix

l
l
1
l
[t is easy to see that B;= H;™'B;H, and, therefore,
H,
- H,
B=H"'BH where H= .
Hy

Thus, A=S"* H™' BHS=S"'H™'S™* ASHS=C"'AC where C=SHS.

The matrix C is obviously symmetric. Put D=C~'4. Then D=AC =
=(C"T'ACC = D. Thus, the matrix D is also symmetric and A=CD.

979. Let | A— 7\E[— (D" VT—cy NPTl A2 L —g).
It is obvious that p;=tr A=c¢,. Suppose we have already proved that p,=
=€, Pa=Csy .oy Pp—1=Cp—1- Under this assumptlon we shall prove that
Pr=c¢;. By constructlon A=A —p A1 —p, Ak 2— . —p, A=A~
—c Ak t— e Ak L, —ck_lA. Hence
tr Ay=kpp=tr A¥—citr 41 —... —c,_,trd
=8 —cSp_1— ... —Cp_151
where S, S, ..., S, are pawzr sumns of ths eigenvalues of the matrix A. But
by Newton’s formulas, S, —cuS;_1— ... —¢;_151=kc,. Consequently,
Dy=Cp
Next, B,=A"—¢; A" '— ... —¢,_1A—c,E=0 by the Hamilton-Cayley

relation. Finally,
AB, ,=A,=c,E

whence
B,_1=c, A%
980. Let
0 C1z Cin
C={ Ca 0 Can
Cn1  Cne 0

We consider the diagonal matrix
/oty 0

oy

0 oy’
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the diagonal elements of which are arbitrary but pairwise distinct. Let us
take

by by oo by

Then
0 bis(ea—oty) oo Dy (ag—oy)
XY-YX= hay (o —atp) 0 o bon (Gn—as)
b (@y—an)  bps (2 —ay) ... 0

. . ¢ .
and, consequently, it suffices to take bik=a—% for i#k. Now, using
=%

mathematical induction, we establish that any matrix with trace zero is si-
milar to a matrix all diagonal elements of which are zero. Since tr C=0, C# pE
for p+#£0, and, hence, there is a vector U such that CU and U are linearly
independent. Including the vectors U and CU in the basis, we find that Cis
similar to the matrix

‘0 Yo Yis oo Ym
1 Yoo Yoz --- Yon _(O P)

It is obvious that tr I'=tr C=0.
Hence, by the induction hypothesis, '=S"1I"S where I'” is a matrix
with zero diagonal elements. Then all the diagonal elements are zero in the

matrix
o (! 0>-xc,1 0 0 PS )
_<o S <0 S)"(S-IQ SIS
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Approximation of roots of a po-

lynomial 115
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Basis (of a vector space) 133
orthonormal 136

Bezout’s method 124

Biquadratic equation 96

Bounds of roots of a polynomial
107fF

Bunyakovsky inequality 84,215,
216

Cardan’s formula 19

Cavalieri’s principle 139, 293

Cayley (Hamilton-Cayley relation)
311

Characteristic polynomials 310

Chebyshev polynomial 128

Circular permutations [30ff, 285

Coefficients, method of undeter-
mined 99

Cofactor 57

Complement, orthogonal 305

Complementary minors 85

Complex number(s) 11, 151ff, 168ff

in trigonometric form 13
Condition, Sylvester’s 142, 299
Coordinate space, n-dimensional

137

Coordinates, transformation of
133t

Cramer’s theorem 61

Criterion, Eisenstein 104, 239

Cubic equation 95, 118
Cyclic determinant 53, 56
Cyclotomic polynomial(s) 21, 95, 127

d’Alembert’s lemma 92, 161
Decomposition into partial frac-
tions 102, 259
de Moivre’s formula 151, 171
Denominator, rationalization of 129ff
Determinant(s)
basic properties of 29ff
computation of 31ff
cyclic 53, 56
definition of 27, 28
evaluation of 25ff, 153ff, 186ff
expansion of 3l
multiplication of 51ff
order of 28
skew-cyclic 56
skew-symmetric 29, 56
Vandermonde 130, 165, 158, 164,
196, 222, 234, 284
Dimension (of a vector space) 133
Discriminant 19, 124ff
Distance, definition of 137

Eigenvalues 139ff, 295ff, 304ff
Eigenvectors 139ff
Eisenstein criterion 104, 239
Eisenstein theorem 162, 239
Elementary symmetric polynomials
116ff, 265ff
Equation(s)
biquadratic 96
cubic 95, 118
generalized reciprocal 229
linear, systems of 61ff, 68,
1966
quadratic 121
quartic 95, 96
reciprocal, generalized 229
sextic 97



314

systems of linear 61ff, 68, 196ff

transformation of 123ff
Euclidean space 133

elementary geometry of n-di-

mensional 135fF
Euclid’s algorithm 97ff
Euler formula 249, 250
Euler theorem 248
Euler’s identity 214
Euler’s resolvent 269
Evaluation of determinants
186ff

153ff,

Factorization
into irreducible factors 93ff
into linear factors 93ff
Ferrari’s method (solving the quar-
tic equation) 20, 106
Ferrari’s resolvent 127, 269
Field, of reals 93
of residues modulo 288
Form(s)
Jordan canonical
Jordan normal 148
linear, systems of 66fF
quadratic 141ff

146ff, 310

trigonometric, complex num-
bers in 13
Formula(s)

binomial, Newton’s 1[5l
Cardan’s 19
de Moivre’s 171
Euler 249, 250
Lagrange 100, 161, 162
Lagrange interpolation 101, 161
Newton’s 121, 267-268, 311
Newton’s binomial 151
Taylor’s 88, 91, 224-225
Fractional rational functions 100ff
Fractions, partial, decomposition
into 102, 259
Function(s)
fractional rational 100ff
monogenic symmetric 118
of one variable 88ff, 160, 221ff
Sturm 108
symmetric 116ff, 164ff, 261ff
Fundamental system of solutions
74, 75
Fundamental theorem
algebra, proof of 92ff

of higher

INDEX

General solution of a system of
equations 75
Generalized reciprocal equations 229

Hamilton-Cayley relation 311

Hermite method 124

Hermite polynomial(s)
267, 280

Higher algebra, proof of fundamen-
tal theorem of 92ff

Horner’s scheme 88, 89

Hypothesis, induction 220

110, 128,

Identity, Euler’s 214

Induction hypothesis 220

Inequality, Bunyakovsky 84, 215,
216

Inertia, law of 300

Interpolation problem 100ff

Inversions (in permutations) 26,
27

Irreducibility over the field of ra-
tionals 103ff

Isomorphism 80, 207

Jordan canonical form 146ff, 310
Jordan normal form 148

Kronecker product 86, 141, 219

100, 161, 162
interpolation formula

Lagrange formula

Lagrange
101, 16l

Lagrgnge’s method of multipliers
16

Laguerre polynomial 110, 128

Laplace theorem 49, 159, 215, 216

Law of inertia 300

Legendre polynomial 111

Lemma, d’Alembert’s 92, 161

Linear algebra [33ff, 166ff, 286ff

Linear equations, systems of &Iff,
68, 196ff

Linear manifolds 133ff, 288

Linear transformations 146ff, 306

Linearly dependent solutions 74

Linearly independent solutiops 74
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Manifold(s)
linear 133ff, 288
one-dimensional 133
two-dimensional 133
Matrices (see matrix) 76ff,
203fF
adjoint 84
postmultiplication of 81
premultiplication of 8l
rectangular 83fF
symmetric 141ff
unimodular 82, 211
Matrix (see matrices)
bordered 79
norm of 145
projection 307
rank of 64, 65
skew-symmetric 307
triangular 86
Method
Bezout’s 124
Ferrari’s 20, 106
Hermite’s 124
Lagrange’s (of multipliers) 165
Newton’s 100, 101
of undetermined coefficients 99,
162, 165
Minors, complementary 85
Monogenic polynomials 116
Monogenic symmetric function 118
Multipliers, Lagrange’s method of
165

1591T,

n-dimensional parallelepiped 138
Newton’s binomial formula 151
Newton’s formulas 121, 267-268,311
Newton’s method 100, 161
Norm of a matrix {45
Number(s)

complex 11, 151, 168ff

in trigonometric form [3

One-dimensional manifolds 133
One-dimensional parallelepipeds 293
Ordering, alphabetical 218
Orthogonal complement 305
Orthogonal projection 147
Orthogonalization process 136
Orthonormal basis 136

315

Parallelepiped,
n-dimensional 139
one-dimensional 293
Partial fractions, decomposition in-
to 102
Permutations 26, 27
circular 130ff, 285
Polygon, regular 14-sided 22
Polynomial(s)
bounds of roots [07ff
characteristic 310
Chebyshev 128
cyclotomic 21, 95, 127
elementary symmetric | 1 6ff, 265ff

Hermite 110, 128, 267, 280
Laguerre 110, 128
Legendre 111

monogenic 116
operations on 88ff
rational roots of 103ff
roots of, approximation of
115ff
roots of, distribution of, theo-
rems on 11Iff
Sturm [08, 246fF
symmetric 119
unchanged under circular per-
mutations of variables {30ff
unchanged under even per-
mutations of variables 130ff
Postmultiplication of matrices 81, 209
Power sums 121, 143
Premultiplications of matrices 81,
208-209
Primitive roots 178ff, 183ff
Primitive roots of unity 21-24
Principle, Cavalieri’s 139, 293
Projection 147
operation of 306
orthogonal 147
Projection matrix 307
Product, Kronecker 86,
Progression, arithmetic 97

141, 219

Quadratic equation 12}
Quadratic forms [41ff
Quartic equation 96
Quaternions, algebra of 208

Rank (of a matrix) 64-65
Rational roots of polynomials [03ff
Rationalization of denominator 129ff
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Reals, field of 93
Reciprocal equations, generalized 229
Rectangular matrices 83ff
Recurrence relations 162
Reducibility over the field of ra-
tionals 103ff
Regular simplex 136
Relation, Hamilton-Cayley 311
Relations, recurrence 162
Resolvent
Euler’s 269
Ferrari’s 127, 269
Resultant 124fF
Rolle’s theorem 162,251,253
Roots
bounds of (of a polynomial)|07fF
of a polynomial
approximation of 115ff
distribution of, theorems
on 111ff
primitive [78ff, 183fF
rational (of polynomials) 103ff
of unity 21fF
primitive 21-24

Scheme, Horner’s 88, 89
Sequence, Sturm 109,
Sextic equation 97
Similarity transformation 293
Simplex, regular 136
Skew-cyclic determinant 56
Skew-symmetric determinant 29, 56
Skew-symmetric matrix 307
Solution(s)
fundamental system of 74, 75
general (of a system of equa-
tions) 75
linearly dependent 74
linearly independent 74
system of, fundamental 74, 75
Space
coordinate, n-dimensional 137
Euclidean 133
elementary geometry of n-
dimensional ]35ff
vector 133
Sturm functions 109
Sturm polynomials 108, 246ff
Sturm sequence 108, 109, 246fF
Sturm theorem 108ff, 248
Submatrices 86, 87
Subspaces 133ff
Sums, power [21ff, 143

110, 246
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Sylvester’s condition 142, 299
Symmetric functions 116ff, 164fF
2611F

Symmetric matrices 141fF
Symmetric polynomial 119
System(s)

of equations, general solution

of 75

of linear equations 61ff, 68, 196fF

of linear forms 66ff

of solutions, fundamental 74, 75

Taylor’s formula 88, 91, 224-225
Theorem(s)

Cramer’s 61

on distribution of roots of a

polynomial 111fF

Eisenstein 162, 238

Euler 248

fundamental (of higher al-

gebra) proof of 92fF

Laplace 49, 159, 215, 216

Rolle’s 162, 251, 253

Sturm’s 108, 247
tr (see trace)
Trace of a matrix (tr) 150
Transformation

of coordinates 133ff

of equations 123ff

linear 146ff, 306

similarity 293

triangular 142

Tschirnhausen 129ff, 284
Transpose (of a matrix) 83
Triangular matrix 86
Triangular transformation 142
Trigonometric form, complex num-

bers in 13
Tschirnhausen transformation 129ff,
284

Two-dimensional manifolds 133

Undetermined coefficients, method
of 99, 162, 165
Unimodular matrices 82, 211

Unity, roots of 21ff

Vandermonde determinant 130, 156,

158, 164ff, 196, 222, 234, 284
Vector space 133
Vectors 133
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