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INTRODUCTION 

This book of problems in higher algebra grew out of a course 
of instruction at the Leningrad State University and the Herzen 
Pedagogical Institute. It is designed for students of universities 
and teacher's colleges as a problem book in higher algebra. 

The problems included here are of two radically different ty-
pes. On the one hand, there are a large number of numerical 
examples aimed at developing computational skills and illustra-
ting the basic propositions of the theory. The authors believe that 
the number of problems is sufficient to cover work in class, at 
home and for tests. 

On the other hand, there are a rather large numb:x of problems 
of medium difficulty and many which will demand all the ini-
tiative and ingenuity of the student. Many of the problems of 
this category are accompanied by hints and suggestions to be 
found in Part I I. These problems are starred. 

Answers are given to all problems, some of the problems are 
supplied with detailed solutions. 

The authors 





PART I. PROBLEMS 

CHAPTER 1 

COMPLEX 
NUMBERS 

Sec. 1. Operations on Complex Numbers 

1. (1 +2i)x+ (3 — 5i)y = 1 —3i. 
Find x and y, taking them to be real. 

2. Solve the following system of equations; x, y, z, t are real: 

(1 +i)x+(1 +20y+(1 +3i) z+(1 +4i)t=1 +5i, 

(3 — i)x + (4 —2i)y + (1 + i)z+4it =2— i.  

3. Evaluate in, where n is an integer. 
4. Verify the identity 

x4 +4=(x-1-0(x—l+i)(x+1+i)(x+1-0. 

5. Evaluate: 

(a) (1 +2i)6, (b) (2 + 07+ (2 —07, (c) (1 +2i)5 —(1 —205. 

6. Determine under what conditions the product of two com-
plex numbers is a pure imaginary. 

7. Perform the indicated operations: 

	

+i  tan a 	(b)  a+ bi 	(c)  (( 31 ++ 22 )) —121 +— )): 

	

/ 1 — i tan a 	a — bi 

(1+ 09  (d) (1 		' 	(e) 

	

(1+05 +1 	(1-07  • 

0n  8. Evaluate (1(1  i  +y,„  where n is a positive integer. 

9. Solve the following systems of equations: 

(a) (3— i)x+ (4 + 2i)y =2 +6i, (4 +2i)x— (2 +30y-5+4i; 

(b) (2 + i)x+ (2 — i)y = 6, (3 + 2i)x + (3 — 2i)y = 8; 
(c) x+ yi —2z =10, x — y +2iz =20, ix + 3iy — (1 + i)z = 30. 
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10. Evaluate: 
2 

(a) ( 	21  + 	2 	, 

(b) — 1  + 	)3  . 

1,/  3  
*11. Let co = 2 	

i 
+ 	. Evaluate: 2  

(a) (a+bco+cw2)(a+b(o2 +cco), 

(b) (a + b) (a + bco) (a +1,0), 

(c) (a + bo+ cco2)3  +(a+ bco2  + c03, 

(d) (aco2+bco) (bco2+aco). 

12. Find the conjugates of: 
(a) a square, (b) a cube. 
*13. Prove the following theorem: 
If as a result of a finite number of rational operations (i. e., 

addition, subtraction, etc.) on the numbers x1, x2,..., x„, we 
get the number u, then the same operations on the conjugates .c„ 
x2,..., iT„ yield the number u, which is conjugate to u. 

14. Prove that x2 + y2= (s2 t2
)

n if x+ yi=(s + 
15. Evaluate: 

(a) V 2i, (b) V — 8i, (c) V 3 — 4i, (d) V —15 + 8i , 

(e) V — 3 — 4i, (f) V —  11 + 60i, (g) V — 8 + 6i , 

(h) V — 8 — 6i, (i) V 8 — 6i, (j) V 8 + 6i, (k) V 2 — 3i , 

4  (1) V4 + + V4 — (m) V1 — i V 3 ; (n) -1/ 1, 

4  (o) 1/2 

16. V a + bi = ± (a + Pi). Find V — a — bi 
17. Solve the following equations: 

(a) x2 — (2+ i)x+ (-1 +7i)=0, 

(b) x2 — (3 —2i)x+ (5 —5i)=0, 

(c) (2 + Ox2 — (5— i)x+(2 —2i)=0. 

*18. Solve the equations and factor the left-hand members 
into factors with real coefficients: 

(a) x4 + 6x3+ 9x2 + 100 = 0, 

(b) x4 +2x2 -24x +72 =O. 
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19. Solve the equations: 

(a) x4 -3x2 + 4 =0, (b) x4 -30x2 +289 =O. 

20. Develop a formula for solving the biquadratic equation 
x4  +px2  + =0 with real coefficients that is convenient for the 

case when - —q < 0. 

Sec. 2. Complex Numbers in Trigonometric Form 

21. Construct points depicting the following complex num-
bers: 

1, —1, —1/2, 	i1/2, —1+i, 2-3i. 

22. Represent the following numbers in trigonometric form: 

(a) 1, (b) —1, (c) i, (d) — i, (e) 1 + 

(f) —1+ i, (g) —1— i, (h) 1— i, (i) 1 + i V 3 , 

(j) —1 + il/ 3 , (k) —1 — i 1/ 3 , (1) 1 — i V 3, (m) 2i, 

(n) —3, (o) V 3 — (p) 2+ V 3 + i. 

23. Use tables to represent the following numbers in trigono-
metric form: 

(a) 3+ i, (b) 4 —i, (c) —2+i, (d) —1 — 2i. 

24. Find the loci of points depicting the complex numbers 
whose: 

(a) modulus is 1, (b) argument is iTt  
25. Find the loci of points depicting the numbers z that satis-

fy the inequalities: 

(a) I zI <2, (b) z—i 	(c) z —1 — I <1. 

26. Solve the equations: 

(a) x —x=1 +2i, (b) 	+x=2+ i. 

*27. Prove the identity 
x+y  12+1 x-y  12 =2(I x  12 ± y 1 2) . 

What geometrical meaning does it have? 
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*28. Prove that any complex number z different from — 1, 

whose modulus is 1, can be represented in the form z=  1 + ti  1 — u 
where t is real. 

29. Under what conditions is the modulus of the sum of two 
complex numbers equal to the difference of the moduli of the 
summands? 

30. Under what conditions is the modulus of the sum of two 
complex numbers equal to the sum of the moduli of the summands? 

*31. z and z' are two complex numbers, u=1/ zz'. Prove that 

= 
z+z' 	

1-
u u  , 

1 
 z+z'  

2 	I m  2 	I 

32. Demonstrate that if z 	then 

(1 + i)z3  + iz < 4 . 

33. Prove that 

(1 +il/ 3) (1+0 (coscp+i sin co)= 

= 2 1/Y [cos ( 7:72  + cp) + i sin (-'7j + cp)] . 

34. Simplify 
cos cp +  i  sin cp 
cos (1)— i sin (1, 

35. Evaluate 	
V (1—i 	3)(coscp+isincp)  

2 (1 —i)(cos cp —i sin cp) 	• 

36. Evaluate : 
(b) (1 +1/  -v 

1—i 

3  )2o,  
(a) (1 + 025, 

(C) (I 	
irs 	\24 

	

2 	) (d) (-1+ii/ 3)"± (-1
i1/ (1 _F  iro 

*37. Prove that 

Inc (a) (1 + = 2 	-4- (cos 	+ i sin '2-74`—) , 

(b) ( V 3  — On  = 2" (cos 6 — i sin 6 , 

n an integer. 
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*38. Simplify (1 + w)n, where w =cos 
3 
	27c 
+ i sin 	. 

1 
39. Assuming co, = — 1 
	-1/S + i  2  , (02  = 	2  i 

-1/ 23-  
determine w7+ wz, where n is an integer. 

*40. Evaluate (1 +cos a+ i sin 0)n. 

*41. Prove that if z+ -I= 2 cos 0, then 

1 
zm + 

m 
— = 2 cos m0. 
z 

(  1 + i  tan oc  )22 	1 + i tan na 
42. Prove that —i tan a 	1 —i tan not 

43. Extract the roots: 

3 	 3  	4 	 6 	 6 

(a) V i 	(b) 1/2 — 2i, (c) 1/ — 4, (d) 	1 , (e) V — 2 

44. Use tables to extract the following roots : 

3  	3  	5 	 

(a) 1/ 2 + 	(b) V 3 — 	(c) 1/ 2 + 3i. 

45. Compute: 

6  	8  	6 	 

(a) / 1—i 	(b) 	+i  , (c) 
V V3+i 	

s  
, 	 1+i -  V 3 .  

46. Write all the values of V a if you know that B is one of the 
values. 

47. Express the following in terms of cos x and sin x: 

(a) cos 5x, (b) cos 8x, (c) sin 6x, (d) sin 7x. 

48. Express tan 6 cp in terms of tan cp. 
49. Develop formulas expressing cos nx and sin nx in terms of 

cos x and sin x. 
50. Represent the following in the form of a first-degree poly-

nomial in the trigonometric functions of angles that are multi-
ples of x: 

(a) sine x, (b) sin' x, (c) cos' x, (d) cos' x. 
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*51. Prove that 
m-1 

(a) 22m cos2m x = 2 E ct cos 2 (m — k) x + 
k=0 

(b) 22m cos2m +1  x= 	CL +1  cos (2m — 2k +1) X 

k=0 

in— I 

(c) 2'm sin2m x = 2 z (_ om+k 0,n  cos 2 (m — k) x + 
k=0 

rn 

(d) 2'm sin2m+1 x=E  (_,),n+k Ct+ I  sin (2m — 2k + 1) x. 
k=0 

*52. Prove that 2 cos mx = (2 cos x)m 

m —  
— 1+2 	

m ( 
(2 cos x)m-2 + 	(2 cos X)m  

1 2 
3) 

 

m (m — p —1) (m — p —2) . . . (m-2p+1) 

P! 

x (2 cos x)in -2P 

*53. Express 
sin mx in terms of cos x. 
sin x 

*54. Find the sums: 

(a) 1 —0+0,-0+ ..., 

(b) — + — + . . . 

*55. Prove that 

(a) 1 +0+0+...=1  

n  

n-1  + 2 2  COS 17r  4 ) ' 

(b) 0, 

(6) 

(d) 

+ 

+ 

+ 

+ 02, + . . 	= 

+ 	+ . . . = 

Cn" +...  = 

1 
2 

(2n —1  ± 2.7  sin 7- I , 

1-2 2 
— 0.  cos !--;), 

21 	(2n -' — 2 2  sin '17-4' 	. 
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*56. Find the sum 
1 	I 	̂ 

57. Prove that (x + 	+ (x + aco)m + (x + aco2)m = 3 xm+ 

+ 3 cn' Xm-3  a' + . . . + 3 C'i, xnz-n an, where co = cos 	+ i sin  27.̀  

and n is the largest integral multiple of 3 not exceeding m. 
58. Prove that 

(a) 1 + + + . . . = (2n  ± 2 cos 7) , 

(b) Gin+ C,1+ 	+ . . . = 1 (24  + 2 cos (n -3 )  

(c) + 	+ C,1+ . . . = 
1 (2" + 2 cos (n-3 )7  ) 

59. Compute the sums : 

(a) 1 +a cos cp + a2  cos 2y + +ak cos ky, 

(b) sin cp + a sin (y + h)+ a2  sin (so + 2h) + + ak sin (cp +kh), 

(c) 1 +cos x +cos 2x+ + cos nx. 

60. Demonstrate that 

sin x + sin 2 x + . . . + sin nx = 

61. Find 

sin 2 
n+ 1 	nx 

sin 	sin —
2 

x 
sin -

2 

	

, 	1 	1 	 1 
lira ( 1 + cos x + 71  cos 2x + . .. + yn- cos nx) . 

n—> oo 

62. Prove that if n is a positive integer and 0 is an angle satis- 

	

fying the condition sin 	= 2n, then 

	

0 	30 	 2n-1 
cos 	+ cos 2 	 + . . . + COS 	 2 0 = n sin ne. 

63. Show that 
7 	 3n 5n 77 	 97 	I 

(a) cos -ff  + cos —11 + cos 	+ cos 	+ cos i i  = 2  , 
11 	11 

2n 	4n 	6n 	8n 	lOn 	1 
(b) cos-ft  + cos --i-i- + cos -171  + cos -171  + cos -IT  = — T  , 

3n 	5n 	7n 	9n 	lln 	1 
13 

(c) cos -T' + cos —13 
+ cOs -1-3 + cos —

13 	16 + cos --, + cos T3-  = -2- . 
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64. Find the sums 

(a) cos a— cos (a+ h)+ cos (a + 2h) — +(— On-1  cos [a + (n 

— 1)h], 

(b) sin a — sin (a + h)+ sin (a +2h)— . . . + (— 1)"-' sin [a 

+ (n —1)4 

65. Prove that if x is less than unity in absolute value, then 
the series 

(a) cos a +x cos (a + (3)+x2  cos (a + 2P) + +JO cos (a 

+ nf3) + 

(b) sin a +x sin (a + co+x2 sin (a + 2P) + +xn sin (a + nP) + . 

converge and the sums are respectively equal to 
cos a —x cos  (a—p) 	sin a —x sin (a  --(3) 

1-2x cos f3+ x2 	' 	1 —2x cos p +.x. 	• 

66. Find the sums of: 

(a) cos x + C';, cos 2x + . . . + C"„t cos (n + 1) x, 

(b) sin x + Oz sin 2x + . . . + eni sin (n + 1) x 

67. Find the sums of: 

(a) cos x — C';, cos 2x + C, cos 3x — . . . + ( — 1)n Cr; COS (n + 1) x , 

(b) sin x — 0, sin 2x + 	sin 3 N.. — . . . + ( — 1 )12  e' sin (n + 1) x 

*68. 0A1  and OB are vectors depicting 1 and i respectively. 
From 0 drop a perpendicular 0A2  on A1B; from A2 drop a per-
pendicular A2 43  on 0,41; from A3, a perpendicular A3A4  on 
A1A2, etc. in accordance with the rule: from A„ a perpendicular 
A ni=1„ + , is dropped on An _ zA n  _ 1. Find the limit of the sum 

0.41 + Av  4 2 + A 2 A3 +... 

*69. Find the sum 

	

sin2 x + sin2 3x + 	+ sin2 (2n —1)x. 

70. Show that: 

(a) cos2 x + cos2 2x + ... + cos2  nx = n  - + cos (n + 1) x sin nx 
 

2 	2 sin x 

n 	cos (n + 1)x sin nx (b) sin' x + sin2 2x + ... + sin2  nx =  
2 	2 sin x 
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*71. Find the sums of: 

(a) cos3  x+ cos3  2x+ ... +cos' nx, 

(b) sin3  x+ sin3  2x+ ... +sin" nx. 

*72. Find the sums of: 

(a) cos x +2 cos 2x +3 cos 3x+ ...+n cos nx, 

(b) sin x +2 sin 2x + 3 sin 3x+ +n sin nx. 

73. Find lim (1 + )n  for oc = a+ bi. 
n—>• co 

74. Definition: e =lim (1 + n. Prove that 

(a) e2nr =1, (b) 	= —1, 

(c) ea +13  = e • 0, (d) (e)k =ek for integral k. 

Sec. 3. Equations of Third and Fourth Degree 

75. Solve the following equations using Cardan's formula: 

(a) x3 — 6x +9 =0, 	(b) x3+ 12x +63 =0, 
(c) x3 +9x2 +18x+28 =0, (d) x3 + 6x2 + 30x +25 =0, 
(e) x3 — 6x +4 =0, 	(f) x3+6x +2 =0, 
(g) x3 +18x+ 15 =0, 	(h) x3  —3x2  —3x+11 =0, 
(i) x3 + 3x2 — 6x + 4 =0, 	(j) x3  +9x — 26 =0, 
(k) x3 +24x-56 =0, 	(1) x3 + 45x — 98 =0, 
(m) x3+3x2 -3x-1 =0, (n) x3 — 6x2 + 57x — 196 =0, 
(o) x3+3x-2i= 0, 	(p) x3  —6ix+ 4(1 — i)=0, 
(q) x3 — 3abx + a3  + b3  = 0, 
(r) x3-3abfgx+f 2ga3  + fg2b3  = 0, 
(s) x3  — 4x — 1 = 0; 	(t) x3 — 4x + 2 =0. 

*76. Using Cardan's formula, prove that 

(x1— x2)2  (x1 — x3)2  (x2— x3)2 = — 4p3 — 27q 2  

if x1, x2, x3  are roots of the equation x3+ px+ q= O. 
(The expression —4p3-27q2  is called the discriminant of the 

equation x3+px + q = 0.) 
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*77. Solve the equation 

(x3 — 3qx +p3  — 3pq)2 — 4(px +q)3= 0. 

*78. Derive a formula for solving the equation 

x5-5ax3 +5a2x-2b=0. 

79. Solve the following equations: 

(a) x4 -2x3+2x2 +4x-8 =0, 

(b) x4 +2x3-2x2 +6x —15 =0, 

(c) x4 — x3 — x2 + 2x — 2 = 0, 

(d) x 4  — 4X3  3X2  + 2x-1=0, 

(e) x4 -3x3 +x2 +4x —6 =0, 

(f) x4 -6x3 + 6x2 +27x —56 =0, 

(g) x4 — 2x3  + 4x2  — 2x + 3 = 0, 

(h) x4 — X3—  3x2 +5x —10 =0, 

(i) x4 + 2x3  + 8x2  + 2x + =0, 

(j) x4 +6x3 +6x2 -8 =0, 

(k) x4 -6x3 +10x2 -2x —3 =0, 

(1) x4 -2x3+4x2 +2x —5 =0, 
(m) x4 —x3-3x2 +x+1=0, 

(n) x4 — x3 — 4x2  + 4x + 1 =0, 

(o) x 4  — 2X3  ± X2  + 2x-1=0, 

(p) x4  — 4X3  2X2  — 8x +4 =0, 

(q) x4 — 2x3+3x2 -2x-2 =0, 

(r) x4  — X3  + 2x-1=0, 

(s) 4x4  4X3  3X2—  2x+1 =0, 

(t) 4x4 — 4x3-6x2 +2x+1=0. 

80. Ferrari's method for solving the quartic equation x 4+ 
+ax3+bx2+cx+d=0 consists in representing the left member 
in the form 

(X2  + X +2 	 4 )2  [( 	a42  + 	b) X2  + ( a-2-A  — c ) x + ?‘ -a)]. 2  
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Then X is chosen so that the expression in the square brackets is 
the square of a first-degree binomial. For this purpose it is neces-
sary and sufficient that 

	

(c̀-;— (2— c)2 -4(4 	 )( 	=o, 

that is, A must be a root of some auxiliary cubic equation. Ha-
ving found A, factor the left member. 

Express the roots of the auxiliary equation in terms of the 
roots of the fourth-degree equation. 

Sec. 4. Roots of Unity 

81. Write the following roots of unity of degree 

(a) 2, (b) 3, (c) 4, (d) 6, (e) 8, (f) 12, (g) 24. 

82. Write the primitive roots of degree 

(a) 2, (b) 3, (c) 4, (d) 6, (e) 8, (f) 12, (g) 24. 

83. To what exponent do the following belong: 

0 	18 
2k7r

0  (a) zk  = cos 	2kn  i sin 	 for k = 27, 99, 137 ; 
18  

2krc  
(b) zk  = cos  144  2k7t 	144 

	

+ i sin 	 for k = 10, 35, 60? 

84. Write out all the 28th roots of unity belonging to the ex-
ponent 7. 

85. For each of the roots of unity: (a) 16th, (b) 20th, (c) 24th, 
indicate the exponent it belongs to. 

86. Write out the "cyclotomic polynomials" X „ (x) for n equal 
to: 

(a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, (i) 9, (j) 10, (k) 11, 

(1) 12, (m) 15, (n) 105. 

*87. Let e be a primitive 2n-th root of unity. Compute the sum 
1 +e+ e2+...+en-1. 

*88. Find the sum of all the nth roots of unity. 
*89. Find the sum of the k th powers of all nth roots of unity. 
90. In the expression (x+ a)m substitute in succession, for a, 

the m mth roots of unity, then add the results. 
*91. Compute 1 +2e + 3 e2  + + n en -1, where e is an nth 

root of unity. 
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*92. Compute 1 + 4 e + 9 e2 + + n2en -1, where e is an nth 
root of unity. 

93. Find the sums: 
–  

(a) cos –n-27c  + 2 cos —Linn  + . . . + (n – 1) cos  2 
 (n 1)  

(b) sin 277  + 2 sin 4n  + . . . + (n 	1) sin 
2(n-1) Tc 

*94. Determine the sum of the following primitive roots of 
unity: (a) 15th, (b) 24th, (c) 30th. 

95. Find the fifth roots of unity by solving the equation x5  –  
–1=0 algebraically. 

96. Using the result of Problem 95, write sin 18° and cos 18°. 
*97. Write the simplest kind of algebraic equation whose 

root is the length of the side of a regular 14-sided polygon in-
scribed in a circle of radius unity. 

*98. Decompose xn –1 into linear and quadratic factors with 
real coefficients. 

*99. Use the result of Problem 98 to prove the formulas: 

(a) sin 	
n

sin 
2rc 	

sin 
(m-1)7 

 	. 2m 	2m 	 2m 

2Tc 	

2"1-11; 

Tr 	

2m  ± 

(b) sin 	• sin 2m+ 1 . . . sin 	
/Mt 

2m+ 1 	 2m + 1 	2"I 
n-1 

*100. Prove that fl  (a + bek )= an + (– 1)n-1  b'l 
k =0 

where 
2kir 	2kTc 

Ek  = COs 	 + i sin 
n 	 n 

*101. Prove that 
n—I 

H (d-2ek  cos 0+1)=2 (1–cos ne), 
k= 0 

if 

	

2krc 	. 	2kTr 

	

n 	n 
Ek = COS 	 + sin 	 

102. Prove that 

N (t+ con—1  = 	
[tn  — (ek  – 1 )n] 

k =0 
	

k=I  

where ek  = cos 2k7r  
-- + i sin 

2k7 
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*103. Find all the complex numbers that satisfy the condition 
=xa-' where 5e is the conjugate of x. 
104. Show that the roots of the equation X (z — a)a + µ (z —b)' = 

= 0 , where A, t,, a, b are complex, lie on one circle, which in a parti- 
cular case can degenerate into a straight line (n is a natural number). 

*105. Solve the equations : 

(a) (x+1)m— (x —1)'n = 0, (b) (x + i)m— (x — O'n = 0, 

(c) xn naxn-' — nc2a2x, -2 	an =__ 0.  

106. Prove that if A is a complex number with modulus 1, 
then the equation 

(  I + ix  )'n = A \ I — ix 

has all roots real and distinct. 
*107. Solve the equation 

cos so + Cni  cos (cp + oc)x + C,,2  cos (q) + 2(x) X2  

+ + enz cos (cp + not) xn =O. 

Prove the following theorems: 
108. The product of an ath root of unity by a bth root of unity 

is an abth root of unity. 
109. If a and b are relatively prime, then xa — 1 and xb— 1 have 

a unique root in common. 
110. If a and b are relatively prime, then all the abth roots of 

unity are obtained by multiplying the ath roots of unity by the 
bth roots of unity. 

111. If a and b are relatively prime, then the product of a pri-
mitive ath root of unity by a primitive bth root of unity is a pri-
mitive abth root of unity, and conversely. 

112. Denoting by cp (n) the number of primitive nth roots of 
unity, prove that p(ab)=p(a)cp(b) if a and b are relatively prime. 

*113. Prove that if n= j,;( 	where p„ p2, 	p, are 
distinct primes, then 

p (n) = n(1 — 	 . 	(1—  --) Pi 	Pa 	 Pk 

114. Show that the number of primitive nth roots of unity is 
even if n> 2. 

115. Write the polynomial X , (x) where p is prime. 
*116. Write the polynomial Xi', (x) where p is prime.  
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*117. Prove that for n odd and greater than unity, X2n(x)= 
= X„(—x). 

118. Prove that if d is made up of prime divisors which enter 
into n, then each primitive ndth root of unity is a dth root of a 
primitive nth root of unity, and conversely. 

*119. Prove that if n= p7' p`P 	pmkk where pi, P2 ,  • • Pk 
are distinct primes, then Xn(x)= X„, (xn") where 

n 

	

17' =PiP2 • • • Pk, n" = 	• 

*120. Denoting by 11(n) the sum of the primitive nth roots of 
unity, prove that p.(n) =0 if n is divisible by the square of at least 
one prime number; p.(n)=1 if n is the product of an even number 
of distinct prime numbers; 1..1.(n)= —1 if n is the product of an 
odd number of distinct prime numbers. 

121. Prove that Ell (d)=0 if d runs through all divisors of 
the number n, 

n'\ 

*122. Prove that Xn  (x)= IZ (xd— 	Cl/  where d runs through 
all divisors of n. 

*123. Find X„(1). 
*124. Find Xn  (-1). 
*125. Determine the sum of the products of the primitive 

nth roots of unity taken two at a time. 
*126. S= 1 + e+ e4 + e9 + ...+ 	oa  where e is a primitive 

nth root of unity. Find S I. 



CHAPTER 2 

EVALUATION 
OF DETERMINANTS 

Sec. 1. Determinants of Second and Third Order 

Compute the determinants: 

2 	3 2 	1 sin a 	cos a 
127. 	(a) 

1 	4 	' 
(b) 

—1 	2 
, 	(c) 

— cos a 	sin a 

a c+di a + p y + si 
(d) 

c—di (e) y — cx — pi 

(f) 
sin oc 

sin p 
 OC 

cos p (g) 
cos OC 

sin p 
sin oc 

cos p 	' 

tan cc 
— 1 	. 	1 + 2 — V3 

(h) 
1 	tan a 	(1)  I 2 + V 3 1 — V2 

1 logb  a 	a+b b+d I 
(j) logo  b 1 

(k) 
a+c c+d 	' 

a+b a—b x-1 1 
(1 ) a—b 

co 	col 

a+b 	(m)  x3 x2+ x+1 

(n)  
—1 	6.) 

where co = cos  3 
2rc . 

+ sin— 23 ' 

(o)  

 

—1 

  

   

7T 
where s = cos 3 + sin —3 ' 



128. (a) 

(c) 

(e)  

(f)  

(g)  

(h)  
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1 	1 	1 

- 1 	0 1 , 
- 1 -1 0 

	

a 	a a 

	

-a 	a x , 

- a -a x 

0 1 1 

(b) 1 0 1 

1 1 0 

1 1 1 

(d) 1 2 3 

1 3 6 

1 	i 	1 + i 

-i 	1 	0 	, 

0 	1 

1 	cos 	7 	
TC 	 7 

S ± i sin s  cos - if  + i sin 71  

7 	

3 

it 	 2
T  
7 	 27 

cos -
3
- - i sin 	1 	cos - + i sin 

TC 	 7 	 . 	2 

 3 

7 	
1 cos -4  i sin 	cos - 

27 
 - / sin 

4  

. 
where (,)= cos 3  +i sin --s , 

	

27 	 7 

	

where co = cos -3 	i sin 
2 

3 
• 

Sec. 2. Permutations 

129. Write out the transpositions enabling one to go from the 
permutation 1, 2, 4, 3, 5 to the permutation 2, 5, 3, 4, 1. 

130. Assuming that 1, 2, 3, 4, 5, 6, 7, 8, 9 is the initial arran-
gement, determine the number of inversions in the permutations : 

(a) 1, 3, 4, 7, 8, 2, 6, 

(c) 9, 8, 7, 6, 5, 4, 3, 

131. Assuming 1, 2, 
choose i and k so that: 

(a) the permutation 1, 2, 7, 4, i, 5, 6, k, 9 is even; 
(b) the permutation 1, i, 2, 5, k, 4, 8, 9, 7 is odd. 
*132. Determine the number of inversions in the permutation 
n- 1, ..., 2, 1 if the initial permutation is 1, 2. 	n. 

9, 5; (b) 2, 1, 7, 9, 8, 6, 3, 5, 4; 

2,  1. 

3,  4,  5, 6, 7, 8, 9 to be the initial ordering, 
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*133. There are I inversions in the permutation al, 
How many inversions are there in the permutation an, «,„_,, 
c(2, 	? 

134. Determine the number of inversions in the permutations: 

(a) 	1, 3, 5, 7, ..., 2n- 1, 2, 4, 6, 	..., 2n, 

(b) 2, 4, 6, 8, ..., 2n, 	1, 3, 5, 	..., 2n - 1 

if the initial permutation is 1, 2, ..., 2n. 
135. Determine the number of inversions in the permutations: 

(a) 3, 6, 9, ..., 3n, 1, 4, 7, 	..., 3n -2, 2, 5, ..., 3n - 1, 

(b) 	1, 4, 7, ..., 3n -2, 2, 5, ..., 3n - 1, 3, 6, 	..., 3n 

if the initial permutation is 1, 2, 3, ..., 3n. 
136. Prove that if a1, a2, 	a„ is a permutation with I the 

number of inversions, then, when returned to its original orde-
ring, the numbers 1, 2, ..., n form a permutation with the same 
number of inversions I. 

137. Determine the parity of the permutation of the letters th, 
r, m, i, a, g, o, 1 if for the original ordering we take the words (a) 
logarithm, (b) algorithm. 

Compare and explain the results. 

Sec. 3. Definition of a Determinant 

138. Indicate the signs of the following products that enter 
into a sixth-order determinant: 

(a) a23a31a42a56a14a65,  (b)  a32a43a14a51a66a25• 

139. Do the following products enter into a 5th-order deter-
minant: 

(a) a13a24a23a41a55,  (b) a21a13a34a55a42? 

140. Choose i and k so that the product ava 32a4ka25a53  enters 
into a fifth-order determinant with the plus sign. 

141. Write out all the summands that enter into a fourth-or-
der determinant with the plus sign and contain the factor a23. 

142. Write out all the summands that enter into a fifth-order 
determinant and are of the form a14a23a3„,a4„,a5,,. What will 
happen if a14a23  is taken outside the parentheses? 
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143. With what sign does the product of the elements of the 
principal diagonal enter an nth-order determinant? 

144. What sign does the product of elements of the secondary 
diagonal have in an nth-order determinant? 

*145. Guided solely by the definition of a determinant, prove 
that the determinant 

(
a1 c(2 (43 (X4 °C5 

131 12 P3 P4 P5 
a1  a, 0 0 0 
b1  b2  0 0 0 
c1  c2 0 0 0 

is zero. 
146. Using only the definition of a determinant, evaluate the 

coefficients of x4  and x3  in the expression 

2x x 1 2 

1 x 1 —1 
f (x)= 3 2 x 1 

1 1 1 

147. Evaluate the determinants: 

1 0 0 	. . . 	0 0 0 0 	. 0 1 

0 2 0 	. . . 	0 , 	(b) 0 0 0 	. . 	. 	1 0 
(a) 0 0 3 	. . . 	0 

1 0 0 	. . . 	0 0 

0 0 0 	. . . 	n 

1 a a 	. . . 	a 

0 2 a 	. . . 	a 
(c) 0 0 3 	. . . 	a 

0 0 0 	. . . 	n 

Note: In all problems, determinants are taken to be of order n 
unless otherwise stated or unless it follows from the conditions 
of the problem. 
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148. F(x)=x(x-1) (x-2)...(x— n+ 1). 
Compute the determinants: 

	

F(0) 	F(1) 	F(2) 	F(n) 

	

(a) F(1 ) 	F(2) 	F(3) 	... F (n + 1) 

F(n) F (n + 1) F (n + 2) . . . F (2n) 

F (a) 	F' (a) 	F" (a) 	F'"' (a) 

F' (a) 	F" (a) 	F" (a) 	pn+1) (a) 

F(n) (a) F<"-") (a) F(n+2)  (a) . . . 	F( 2n) (a) 

Sec. 4. Basic Properties of Determinants 

*149. Prove that an nth-order determinant, each element a ik  
of which is a complex conjugate of ak„ is equal to a real number. 

*150. Prove that a determinant of odd order is zero if all its 
elements satisfy the condition 

aik  + ak, — 0 

(b) 

29 

(skew-symmetric determinant). 
all  a12 a1 

151. The determinant 
a21 a22 	a2n 

is equal to A. 

ant an2 • • • a. 
To what is the following determinant equal 

a21 a22 

a31  a32  

a,„ 

a3„ 
9 

and 	a,72 • • • ann 

an a12  • • • a,„ 

152. How is a determinant affected if all columns are written 
in reversed order? 

*153. What is the sum of 

al„, . . . 

E  a,„ a2,„ . . . a2„, 

an„ 	a„«2  . . . anocn  

if the summation is taken over all permutations of 	w2, • • •, 
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*154. Solve the equations: 
1 	x 	x2 	. . . xn-1 

1 	 2 a1 	al 	... an 
(a) 	1 	a2 	2 , 

t..9 	. . . a'21-1  

1 	an _, 	an2_, . . . 

where al, a2, 	an _, are all distinct; 

1 	1 	1 	1 

1 	I — x 	1 	1 
(b) 	1 	1 	2— x... 1 

1 	1 	1 	. (n-1)— x 

a1 	a2 	a3  

a1  a, + a,— x 	a3  

a1 	a2 	a, + a,— x 

a1 	a2 	a3 	. . . a„_,+ an — x 

*155. The numbers 204, 527 and 255 are divisible by 17. Prove 
that 17 divides 

2 0 4 

5 2 7 

2 5 5 

*156. Compute the determinant 

=0 

(c) 

= 0; 

a„ 

an  

a„ = 0. 

OC2 

p2 

Y2 
 

32  

157. Prove that 
b+c c+a a+b 

b1+c1  ci+ a, al +b, 

b2 +c2  c2 +a2  a2 +b2  
158. Simplify the determinant  

a 
= 2 	al. b1 c1  

a2  b2  C2 

am + bp an + bq 

cm + dp cn + dq 

(a + 1)2  (oc+ 2)2  (a + 3)2  

(P + 1 )2  (P + 2)2  (P + 3)2  

+ 1 )2  ("1' + 2)2 (y+ 3)2  
(6+ 1)2  (8 + 2)2  (8+3)2  

by expan- 

ding it into summands. 
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159. Find the sum of the cofactors of all elements of the de-
terminants: 

(a) 

a, 

0 

0 

0 

a2  

0 

0 	... 

0 	... 

0 	. 

0 

0 

.. 	an  

(b) 

0 

0 

a„ 

0 	... 

0 	. 

0 	... 

0 

. . 	a, 

0 

al  
0 

0 

160. Expand the following determinant by the elements of 
the third row and evaluate: 

1 0 — 1 —1 

0 —1 —1 1 

a b c d 
—1 —1 1 0 

161. Expand the determinant 

2 1 1 x 

1 2 1 y 

1 1 2 z 

1 1 1 t 

by the elements of the last column and evaluate. 
162. Expand the determinant 

al 1 1 

b 0 1 1 

c 1 0 1 

d 1 1 0 

by the elements of the first column and evaluate. 

Sec. 5. Computing Determinants 

Compute the determinants: 

*163. 13547 

28423 

13647 

28523 

164. 246 

1014 

—342 

427 

543 

721 

327 

443 

621 
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165. 3 	1 	1 	1 166. 1 	1 	1 	1 167. 1 2 3 4 

1 	3 	1 	1 1 	2 	3 	4 2 3 4 	1 
1 	1 	3 	1 1 	3 	6 	10 3412  

1 	1 	1 	3 1 	4 	10 20 4123  

168. 1 	1 	1 1 169. 1 	2 	3 	4 

1 	2 	3 4 —2 	1 	—4 	3 

1 	4 	9 16 3 	—4 	—1 	2 

1 	8 	27 64 4 	3 	— 2 	—1 

170. 2 	1 	1 1 	1 171. 5 	6 	0 	0 	0 

1 	3 	1 1 	1 1 	5 	6 	0 	0 

1 	1 	4 1 	1 0 	1 	5 	6 	0 

1 	1 	1 5 	1 0 	0 	1 	5 	6 

1 	1 	1 1 	6 0 	0 	0 	1 	5 

172. 0 	1 	1 1 173. x 	y 	x +y 
1 	0 	a b y 	x + y 	x 
1 	a 	0 c x + y 	x 	y 

1 	b 	c 0 

174. x 	0 	—1 1 	0 175. 1 + x 	1 	1 	1 

1 	x 	—1 1 	0 1 	1 — x 	1 	1 

1 	0 x— 1 	0 	1 1 	1 	1 +z 	1 

0 	1 	—1 x 	1 1 	1 	1 	1 —z 

0 	1 	—1 0 	x 

176. 1 	1 2 	3 

1 	2 — x2  2 	3 

2 	3 1 	5 

2 	3 1 	9 — x2  

177. cos (a — b) cos (b — c) 	cos (c — a) 

cos (a + b) cos (b + c) 	cos (c + a) 

sin (a + b) sin (b + c) 	sin (c+ a) 
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178. 0 

—a 

—b 

—c 

a 

0 
—d 

—e 

bc 

d 	e 

0 f 

—f 0 

*179. 1 2 3 	. . . 	n 

—1 0 3 	. . . 	n 

— 1 —2 0 	. . . 	n 

—1 —2 — 3 	. . . 	0 

*180. 1 a1  a2  an  

1 al+bi  a2  a„ 

1 al  a,+b, ... 	a„ 

1 a1  a2  an+b„ 

*181. 1 x1 x2 xn-1 	xn 

1 x x2 Xn_1 	Xn  

1 x1  x xn  _1 	xn  

1 x1 X2 	• . 	X 	Xn  

1 x1 X2 	• . 	xn _1 	x 

*182. 1 2 3 	. . 	n-1 

1 3 3 	. . . 	n-1 

1 2 5 	. . . 	 n-1 

1 2 3 	. . . 2n — 3 	n 

1 2 3 	. . . 	n-1 	2n — 1 

*183. 1 2 2 	. . . 	2 

2 2 2 	. . . 	2 

2 2 3 	. . . 	2 

2 2 2 	. . . 	n 
'2. 1215 
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*184. 1 
-1 

0 

b1  
1-b1  
-1 

PART I. PROBLEMS 

0 	0 	0 	0 
b2 	0 	0 	0 

1- b2 	b, 	0 	0 

0 0 0 	0 	. . . 	 1-b„_1 	bi 
0 0 0 	0 	. . . 	 -1 	1 -b. 

*185. a a+h a+2h ... a+(n-1)h 

-a a 0 	 0 
0 -a a 	 0 

0 0 0 	. , . 	a 
*186. a -(a+h) ... (-1)n-1[a+(n-l)h] 

a a 	 0 

0 a • • • 	0 

0 0 a 
*187. 1 

1 
CI 

Cl_i  

	

C;i 	C?, 	... 	qr-2 	C7,-1 	C7,
2 

	

C',__ I 	C!_i 	. . . 	C7,..72 	qz=1 	0 
1 C;1-2 C,2,_.2 	C;,-2 	. . . 	C F,111 	0 	0 

1 Cl C2 	0 	0 	0 	0 

1 CI 0 	0 	0 	0 	0 
ao  a1  a2 	a3 	• • • 	an-2 	an-1 	an 

*188. ao —1 0 	... 	0 	0 

a1  x - 1 	. . . 	0 	0 

a2 0 x 	. . . 	 0 	0 

a._1  0 0 	... 	x 	-1 

an  0 0 	. . . 	 0 	x 
*189. n n-1 n-2 	. . . 	 3 	2 	1 

-1 x 0 	0 	0 	0 
0 - 1 x 	0 	0 	0 

0 0 0 	. 	 . 	 -1 	x 	0 
0 0 0 	. 	 0 	-1 	x 
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*190. Compute the difference f(x +1) —f(x), where 

1 	0 	0 	0 	... 	0 

1 	2 	0 	0 	... 	0 	x2 

f (x)= 	1 	3 	3 	0 	. . . 	 0 	x3  

1n 	C2 	C3 . . . 	xn 

1 	n + 1 	C „2  +1 	C3„+1 	. . . 	̀-'n+1 
,n+1 

Compute the determinants: 

*191. x a1 	a2 	an-1 	1 *192. x a 	a ...a 
al  x 	a2 	a„_, 	1 a x 	a . . . a 
al  a2 	a„_, 	1 a a 	x ... a 

193. 

al  

al  

x 

—a 

—a 

—a 

a2 	a3 	. . . 	x 	1 

a2 	a3 	. . . 	an 	1 

a 	a 	. . . 	a 

x 	a 	. . . 	a 

—a 	x . . . 	a 

—a 	—a ... 	—a 

a 

a 

a 

x 

a a 	a ... x 

*194.  —al  a, 	0 	... 	0 	0 

0 a2 az 	... 	0 	0 

0 0 	—a3  ... 	0 	0 

0 0 	0 	... 	—an 	a„ 

1 1 	1 	. . . 	1 	1 

*195.  a, 0 	... 	0 	0 

0 a2 	— a, 	. . . 	0 	0 

0 0 	a 	0 _ 3 	. . . 	0 

0 0 	0 	... 	a„_, 	— a„ 

1 1 	1 	. . . 	1 	I 	a„ 

35 
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*196. 
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h 	—1 	0 	0 	. .. 	0 

hx 	h 	—1 	0 	. . . 0 

hx2 	hx 	h 	—1 	. . . 0 

hxn 	hxn-i 	hxn-2 	hxn-3  . . . h 

*197. 0 	1 	1 . . . 	1 	1 

1 	0 	x . . . 	 x 	x 
1 	x 	0 . . . 	x 	x 

1 	x 	x . . . 	0 	x 
1 	x 	x . . . 	x 	0 

*198. 0 	1 1 	1 

1 	0 al+ a2  . . . ai+ an  

*199. 

1 	a2+ a, 

1 	an + a, 

1 	2 

0 	. . . a2+ a„ 

an+ a2 	. . . 	0 

3 	. . . n — 1 	n 
1 	1 1 	. . . 	1 	1 —n 

1 	1 1 	. . . 	1 —n 	1 

1 	1 —n 1 	1 	1 

*200. 2 

	

1— 1 	1  _ 1 	
• • ' 
	1_ 1 

	

n 	 n 	 n 

1— 1  

n 
2 	1 — 1 	 . . . 	

1— 1  

n n 

1- 1  
n 

	

1— 1 	1 —1  .. 	2 

	

n 	n 

(order n +1). 

*201. 1 	a 

xi, 	1 

a2 	a3 	. . . 	an 

a 	a2 	. . . 	an-1  

X21 	X22 

xnl 	xn2 

1 	a 	. . . 	an-2  

xn3 	Xn4 	. . . 	 1 



*202. 

CH. 2. EVALUATION OF DETERMINANTS 

1 	2 	3 	4 	. . . 	n 
2 	1 	2 	3 	. . . 	n-1 

3 	2 	1 	2 	. . . n-2 
4 	3 	2 	1 	. • . n-3 

n 	n-1 	n-2 n-3 . . . 	1 

*203. ao 	b1 	0 	0 	. . . 	0 	0 

a1 	— b, 	b2 	0 	. . . 	0 	0 

a2 	0 	—b1 	b, . 	0 	0 

an _1 	0 	0 	0 	. . . 	 b„ 

a„ 	0 	0 	0 	. . . 	0 	—bn-1 

*204. 

a 	a2 	0 	0 	 0 	 0 

1 2a+b (a+b)2 	0 	. 	0 	 0 
0 	1 	2a + 3b (a + 2b)2  . . . 	0 	0 

0 	0 	0 	0 	. . . 2a + (2n — 1) b 	(a + nb)2  
0 	0 	0 	0 	 1 	2a+(2n+1)b 

*205. 	 *206. 

x 	y 	0 . . . 0 	0 1 + x1  Y1 	1 + xiY2 	. 1+ xi y„ 

0 	x y 	0 	0 1 + x2 Y1 	+ X2 Y2 ... 	1+ x2 y„ 

0 	0 	0 . . . x 	y 1+ x„yi 	1 +xnY2 ... 	1+ x„y„ 

y 	0 	0 	. 0 	x 
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al —b1  al—b2 
a, — b1  a2 — b2 • • • 

a1  — b„ 
a2  — b. 

a„—b1  an —b2 • • • a„—b„ 

a1-Fx2 • •• 
a2 -1-•x1  1+a2 -Fx2  

207. 

*208. 

an+ xi 	a„+ 	1+an + x„ 
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209.  an — CC 

an-FP — GC 

an+p (p-1) 

PART I. PROBLEMS 

an +1 	cc  

an+p+1 

an+p (p-1)+1 

an+p-1 

an+2p-1 —  

an+p2-1_ 

210. Prove that the determinant 

A (ai) A (a2) • • • A (an) 

J2 (ai) f2 (a2) • • • f2 (an) 

fn (a1)fn  (a2) • • • fn (an) 

is equal to zero if fi(x), f2(x), 	f„(x) are polynomials in x, each 
of degree not exceeding n-2, and the numbers al, a2, ..., an  are 
arbitrary. 

Compute the determinants: 

*211.  

*212.  

	

1 	2 

	

—1 	x 

	

0 	0 

	

0 	0 

al + xi  

3 
0 

0 
0 

a2 

4 	. 

0 	... 

0 
0 

a3 

n— 1 

0 	0 

x 	0 

—1 	x 

an-1 an 
— x, 

0 
x2  

— x2  

0 

X3 

0 	0 

0 	0 

0 0 0 —xn-1 	Xn 

*213.  *214.  

ao 	a1 a2 	an-1 an 0 1 	1 • • • 1 

—y1 	x1  0 	0 0 1 a1 	0 ... 0 

0 	—y2  x2 2 	0 0 1 0 	a2  0 

0 	0 0 	—y„ x„ 1 0 	0 an  

*215.  n! an  

—n 

0 

0 

(n-1)! al. 

x 

—(n-1) 

0 

(n-2)! a2 
0 

x 

0 

an  
0 

0 

x 



216. 1 

1 

1 

1 

1 

CH. 

0 

al  

1 

0 

0 

2. 

0 

0 

a2  

1 

0 

EVALUATION 

0 	1 

0 	0 

0 	0 

a3 	0 

1 	a4  

OF DETERMINANTS 	 39 

Write an nth-order determinant 
of this structure and compute 
it. 

Compute the determinants: 

217. 218. 

+ 13 	af3 0 	. . . 	0 0 2 	1 	0 0 . . . 	0 

1 	cc + (3 «p 	. . . 	0 0 1 	2 	1 0 . . . 	0 

0 	1 	«+p ... 0 0 0 	1 	2 1 	. . . 	0 

0 	0 0 	. . . 1 cc+13 0 	0 	0 0 . . 	2 

*219. 2 cos 0 1 0 ... 0 	0 
1 2 cos 0 1 ... 0 	0 

0 0 0 	... 1 	2 cos 0 

220. cos 0 1 0 . . . 	0 

1 2 cos 0 1 . . . 	0 

0 1 2 cos 0 	. . . 	0 

0 0 0 ... 2 cos 0 

*221. *222. 

x 1 0 	. . . 	0 X1 Y2 XI Y3 	• • • X1 yn 

1 x 1 	. . . 	 0 X1 Y2 X2 Y2 X2 Y3 	• • • X2 Yn 

0 1 x 	. . . 	0 xi y3 X2 Y3 x3 Ya 	• • • x3 Yn 

0 0 0 	. . . 	x Yn  x2Yn  X3Yn 	• • • xnY n 

*223. 1 + al  

1 

1 

1 

1 

1 + a, 

1 

1 

1 	. 	. 

1 	. 	. 
1 + a, 	. . 

1 	. 

. 	1 

. 	1 

. 	1 

. 	l+an  
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224. 

*225.  

1 

1 

1 

an+1 

a1 	x 

PART 	I. 

1 

1 	. 

an _,+ 1 	. 
1 

x 	. . . 	 x 

PROBLEMS 

1 	(21+1 

. 	a2+1 	1 

1 	1 

1 	1 

x a2  x . . . 	 x 

x x a3  . . . 	 x 

x x x . . . 	an  

*226.  *227.  
x1  a2  a3 an-1 an xl  a2  b, a3  121  an  b1  
a, 

a1  
x2  

a2  

a3  

x3 

an-1 
a„_, 

an 
a„ 

ai  1)2  

al  b3  

x2 

a2  b3  

a3  1..)2  
x3 

an  b2  

an  b3  

a1 

a1 

a2  

a2  

a3  

a3 

x„_, 

an-1 

a„ 

xis 

al b„ a2 bn  as  bn 	 . . . 	 xn  

*228.  X1— in 

xl  

xl 

x1  

x2 

X2 — m 

X2 

x2  

x3 

x3 

X3 — m 

x3  

. 	. 	. 

. 

X„ 

Xn  

X„ 

xn- 
229. Solve the equation 

a1  a2 	. . 	. an-1 a„— an x 

al  a2 	. . 	. an _1 — an _i x an  = 0. 

al — al  X a2 	• • 	• an-1 a„ 

Compute the determinants : 
*230. a 0 0 	. . . 	0 0 b 

0 a 0 	. . . 	0 b 0 
0 0 a 	. . . 	b 0 0 

(of order 2n). 
0 0 b 	. . . 	 a 0 0 

0 b 0 	. . . 	0 a 0 
b 0 0 	. . . 	0 0 a 
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*231. I  1 	—b —b —b —b 

1 	na — 2b —3b . . . 	— (n — 1) b 

1 	(n— 1)a a —3b . . . 	— (n — 1)b 

1 	(n — 2)a a a . . . 	— (n —1)b 

1 	2a a a . . . 	a 

*232. (x — a1)2  
2 a t  

a2  2 

(x — a2)2 	 . 

2 an  

. . 	 an2  

2 a? 2 a2 	. . . 	(x — ar,)2  

*233. (x — a1)2  

a1  a2  

a1  a2 	. 

(x — a2)2 	. 

. . 	a1  a„ 

. . 	a2  a„ 

a1  a„ a2  an 	. . . 	(x — an)2  

*234. 1 — b, 

—1 
b2 	0 

1 — b, 	b3  

0 —1 	1 — b, b4 	0 

0 0 	0 0 	. . . 	1 — b„ 

*235. 0 	a2  

b1 	0 

b1 	b2  

b, 	b2  

b1 	b2  

a3 	a4  

a3 	a4  

0 	a4  

b3 	b, 	• 

b3 	b, 	• 

an-1 	an 
a„_, 	an  

an-1 	an 

0 	a„ 

b„_ 1 	0 

*236. *237. 
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1 	2 3 4 5 

1 	1 2 3 4 

1 	x 1 2 3 
1 	x x 1 2 

x x x x 

... 	n 

.. . n— 1 

. . . n —2 

. . . n-3 

1 

1 2 3 4 

x 1 2 3 	. . . 	n — 1 
1 2 	. . . n —2 

x x x 1 	. . . n — 3 

x x x x. 1 
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*238. . 	II 

ao  x 

ao  X2  

ao  x" -1  

ao  x" 

PART 

al 	-1 

bl  

ai X 

al  xn-  2  

a, xn-1  

I. 	PROBLEMS 

a2 xn - 2 

0 

a2  xn -3  

a2  x"-2  

an  _1  x 

0 
0 

bn-i 

an-lx 

an 

0 
0 

0 

bn  

*239. Prove that the determinant 

a00 xn  aoi xn 	a02 Xn-2  . . . won 

a,o  x 	all 	0 	0 

a20 X2 	a21 x 	a22 	• • . 0 

ano xn  and xn-1  *2.2  xn-2  . . . ann 

Compute the determinants: 

1 
1 
1 

= Xn  • 

a00  ay, a„, . 

aio aii 	0 	. 

a20  a21  a22  . 

. . 	ae„ 

. . 	0 

. . 	0 

ano and  a 	• • • an,, 

*240.  *241.  

1 1 1 1 1 1 
C2 
CI 

C3 C;, 

C?,+1  
C,n1  

Cm2  +I 

CL+1 

CM-I-2 	• • 

C i  m  

• C m2  -En-El 

C'n'-  C 41 	. . . CW2  Cm-Fn-1 Cm-Fn • • • Cnm-F2n-1 

*243. 

0 	0 

C2 	0 
0 
0 

	

Ck 	Cfc,71 	Ckm+n 

	

c km  + 
	Cm+I1 
	. . . 	C m+I 

CI 	CI 

Cn2 	C3n  

0 

. . 	CP, -1  

c ik n  + n  c mk ++1 n 	c km++n,  

CV+,, 

C'kn+m-Fi 

C'ci.on  +1 	•• 	C7:+2m 

Cikn-Fm-1-2 	• • • 	k-1-2m-1-1 

Crc-1-2m Cikn+2m-I-1 	• • • 	CT-F3m 

1 0 	0 	... 0 1 
1 C1 	0 	... 0 
1 CI C2 	... 0 x2  

1 C;-1 xn  

1 

*244.  

*245.  
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*246. 1 0 0 0 	 1 

1 1 ! 0 0 	 x 

1 2 2! 0 	 x2 

1 3 3.2 3! 	 x3  

1 n n (n — 1) n (n — 1)(n — 2) 	... xn 

*247. 

a a+3 a+23 a+33 . 	 a+(n— 1)3 

a 2a+3 3a+33 4a+63 ... 	C,;a+CO 

a 3a+3 6a -F 43 10a+ wa ... aFi  a+ am  a 

aCn 	 + 8 c7,Tloc+ c,n,±18 csn'TIcc+ c42a.. q,;-12 cc+ C'&_2a 
*248. 	 *249. 

y a a a 	. . . a 	0 
y a a a 	. . . 	0 
y 

a 0 b b 	b 
y 0 b b b 	b 
x 

251. 

x c, a a a 

x b c2  a a 

b b c3  a 
an 

b b b c 

x y y...y 

z x y...y 

z z x...y 

z z z 	x 

z z z ...z 

250. 

a, x 	x . . . 

y 	a2  x . . . 

Y Y Y • • • 

*252. 

X a a a ... a 

b a p p . . . 
b p a p . . . 

b p (3 a ... 

b p p p ... a 

1 	1 	1 	1 

*253. 

1 2 3 
2 3 4 ... 1 

3 4 5 ... 2 

n 1 2 	n — 1 
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*254. a 

a+h 

a+2h 

a+h 

a+2h 

a+3h 

a+(n-1)h a 

255. 1 x x2  
xn-1 1 x 

x x2  x3 	 . . . 

257. 

abcdefgh 

badcfehg 

cdabghe f 

d cbahgfe 

fghabcd 

fehgbadc 

g he fcdab 

hgfedcba 

PROBLEMS 

a+2h 	a+(n-1)h 

a+3h ... 	a 

a+4h 	a+h 

a+h 	a+(n-2)h 

a b c d 
b a d c 
c d a b 

1 	 d c b a 

*258. 

x 	a1  a, ... an  

a1  x 	a, ... an  

a1  a2  a3 	x 

xn —1 	*256. 

Xn  —2  

COS"-1  cp, COS"-2  cp, 	cos pi  1 

cos" —1  cp2  COS"-2  cp2 	cos y2  1 

COS"-2  cpn  . . . cos c,o,, 	1 COS"-1  cpn  

1 	1 

sin cp, 	sin cp2  

sin2  op, 	sin2  cp2  

1 

• sin cp„ 

• sin2  cp„ 

sin"-1  p1  sin"-1  p2  . . . 	cp„ 

an 	(a— l)" ... (a — n)n 

an-1 (a— 1)n-1  . . . (a —n)n-1  

a 	a-1 	a —n 
1 	1 	 1 

*259. 

260.  

261.  
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262. (a, + x)" 	(al+ x)n-1 	al+ x 	1 
(a, + x)n 	(a, + x)n-1  . . a, + x 	1 

263.  
(a.+1+ x)" (a„+1+ x)n-1  . . . a n+  + x 1 
(2n — 1)n 	(2n — 2)n . . . nn 	(2n)n  

(2n — 1).-1 (2n — 2)n 	. . . 	-1  (212)n-1  

     

     

2n — 1 	2n — 2 

1 	 1 
*264. w1  a, a1 	arl 

w2 a2  a2 . . . a721-  

w„ 	4 . . . an„ 

n 	2n 

1 	1 

*265. 
1 	1 	1 	 1 

xi  + 1 	x2+ 1 	x3+ 1 	X, + 1 

4 + xi 	x3+ x2 	4 + x3 	xn2  + xn 

xriz- l + 4-2 41-1 + 4-2 X3-1  + 	. . 41-1  ± 
266.  

1 	 1 	 1 

	

1 + sin 9, 	1 + sin 92 	 1 + sin 9„ 

	

sin 91+ sin2  9, 	sin 92  + sin2  92 	sin 9„ + sin2  9„ 

sinn -2 pi  sinn-1% Sinn-2  92 + Sinn-192 . . . Sinn-2  9, 4- Sinn-1  p„ 

267. 1 	1 
	

1 

cPl (x1) 	pi (x2) • • • 	91(xn) 

92 (xl) 	92 (X2) • • • 	<P2 (x n) 

(Pn-i (xi) Pn-i (x2) • • • (Pn-i (xn) 
where clik  (x) x=  k 	xk -1 ± + a kk.  

268. 	1 	 1 	• • • 
F1  (cos 90 	F1  (cos 92) • 

F2 (cos cp,) 	F2 (cos P2) . . . 

1 

F1 (cos pn) 

F2 (cos Cpn) 

F„, (cos 91) Fn_, (cos 92) . . . Fn_,(cos 



n 

na 

n2n-1 

X1 

X1-1 

2 Xi 

x;  

X2 Xn 

xn-1 

X„ 

X„2 

n-1 

x2-1 

X2 

.2 
X2 

I 

1 	2 3 
1 	23  33  

1 	22n-1 32n-1 

. 	. 

. 	. 

. . . 
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where Fk (X) = aok  xk + xk-1  + • • • + akk• 

1 	1 	... 	1 

tx,\ 	tx2\ 
\ 1  / 	1  / 	• 	( ln) 
(x
2
) 	(x2

2 ) 	•• ( 2 
x.) 

•  

x \ 	1 x„ 
( n x-11) \ 

( 
n  —, 1 ) " • VI - 1 

\ 
i 

where ( x ) = x 
(x-1) . . .  (x-k+ 1) 

k 	1.2 ... k 
*270. Prove that the value of the determinant 

1 a1  a? . . . a?-1  

1 	a2 	a2 ... 

1 an  an2 	an-1n 

is divisible by in-1 2n-2 	(n— 1) for integral al, a2, 	a„. 
Compute the determinants: 

*271.  *272.  

*269. 

*273. ai al-1  b1  al-2b b? 

an  ar I b2 an-2  b2  a2  bri 

ann  +1 ann+ibn+1 4+1 b2  n+ 	. . . 	an+, b4-1 bnn+1  

274. 

sinn-1 al  sinn-2 «, cos al  . . . sin al  cos"-2 al  cos"-3- al  

«2  sinn-2 «2  cos «2  . . . sin «2  COS"-2 «2  cos"-1 OC2 

Sinn-1  OC,, Sinn-2  OCn  COS OC„ . . . sin (x„ COSn -2  OC„ COS"-1  OC,, 



*275. 

e+1 
e+I 

an21 1 + 1 

CH. 2. 	EVALUATION OF 

afn-' + a, 	+ 
42-2 + (13 + a, 

a n2n+-1 1  + a, 	an_F-1 2  + an' +1  

DETERMINANTS 

. . . 	4+1  + 

. . . 	-I- 	-F a2-1  

. . . 	annIl+an-1 
n+1 

a2  
a? 

,,n 
Fl 
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1 cos cpo 	cos 	. cos (n — 1) 90  

1 cos cp, 	cos 2cp1 	. . . cos (n — 1) 91  

1 cos cp._i  cos 2(p„_1  . . . cos (n — 	cp„_, 

sin (n + ao  sin nao  . . . sin ao  

sin (n + 1) a, sin na, . . . sin a, 

sin (n + an  sin nan  . . . sin an  

*276.  

*277.  

*278. 1 	 1 

	

x2  (x2  — 1) 	xn  (x„ — 1) 

	

(x2 — 1) 	x,2, (x„ — 1) 

x?-' (xi — 1) xr' (x,— 1) 	(x„— 1) 

*279. 	1 	1 	.. . 1 

xi x2 . . . x',', 

281. 

1 	1 	1 

X2 	xn  
22 	 2 Xi 	X2 	Xn  

xf —1 x21  . . . Xn-1  

4+1 . . n  xs +1 

n x n 21 	. . . 	xn  

1 	1 

X2 	Xn  

2 Xi 	x2 	Xn2  

X7-2  Xr2  . 	xnn — 2 

Xi 	x2 

*282. 

1 + x, 1 + 	... 1+xi  
1 +x, 1 	... 1+4 

1 + xn  1 + xn ... 1 + xn 

*280. 
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283. 

PART 	I. PROBLEMS 

284. 

1 x x2 x3  1 x x2 x3 x4  

X3  x2  x 1 1 2x 3x2  4x3  5x4  

1 2x 3x2  4x3  1 4x 9x2  16x3  25x4  

4x3  3x2  2x 1 1 y y2 y3 y4 

1 2y 3y2  4y3  5y4  

*285.  1 x x2 	• • • Xn  

1 2x 3x2 	... (n + 1) xn 

1 22  x  32 x2 (n+ 02 xn 

1 2n-1 x  3n-1 x2 (n+  

1 y2 	• • • yn 

*286.  1 x x2 xn 

1 2x 3x2 	• • • nxn 

1 22  x 32 x2 n2 xn-1 

1 2k--1 x 3k-1 x2 nk-1 xn-1 

1 yi Yi 
1 Y2 yr` 
1 yn _ k  yn2 —k  Ynn=lic 

*287.  1 

0 

x 	x2  

1 	C2x 

xn —1 

xn 2 

0 0 	1 C 2n _1 
3 

0 0 	0 ... xn-k 
1 y 	y2 yn —1 

0 1 yn-2  

0 0 	0 ... 

288. 
(a) Write the expansion of a fourth-order determinant in terms 

of the minors of the first two rows. 
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(b) Compute the determinant 

1 	2 2 

0 1 0 2 

2 0 1 1 

0 2 0 1 

usin the expansion by minors of the second order. 
(c) Compute the determinant 

2 1 0 0 

1 2 1 0 

0 1 2 1 

0 0 1 2 

via an expansion by second-order minors. 
(d) Compute the determinant of Problem 145. 
Compute the determinants: 

(e) 11 

2 

1 

3 

1 	0 	0 

4 	0 	0 

0 

0 
(f) a1 	0 	b1 	0 

0 	c1 	0 	d1  

3 6 10 	0 	0 0 b2 	0 	a2 2 	0 

4 9 14 	1 	1 1 0 	d2 	0 	c2 

5 15 24 	1 	5 9 

9 24 38 	1 	25 81 

(g) 1 1 0 	0 	0 1 (h) X 	0 	0 	. . . 	 0 	a 

xj.  x2  0 	0 	0 x3  x1 	cc 	(3 	• • • 	(3 Yl 

a, b1  1 	1 	1 c1  x2 	pi 	... 	Y2 

a2  

a3  

b2  

b3  

x, 	x2 	x3 

x? 	x2 	x3 
c2 

C3  
x„ 	3 	p 	. . . 	cc 	Y. 
a 	0 	0 	... 	0 

2 Xi X22  0 	0 	0 

(i) Compute the determinant of Problem 230 using the Lap-
lace theorem. 

(j) Compute the determinant of Problem 171 using the Lap-
lace theorem. 
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(k) Compute the determinant 

1 1 1 0 0 

1 2 3 0 0 

0 1 1 1 1 

0 x1  x2 x8 x4 

0 xi 2 2 .X3 .X4 2 

(1) Let A, B, C and D be third-order determinants formed 
from the array 

al  b1  C1 dl 

a2  

( 

b2  C2 d2  

) 

a, b, C3 d3 

by deleting the first, second, third and fourth columns, respec-
tively. Prove that 

a1  b1  c1  d1  0 0 

a2  b2  c2  d2  0 0 

a3  b3  c3  d3  0 0 

0 0 al  b1  Ci  dl  
AD—BC. 

0 0 a2  b2 c2  d2 

0 0 a3  b3 C3 d3 

(*m) Compute the fifteenth-order determinant 

A Al Al 
Al  A Al 

Al  Al  A 

formed (as indicated) from the following blocks: 

a x 	x —x —x\ 1 0 0 0 0 

x 2a 	a 0 0 0 2 1 0 0 

A= x a 	2a 0 0 , A1= 0 1 2 0 0 

— x 0 	0 2a a 0 0 0 2 1 

\ — x 0 	0 a 2a/ \ 0 0 0 1 2, 
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Sec. 6. Multiplication of Determinants 

289. Using the rule for multiplying matrices, represent the 
following products of determinants in the form of a determinant: 

4 3 1 —2 
(a) 

1 3 —3 2 

3 2 5 —2 3 4 

(b) —1 3 6 —1 —3 5 

1 —1 2 2 1 —1 

2 1 1 	1 

—1 2 1 	1 3 1 —2 	1 
(c) 

—1 —1 2 	1 1 3 —1 	2 

—1 —1 —1 	2 

290. Compute the determinant A by multiplying it by the 
determinant 8: 

(a) A = 

	

1 2 	3 	4 

—1 0 —3 —8 

	

—1 1 	0 —13 ' 

	

2 3 	5 	15 

1 —2 —3 —11 

0 	1 	0 	2 

0 	0 	1 	1 

0 	0 	0 	1 

 

a= 

  

(b) A = 

(c) A = 

	

— 1 	—9 

	

— 5 	5 

	

—12 	—6 

	

9 	0 

abed 

bade 

cdab 

dcba 

—2 

3 

1 

—2 

, 	s= 

3 

—2 

1 

1 

1 

1 

1 

1 

, 	a = 

1 

1 

—1 

—1 

1 

—2 

3 

—3 

1 

—1 

1 

—1 

0 

1 

2 

4 

1 

—1 

—1 

1 

0 

0 

1 

2 

0 

0 

0 

1 
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291. Compute the square of the determinant: 

1 1 1 1 1 — 1 1 1 

1 1 —1 —1 2 2 1 1 
(a) 

1 — 1 1 —1 
, 	(b) 

2 0 —3 1 

1 —1 —1 1 3 —7 —1 9 

a 

—b 

b 

a 

c 

—d 

d 

(c) 

—c d a —b 

—d —c b a 

292. The determinant 

aoo 	ao1 

ail, 	an 

an-1, 0 	an -1, 1 

ao2 

an -1, 2 

• • 	• 

• • 	• 

ao, n-i 

an-1, n-1 

=D. 

What is 

'Po (xi) 	(Po (x2) 	• • • 	Soo (x.) 

'Pi (x1) 	qh (x2) 	• • • 	91 (xn) 

Pn-i (xi) 9.-1 (x2) • • • (P.-1(xn) 
where <pi  (x)-- aoi + x+ • • • + a„_1, xn-l? 

Use the result obtained to find the solution of Problems 265, 
267, 268. 

Compute the determinants : 

*293. 

(bo  + ao)n (b1+ (On 	. . . (b„+ (On 

(a) (b0  + a1)n (b1+ al)n 	. . . (bn + a1)n 

(b, + an)n (b, + a„)n (bn+ a„)n  
1 — a.,1z 3t: 1 — a7 — 

1 — 	 (31  1 —a1 P2 	• • • 1  —al pn 

(b) 
1 — ce2i pi — 0022 pg 

• • 

1 — rzg p;=, 

1 —a2 Pi 1— as 132 	• 1 	°C2 13K 

1
— an Prill 1 — Oqi N 2 1 — 	 p;,z 

1 —mn pi 1— an P2 • • 1—C4n Pn 
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sin 2 a„ 

sin (oc2  
sin (a,+ a2) . . . sin (a,+ a„) 

sin 2a2 	. . . sin (a, + „) 

sin (a„+ 

So  

sin (an  + cc:2) • • • 
S2 	. . . 	S,,_i 

sin 2a„ 

1 

S2 s„ 	X 

Sn  _1 	Sn  Sn+1 • • • 	S2,, 2 xn -1 

52n-1 
	xn 

1 	m 	n 	p 
m —1 p —n 

n —p —1 m 

p 	n —m —1 

—p —a b 	c 	d 

—n —b —a d —c 

m —c —d —a 	b 

1 —d 	c —b —a 
cos cp 	sin y 

2 cos 2cp 2 sin 2<p 

3 cos 3cp 3 sin 3y 

4 cos 4cp 4 sin 4cp 

Sn 	S,,÷1 	S„+2 • • 

where sk  =xlf + 4+ . . . + 
*296. a 

b —a —d —c 

c 	d —a —b 

	

d —c 	b —a 

1 —m —n 

m1 

n —p 	1 

p n —m 
*297. cos cp sin ? 

cos 2y sin 2? 
cos 3y sin 3(p 

cos 4y sin 4y 

*294.  

*295.  

*298. 
cos ny 	n cos ny 

cos(n+ 1)cp (n + 1) cos (n + 1) (ID 

cos (n + 2) y (n + 2) cos (n + 2) y 

cos (n + 3) y +3) cos (n + 3) y 

sin ny 	n sin ny 

sin(n+ 1)cp(n+ 1)sin(n+ 1)y 

sin (n + 2) y + 2) sin (n + 2) y 

sin (n + 3) y (n + 3) sin (n + 3) cp 
*300. 

1 ao 	a1  a2  . 	. . an _1  
en-1 an _1 	a0  • • an-2 
e2n-2 

a1 	a2  a3  . 	. . a0  
en-1)2  cyclic determinant). 1 	en-1 e2 (n-1) 

where s = cos 	i sin —27` • 

*299. 
1 	1 	1 	. 

1 	E 	e2 

1 o 
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301. Apply the result of Problem 300 to the determinant 

x it z 

z y 

u z y x 

302. Apply the result of Problem 300 to Problems 192, 205, 
and 255. 

Compute the determinants: 

1 	022 _1  • • • c,,,,=; 
1 	1 0 	cn: 

c,,,,=? 	1 

C,i_ 1  C 	1 	1 

1 	2a 3a2  • • • 	nan-1  

na"-1 	1 	2a • • • (n— 1) an-2 

	

2a 	3a2  4a3  • 

	

s— 	s—a2  • • • s— an  

s — an  s— a, • • s— an_ 1  

s — a, s—a3  • • • s—al  

where s= + a2  + + an. 

306. tn-1 

Q-1  

Or— 2 C,itfl 	3  

to-1 	tn— 2 
n 

• • 	• Cnn-2t 
— 3 t 2 	Cr,: —  2 t 

Cr2t Cn-1 	tn-1  n1  • • 	• Csi za -4t3 	q-3/2  

OP —2 	On 	C,3itn-4  • •• • 

p 

C7,-1 	to-1  

n—p 
d■•■•■••••■■/•■•■■■N  

307. 
— 1 — 1 	• • • 	— 1 —1 1 	1 	1 

1 — 1 	• • • 	— 1 —1 —1 	1 	1 

1 1•••-1 —1 —1 	—1••• 	1 

— 1 —1 	• • • 	—1 1 1 	1 	• • • 	—1 

303.  

304.  

305.  
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*308. 	cos - 	COS -- 	 — 1 

	

n 	n 

	

rc 	 2rc 

	

COS — 	 cos 
	

)(11  — 1 7r  
it 

— 1  
n 

COS
(n — 1) 7C 	

— 1 	cos
(n-2)7  

----  

	

11 	 /7 

2rr 	 37r 	 7r 
CoS -- • 	Cos -- 

n 

309. cos 0 	cos 20 • • • 	cos nO 

cos nO cos 0 • • • cos (n — 1) 0 

cos 20 cos 30 • • • 	cos 0 

310.  

sin a 	sin (a + h) sin (a + 2h) 	• sin [a + (n 1) h] 

sin [a + (n — 1) h] 	sin a 	sin (a + h) • • • sin [a + (n — 2) hi 

sin (a + h) 	sin (a + 2h) sin (a + 3h) • • • 	sin a 

*311. 	1 2  

n2 

22 32 	 n2 

1 2 	22 	(11 	1)2 

22 32 4 12 

312. Prove that 
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313. Compute the determinant 

a1 	a2  a3  a„ 

— an a1  a2  an--1 
— a„_, —a,, 

—a3  

a1 

—a4 	. 

an- 2 

a1  

(skew-symmetric determinant). 
*314. Prove that a cyclic determinant of order 2n may be re-

presented as a product of a cyclic determinant of order n and 
a skew-cyclic determinant of order n. 

315. Compute the determinant 

al  a2  a3  a„ 

fan a1 a2  

E'v'an-1 p.a„  a1 an- 2 

[142  1..ta3  1La, 	... a, 

Sec. 7. Miscellaneous Problems 

316. Prove that if 

a12  (x) 	a1 (x) 

a22 (x) 	a2„ (x) 

an1(x) an2  (x) 	. a„„ (x) 

then 

a;, (x) a'12  (x) a',„ (x) 

A' (x) = a21 (x)  a22  (x) 	. . . 	azn(x) 

an, (x) an2 (x) a„,,(x) 

+ 	• • • 	+ 

an (x) 

an (x) 

and (x) 

a12 (x) 

a22 (x) 	• 

42(x) 	. 

• 

• • 

„ 

a1 (x) 

azn (x) 

d„„ (x) 
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all + x a12 + x . . . 	ain± x all 

+ x a22+ x . . . 	a2„ + x a21 a22 	• • • a2n 

and + x a„2 + x . . . 	ann + x ant ant 	• • • 

n 

ann 

n 

+x E 
k=1 i =1 

where Aik  is the cofactor of the element a,k• 
318. Using the result of Problem 317, compute the determi-

nants of Problems 200, 223, 224, 225, 226, 227, 228, 232, 233, 
248, 249, 250. 

319. Prove that the sum of the cofactors of all the elements 
of the determinant 

all a12 • • • al. 

a21 a22 • • • a2n 

and ant • • • ann 
is equal to 

1 	1 	 1 

a21 — an 	a22 a12 	• • • a2n — aln 

and an-1,1 ant  an-1,2 • • • ann — an-1,n 

Prove the following theorems: 
320. The sum of the cofactors of all elements of a determinant 

remains unaltered if the same number is added to all elements. 
321. If all the elements of one row (column) of a determinant 

are equal to unity, the sum:of the cofactors of all elements of the 
determinant is equal to the determinant itself. 

322. Compute the sum of the cofactors of all the elements of 
the determinant of Problem 250. 

*323. Compute the determinant 

(a1  +b1)'1  (ai  + b2)-1  • • • (al+ bn)-i 

(a2 + b1)-1  (a2 + b2)-1  • • • (a2 + b„)-1  

(a,,± bi)-1  (a„+b3)-1  • • • (an + bn)-1 
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324. Denote by P„ and Q„ the determinants 

a, 1 0 • • 	• 0 0 

—1 a1  1 ••• 0 0 

0 0 0 • • 	• a„_, 1 

0 0 0 ••• —1 au--1 
and 

a1  1 0 • • 	• 0 0 

— 1 a2  1 ••• 0 0 

0 0 0 an-2 1 

0 0 0 an-1 
respectively, and prove that 

Pn = ao 	
 1 

al+ 	1 as+ 
as+ 

• 

Compute the determinants 

1 
an 

*325. 

lc a0 ••• 00 

bc a ••• 0 0 

0 b c • • • 0 0 

000 ••• c a 

000 •• • b c 

326. 

pq0 ••• 00 

2pq ••• 00 

0 1 p ••• 0 0 

000 ••• pq 

0 0 0 • • • 1 p 

*327. Represent the determinant 

an + x a12  • • • au 
a21  a22  x • • • a2n 

ant 	ant 	• • • a,,,, + x 

in the form of a polynomial in powers of x. 
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*328. Compute a determinant of order (2n-1) in which the 
first n-1 elements of the principal diagonal are equal to unity 
and the other elements of the principal diagonal are equal to n. 
In each of the first n —1 rows, the n elements to the right of the 
principal diagonal are equal to unity and in each of the last n 
rows, the elements to the left of the principal diagonal are n-1, 
n —2, ..., 1. The other elements of the determinant are zero. 

For example, 1 	1 	1 1 0 1 1 1 1 1 0 0 
0 	1 	1 1 1 0 1 1 1 1 	1 0 
1 2 3 0 0 0 0 1 1 1 	1 1 
0 1 2 3 0 1 2 3 4 0 0 0 
0 0 1 2 3 0 1 2 3 4 0 0 

0 0 1 2 3 4 0 
0 0 0 1 2 3 4 

Compute the determinants: 

*329. x 	1 0 0 • • • 0 0 

—n 	x — 2 2 0 • • • 0 0 

0 	— (n — 1) x — 4 3 • • • 0 0 

0 	0 0 0 • • • — 1 x — 2n 

330. x 1 0 0 • • • 0 0 

n-1 x 2 0 • • • 0 0 

0 n — 2 x 3 • • • 0 0 

0 0 00••• lx 

331. 

x a 0 0 	• • • 0 0 

n(a-1) x-1 2a 0 	• • • 0 0 

0 (n — 1)(a — 1) x — 2 3a 	• • • 0 0 

0 0 0 0 	• • • a— 1 x — n 

332. 	in-1 	2n-1 

2n —1 	3n-1  

nn -1 

• • • 	(n -F 1)n-1  

nu -1 (n  + 1 )n-1  • • • (2n — l)n-i 
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333.  

PART 

1 	
1 

1 	1 

1 	1 

I. 

1 

1 

1 

PROBLEMS 

1 

1 
n+1 

. 	 . 	 . 

n 	n+1 n+2 2n-1 

334. Find the coefficient of the lowest power of x in the deter-
minant 

( 1 ± 	b 	(1 -I- X)° 	• • • (1 + JC)a  n 

(1 + Xyaabi (1 + 	ab  2 • • • (1 + xrsbn 

± xy 	(1 + 	nb  2 • • • (1 + JC)anb  n 



CHAPTER 3 
SYSTEMS 

OF LINEAR 
EQUATIONS 

Sec. 1. Cramer's Theorem 

Solve the following systems of equations: 

335. 2x1 — x2 — x3 =4, 
3x1  + 4x2 — 2x3 = 11, 
3x1  —2x2 + 4x3 = 11. 

337. 3x1+2x2 + x3= 5, 
2x1+3x2 + x3= 1, 
2x1+ x2 +3x3=11. 

339. x1+ x2 +2x3+3x4= 1, 

336. x1+ x2 + 2x3= —1, 
2x1— x2 +2x3 = —4, 
4x1+ x2 +4x2 = —2. 

338. x1+2x2+4x3=31, 
5x1  + x2 + 2x3=29, 
3x1— x2 + x3 =10. 

3x1-  x2-  X3 - 2X4 = -4, 
2x1  + 3x2 — x3-  x4= -6, 
xi  +2x2 +3x3 — x4= —4. 

340. xi  +2x2+3x3-2x4= 6, 
2x1— x2 -2x3 — 3x4 = 8, 
3x, +2x2 — x3 + 2x4=4, 
2x1-3x2 +2x3+ x4 = —8. 

341. xi  +2x2 +3x3 + 4x4 =5, 
2x1+ x2 +2x3 +3x4=1, 
3x1+2x2 + x3+2x4 =1, 
4x1 +3x2 +2x3 + x4= —5. 

342. x2 -3x3+4x4 = —5, 
x1 	—2x3 +3x4= —4, 

3x1  + 2x2 	—5x4 =12, 
4x1  + 3x2 — 5x, 	=5. 
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343. 2x1- x2 + 3x, + 2x4 = 4, 
3x1  + 3x2 + 3x3+ 2x4  6, 
3x1- X2 X3 + 2X4 = 6, 
3x1- x2 + 3x3- x4=6. 

344. x1+ x2+ x3+ x4=0, 
x1+ 2x2  + 3x3+ 4x4=0, 
xi+ 3x2+ 6x8+10x4=0, 
x1+ 4x2 + 10x3+ 20x4 = O. 

345. xi  + 3x2 + 5x3+ 7x4= 12, 
3x1+5x2 +7x3+ x4= 0, 
5x1+7x2+ x3+ 3x4= 4, 
7x1+ x2 + 3x3+ 5x4= 16. 

346. xi  +x2. + X3+ X4+ X5 = 0, 

xi, -x2 + 2x3- 2x4 + 3x5= 0, 
x1+ X2 + 4x3+ 4X 4 + 9X5 = 0, 
x1  -x2 + 8x3- 8x4 + 27x5 = 0, 
X1+X2 16X3+ 16X4+81X5 =0. 

347. xi  + 2x2 + 3x3+ 4x4=0, 
+ X2 + 2X3 + 3X4 = 0, 

x1+ 5X2 + X3 + 2X4 = 0, 

x1+ 5X2 + 5X3 + 2X4 = 0. 

348. xi+ x2 + x3+ x4 	=0, 

X2+ x3+ x4+ X5=0, 

x1+ 2X2 -1-  3X3 	 =2, 

	

X2 + 2X3 + 3X 4 	= -2, 

x, + 2x4 + 3x, = 2. 

349. x1+4x2+6x3+4x4+ x5=0, 

x1+ X2 +4X3 +6X4+4X5=0, 

4x1+ X2+ X3 + 4X4 -1-  6X5 = 0, 

6x1+ 4X2 + X3+ X4 + 4X5 =0, 

4x1+ 6X2 + 4X3 + X4+ X5 = 0. 
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350. 2x1+ x2 + x3+ x4+ x5=2, 
x1+2x2 + x3+ x4+ x5=0. 
x1+ x2 +3x3+ x4+ x5 =3, 

+ x2+ X3 ± 4X4 	= —2, 
x1+ x2 + x3+ x4 +5x5 =5. 

351. x1+2x2 +3x3 +4x4 + 5x5 = 13, 
2x1+ x2 +2x3 +3x4 +4x5=10, 
2x1+2x2 + x3 +2x4+3x5 = 11, 
2x1+2x2 +2x3+ x4 +2x5= 6, 
2x1+2x2 +2x3+2x4+ x5 = 3. 

352. XI -1-2X2 — 3X3 4X4 — x5 = — 1, 
2x1— x2 + 3x3-4x4 + 2x5= 8, 
3x1+ x2 — x3+2x4 — x5 =3, 
4x1+3x2 +4x3+2x4 +2x5 = —2, 

X1—  x2—  X3 ± 2X4 — 3X5 = — 3. 

353. 2x1— 3x2 + 4x3 — 3x4 =0, 
3x1— x2 +11x3-13x4 = 0, 
4x1+ 5x2 — 7x3 — 

13x1-25x2 + x3+ 11x4 =0. 

Verify that the system has the solution x1=x2 =x3=x4=1 and 
compute the determinant of the system. 

354. Prove that the system 

ax+by+cz+dt=0, 
bx— ay+ dz— ct =0, 
cx—dy—az+bt=0, 
dx+ cy—bz — at =0 

has a unique solution if a, b, c, d are real and not all zero. 
Solve the following systems of equations: 

355. ocx1+ocx2+ +ocx,,_1+ px„ = a„, 
ocxi+ ocx2+ ...+ 13xn _ i +ocx„ = an --1, 

(3x1+ocx2 + ...+ can _1+ ocx„= a, 

where cc p. 
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356. xi +
u, — N2 

+ • • • +  "xn
nn 
 = 1, 

u, —„ 	 by P 
x1 4.  X2  4.

• • • + 
Xn a 	— 

b2 — f31 b2 — (30( 	4,2 
• 
X1 
	x2 + 	 x„ =  

bn  — f31 bn [32 	bn — (3n  

where b1, b2, 	b„, (31, p2, 	P„ are all distinct. 

357. x1 	+x2 	+ ...+x„ 	=1, 
X10(1 	X20(2 + +x„an  = t, 

x10(7 —1 + x24-1 	xnann-1 = tn-1 

where 0(1, 0(2, • • •, (Xn are all distinct. 

358. x, + x20(1  + • • + xnaj—I  = ui, 

xi + x2a2 ± • • • ± xnce2z-1  = u2, 

xi+ x2an  + • • • ± 	=u„ 

where al, 0(2i  • • •, 	are all distinct. 

359. x, 	+x2 	+ . ..+xn 	= 

+x2a2  + . • • +xnan = U2, 

x10(1-1 + x24-1 + 	xnccn-1 = un  

where 0(1, 0(2i  • • •, an are all distinct. 

360. 1+ xl+ x2+ + x„=0, 
1+2x, +22x2 + ... +2” x„=0, 

1 +nxi+n2x2+ ...+nn x„=0. 

Sec. 2. Rank of a Matrix 

361. How many kth-order determinants can be formed from a 
matrix with m rows and n columns? 

362. Form a matrix with rank equal to (a) 2, (b) 3. 
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363. Prove that the rank of a matrix remains unaltered if: 
(a) rows and columns are interchanged; 
(b) the elements of a row or column are multiplied by a non-

zero number; 
(c) two rows or two columns are interchanged; 
(d) multiples of the elements of one row (column) are added 

to elements of another row (column). 
364. The sum of two matrices having the same number of rows 

and columns is a matrix whose elements are the sums of the 
corresponding elements of the matrices being added. Prove that 
the rank of the sum of two matrices does not exceed the sum of 
the ranks of the matrices added. 

365. How is the rank of a matrix affected by adjoining (a) 
one column, (b) two columns? 

Compute the rank of the following matrices: 
366. 367. 

0 4 10 1\ 75 0 116 39 0 \ 
4 8 18 7 

( 
171 — 69 402 123 45 

10 18 40 17 301 0 87 — 417 —169 
1 7 17 3/ 114 —46 268 82 30 / 

368. 
/ 	2 	1 

I 	1 	0 
11 	4 
2 — 1 

11 	2\ 
4 — 1 

56 	5 / 
5 — 6 

369. 

	

/ 14 	12 	6 

	

6 	104 21 
\ 	7 	6 	3 

	

\ 35 	30 15 

8 
9 
4 

20 

2\ 
17 

1 
5 / 

370. 371. 
1 	0 0 1 	4\ / 	1 	— 2 3 — 1 — 1 — 2 \ 
0 1 0 2 	5 2 — 1 1 0 —2 —2 
0 0 	1 3 	6 —2 —5 8 —4 3 —1 
1 	23 14 32 6 	0 — 1 2 —7 —5 
4 5 6 32 77 / \ —1 	—1 1 —1 2 	1 	/ 
372. 373. 
2 	1 	1 1 / 	1 	—1 2 3 4\ 
1 	3 	1 1 2 	1 —1 2 0 
1 	1 	4 1 —1 	2 1 1 3 
1 	1 	1 5 1 	5 — 8 — 5 — 12 
1 	2 3 4 \ 	3 —7 8 9 13 / 
1 	1 	1 1 	/ 

3. 1215 
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374. 

	

72 	1 
3 —1 

	

1 	3 
\4 -3 

3 
2 
4 
1 

— 1 \ 
0 

—2 
1/ 

PART 	I. 

/ 

\ 

PROBLEMS 

375. 
3 	2 — 1 	2 
4 	1 	0 —3 
2 	—1 	—2 	1 
3 	1 	3 —9 
3 —1 —5 	7 

	

0 	1 	\ 

	

0 	2 

	

1 	—3 

	

—1 	6 
2 —7 / 

376. 377. 
/ 0 0 1 0 0 \ / 1 — 1 20 	0 1 	\ 

0 1 0 0 0 0 1 — 1 2 	0 1 
0 0 0 1 0 1 0 —1 0 	2 1 
1 	1 	1 1 1 1 —1 0 0 	1 2 
1 	3 4 5 1 2 0 0 	1-1 1 
1 	2 3 4 5 \ —1 1 0 	1 	1 2/ 
2 3 4 5 6 / 

378. 379. 

/ 	1 	0 	1 0 0 \ ,2 0 2 0 2 
1 	1 	0 0 0 0 1 	0 1 0 
0 	1 	1 0 0 2 

( 
1 	0 2 1 

0 0 1 1 0 0 1 	0 1 0 
\ 0 1 0 1 1 	/ 

380. 

/ 2 — 1 1 3 	4 
2 —1 2 1 	—2 
2 —3 1 2 —2 
1 	0 1 —2 —6 
1 	2 1 —1 	0 
4 —1 3 —1 	—8 / 

Sec. 3. Systems of Linear Forms 

381. (a) Write two independent linear forms. 
(b) Write three independent linear forms. 

382. Form a system of four linear forms in five variables so that 
two of them are independent and the others are linear combinati-
ons of them. 
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Find the basic dependences between the forms of the system: 

383. y1=2x1+2x2 +7x3  - X„ 

3/2=3x1 — x2+2x3+4x4, 
y3= + X2 ± 3X3 4- X4. 

384. y1=3x1+2x2 — 5x3+ 4x4, 
y2 = 3X1 - x2+ 3x3-  3x4, 

y3=3x1+5x2 -13x3+ 11x4. 

385. y1=2x1+3x2 -4x3 — x,, 

Y2= X1-  2X2 + X3 + 3X4, 

y3=5x1-3x2 — x3+8x4, 
y,---3x1+8x2-9x3-5x4. 

386. y1=2x1+ x2 — x,+x„, 

Y2= 	2X2 + X3 -X4, 

y3= X1+ X2 ± 2X3 + X4. 

387. 

yl= x1+2x2 +3x3+ x4, 
Y2 = 2X1 3X2 4-  X3 4- 2X4, 

y3=3x1+ x2+2x3-2x4, 
y4= 	4X2 2x,+5x4. 

388. 

y1=2x1+ x2, 

y2 = 3x1  + 2x2, 
y3= x, +x2, 
y4  = 2X1+ 3X2. 

389. y1=x1+ x2 + x3+ x4 +x5, 
y2 = ± 2X2 3X3 4X4 X3, 

y3=x1+3x2 + 6x3 +10x4 +x5, 
y4  =x, + 4x2  + 10x3  + 20x4  + x5. 

390. 

yi= x1+2x2+3x3-4x4, 
)12 = 2X1 - X2 + 2X3 5X4,  

y3=2x1— x2 +5x3-4x4, 
y4 = 2xi  + 3x2 — 4x, + x4. 

391. 

y1=2x1+ x2 -3x3, 
y2=3x1 + x2  -5x3, 

y3 - 4Xi 2X2 - x3, 

Y4 =X1 	-7x3. 
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392. y1=2x1+3x2 +5x3 — 4x4 + x5, 
Y2= - X2 + 2X3 + 3X4 + 5X5, 

y3  -= 3x, + 7x2  + 8x3  — 1 1x 4  — 3x5, 
y4= X1- X2+ X3-  2X4 + 3X5. 

393. 	x2 + 3x3+ 4x4 — x5, 
y2= + 2X2 - 3x3+ X4 4-  2X5, 

y3 = 5X1-  5X2 + 12X3+ 1 1X4 -5X5, 

y4= X1-  3X2 + 6x3+ 3X4 - 3X5. 

394. yi= x1+2x2 + x3-2x4 + x5, 
y2 = 2X1 - X2+  X3 + 3X4 + 2X5 , 

y3- X1-  X2 + 2X3 - X4 + 3X5, 

y4 = 2X1+ X2 - 3X3 + X4 - 2X5, 

y5= x1-  X2 + 3X3 - X4 + 7X5. 

395. y1=4x1+3x2 — x 3+ x4 — x5, 
y2 =2X1+ X2 - 3X3 + 2X4 - 5X5, 

y3= x1-3x2  + X4 - 2X5, 

y4 = x1+5x2 +2x3-2x4 +6x5. 

396. yi = x1+2x2 — x3+ 3x4 — x5 +2x6, 
Y2 = 2X1-  X2 + 3X3 - 4x4+ X5- X6, 

Y3 = 3X1+ X2-  X3+ 2X4+ X5 + 3X6 , 

y4  - 4X1 - 7X2 + 8x 3 - 1 5X4 + 6X5 -5x6, 

y5 = 5X1 + 5X2-6X3+ 11X4 	+9X6. 

397. y,= x1+2x2 + x3 — 3x4 +2x5, 
y2 =2x1+ x2 + x3+ x4 -3x5, 
y3= + X2 + 2X3 + 2X4 2X5, 

Y4 = 2X1 + 3X2 - 5X3 - 1 7X4 + X.X5. 

Choose X so that the fourth form is a linear combination of the 
other three. 

Sec. 4. Systems of Linear Equations 

398. Solve the system of equations 

x1-2x2 +x3+ x4 =1, 
x1-2x2 +x3 — x4 = —1, 
x1-2x2  +x, + 5x4  = 5. 



CH. 3. SYSTEMS OP LINEAR EQUATIONS 	 69 

399. Choose X so that the following system of equations has a 
solution: 

2X1-  X2+ X3+ x4= 13  
x1+2X2-  x3+ 4X4 = 2, 
x1 +7x2-4x3 + 1 lx4 = 

Solve the systems of equations: 

400. 401. 
x1+ x2 -3x3 = —1, 	2x1+ x2+ x3=2, 

2x1+ x2 -2x3 =1, 	x1+3x2 + x3=5, 
x1+ x2 + x3 =3, 	x,+ x2 +5x3 = —7, 
x1+2x2-3x3=1. 	2x1  + 3x2  — 3x3  =14. 

402. 403. 
2x1— x2 + 3x3 =3, x1+ 3x2+2x3=0, 
3x1+ x2 — 5x3 =0, 2x1— x2 +3x2 =0, 
4x1— x2 + x3=3, 3x1 — 5x2 +4x3=0, 
x1+3x2 -13x3 = —6. 	xi  + 17x2 +4x3 = O. 

404. 2x1+ x2 — x3+ x4 =1, 
3x1  — 2x2 +2x3 — 3x4 = 2, 
5x1+ X2- X3+ 2X4 = -1, 

2x1— x2+ X3 - 3X4 = 4. 

405. 2x1— x2+ x3— x4= 1 , 
2x1 — x2 	—3x4  = 2, 
3x1 	— x3+ x4 = —3, 
2x1  + 2x2  — 2x3  + 5x4 = —6. 

406.  
x1-2x2+3x3-4x4=4, 

x2-  x3+ x4= -3, 
x1+3x2 	—3x4 =1, 

—7x2 +3x3 + x4= —3. 

407.  
x1+2x2 +3x3+4x4 =11, 

2x1+3x2 +4x3+ X4 =12, 

3x1+4x2 + x3+2x4 =13, 
4x1+ x2 +2x3+3x4 =14. 

408.  409.  
2x1  + 3x, — x3 + 5x4= 0, 3x1+ 4x2 — 5x3 + 7x4 =0, 
3x1— x2 +2x3-7x4 =0, 2x1— 3x2 + 3x3 — 2x4 =0, 
4x1+ x2-3x3+6x4 =0, 4x1  + 1 lx2 — 13x3+ 16x4 = 0, 
x1-2x2 +4x3-7x4 =0. 7x1- 2x2+ 	x3+ 3X4 = 0. 
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410. x1+ x2 	- 3x4  - x5=0, 
x1- x2+ 2x, - x4 	=0, 

4x1  - 2x2 + 6x3  + 3x4  - 4x5  =0, 
2x1  + 4x2  - 2x3  + 4x4  - 7x5  = 0. 

411. x1+ x2 + x3+ x4+ x5=7, 
3x1+2x2 + x3+ x4 -3x5= -2, 

x2 + 2x3  + 2x4  + 6x5= 23, 
5x1  + 4x2+ 3x3  + 3x4- x, = 12. 

412. x1  - 2x2+ x3  -x4+ X5 = 0, 

2X1+ X2 -X3 4- 2X4 - 3X5 = 0, 

3X1-  2X2 - X3 + X4 - 2X5 = 0, 

2X1-  5X2 X3 - 2X4 2X5 = 0. 

413. xi.  - 2x2  + x3+ X4-  X5 = 0, 

+ X2- X3-  X4+ X5 = 0, 

7X2 5X3 5X4 5X5 =0, 

3x1-  X2 - 2X3 + x4-  X5 = 0 • 

414. 2x1+ X2-  X3-  X4+ X5 = 1 9  

x1- x2+ x3+ x4- 2x5= 0, 
3x1  + 3x, - 3x, - 3x4  + 4x5  = 2, 
4x1+ 5x2  - 5x3  - 5x4  + 7x5  = 3. 

415. 2x1  2x2+ x3- x4+ x5=1, 
+ 2x2- x3+ x4- 2x5= 1, 

4x1  - 10x2 + 5x3- 5x4  + 7x5  = 1, 
2x1  - 14x2 + 7x3- 7x4  + 11x5= -1. 

416. 3x1+ X2 - 2X3 x4-  X5= 1, 

2x1- x, + 7x3  - 3x4  + 5x5  = 2, 
x, + 3x2  - 2x3  + 5x4  - 7x5  = 3, 

3x1  - 2x2 + 7x3  - 5x4  + 8x5= 3. 

417. x, + 2x2 	- 3x4+2x5 = 1, 
x1- X2 - 3X3 + X4 - 3X5 =2, 

2x1  - 3x2 + 4x3- 5x4+ 2x5= 7, 
9x1  - 9x2  + 6x3  - 16x4 + 2x5  = 25. 
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418. xi  + 3x2 + 5x3 — 4x4 	=1, 
x1+ 3X2 2X3 -2X4 + X5 = -1, 

x1-  2X2 4-  X3- X4 -X5 = 3, 
— 4x2+ X3+ X4 -X5= 3, 

x1+2x2+ x3 — x4 +x5=-1. 

419. xi  + 2x2 + 3x3  —x4  = 1, 
3X1+2X2 + X3 -X4 = 1, 

2x1+3x2+ X3+X4= 1, 

2X1 + 2X2 +2X3 -X4 = 

5x1+5x2 +2x3 	=2. 

420. x1-2x2 +3x3-4x4 +2x5 = —2, 
x1+2x2 — x3 	— x5= —3, 
x1 — x2 +2x3-3x4 	= 10, 

X2-  X3+ X4 - 2X5 = -5, 

2x1+3x2 — x3+ x4 +4x5= 1. 

421. The system of equations 

ay+bx=c, 
cx+az=b, 
bz+cy=a 

has a unique solution. Prove that abc00 and find the solution. 
Solve the following systems of equations: 

422. Xx+ y+ z=1, 	423. Ax+ y+ z+ t=1, 

	

x+Xy+ z=X, 	x+Xy+ z+ t=X, 

	

x+ y+Xz=X2. 	x+ y+Az+ t=X2, 
x+ y+ z+Xt=X3• 

424. x+ ay+ a2z = 	425. x+ y+ z=1, 

	

x+by+b2z=b3, 	ax+b y+c z=d, 

	

x+cy+c2z=c3. 	a2x+b2y+c2z=d2. 

	

426. ax+ y+z=4, 	427. ax+ by+ z=1, 

	

x+ by+z=3, 	x+aby+ z=b, 

	

x+2by+z=4. 	x+ by+az=1. 
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428. coc+ y+ z=m, 	429. x+ ay+ a2z=1, 
x+ocy+ z=n, 	x+ ay+ abz=a, 
x+ y+ocz=p. 	bx+a2y+a2bz=a2b. 

430. (X+3)x+ 	y+ 	2z= X, 
Xx+(X-1)y+ 	z=2A, 

3(X+ Dx+ 	Xy+(X+3) z=3. 

431. 	Xx+Ay+ (A.+1)z=-X, 
Xx+Xy+ (X-1)z=X, 

(X+1) x+Xy+(2X+3)z=1. 

432. 	3kx+(2k+1) y+(k+ 	z=k, 
(2k-1) x+(2k-1) y+(k-2) z=k+1, 
(4k-1) x+ 	3ky+ 	2kz=1. 

433. ax+ 	by+ 	2z=1, 
ax+(2b-1) y+ 	3z=1, 
ax+ 	by+(b+3) z=2b— 1. 

434. (a) 	3mx+ (3m — 7)y+ (m-5) z = m-1, 
(2m-1)x+(4m— 1)y+ 	2m z=m+ 1, 

4mx + (5m —7)y + (2m —5)z =0. 
(b) (2m + 1)x — 	my+ (m+1)z=m-1, 

(m — 2)x + (m — I) y+ (m —2)z =m, 
(2m — 1)x + (m— 1) y + (2m — 1)z = m. 

(c) (5A+ 1)x+ 	ay +(4A+ 1)z= +A, 
(4X— 1)x+(X— y+(4X— 1)z= —1, 

2(3X+ 1)x+ 	2Xy + (5X + 2)z = 2 —X. 

435. (a) (2c + 1) x— 	cy— (c+1)z=2c, 
3cx—(2c —1) y—(3c —1)z=c + 1, 

(c + 2) x— 	y— 	2cz = 2. 
(b) 2(A + 1)x + 	3y+ 	Xz= X+4, 

(4X-1)x+(X+ y+(2X-1) z=2X+2, 
(5X-4)x + (A + 1) y + (3X —4) z= X-1. 

(c) dx + (2d —1)y + (d +2)z =1, 
(d-1)y+ 	(d-3)z=1+d, 
dx+(3d-2)y+(3d+1)z=2—d. 
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(d) (3a-1) x+ 	2ay+ (3a+1)z=1, 
2ax+ 	2ay+ (3a+1)z= a, 

(a+1) x+(a+1) y+ 2(a+1)z=a2. 

436. Find the equation of a straight line passing through the 
points M1  (x1, Y1), M2(x2, Y2)• 

437. Under what condition do the three points M3(x1, 
M2(x2, Y2), M3(x3, yo) lie on a straight line? 

438. Under what condition do the three straight lines aix+ 
+ =0, a2x+b2y + c2 = 0, a3x+b3y+c3=0 pass through 

one point? 
439. Under what condition do the four points Mo(xo, yo), 

Mi. (x1, 	M2(x2, Y2), M3(x3, Y3) lie on one circle? 
440. Write the equation of a circle passing through the points 

M1  (2, 1), M2 (1, 2), M3  (0, 1). 
441. Find the equation of a quadric curve passing through the 

points MI  (0, 0), M2 (1, 0), M3 (-1, 0), /114  (1, 1) and M5 (- 1, 1). 

442. Find the equation of a third-degree parabola passing 
through the points M1  (1, 0), M2  (0, - 1), M3 (- 1, -2) and 
M, (2, 7). 

443. Form the equation of a parabola of degree n y=aoxn+ 
+aixn-l+ ...+ a„ passing through the n+1 points M, (x,„ yo), 
M1 (x1, yi), M2 (x2, Y2), • • • Mn (xn, Yn)• 

444. Under what condition do the four points M1  (x1, Yi, 
M2 (x2, Y2, z2), M3 (x39 Y39 z3), M4 ()C49 Y49 z4) lie in a single plane? 

445. Form the equation of a sphere passing through the points 
Mi.  (1, 0, 0), M2 (1, 1, 0), M3 (1, 1, 1), M4 (0, 1, 1). 

446. Under what condition do the n points M1 (x1, yi), 
M2 (X29 Y2), M3(x3 ,y3), • • •9 Mn(Xn, yr) lie on a single straight line? 

447. Under what condition are the 11 straight lines alx+b1Y+ 
+c1=0, a2x+b2y+ c2  =0, ..., anx +kJ + c„=0 concurrent? 

448. Under what condition do the n points M1  (x1, Yi,  z1), 
M2 (x2, Y2, z2), • • •9 Mn Oct, yn ZO lie in one plane and under what 
condition do they lie on one straight line? 

449. Under what condition do the n planes A,x+.13,y+Ciz+ 
+D1=0 (i=1, 2, ..., n) pass through one point and under what 
condition do all these planes pass through a single straight line? 

450. Eliminate x1, x2, ..., x„_1  from the system of n equations: 

a11x1+a12x2+ • • • +al, n  - iXn  -1+ ain  = 0, 
anxi +a22x2+ • • • + a2, n  - iXn  -1+ a2n  = 0, 

anix1+a„2x2 + ... +an, n-1x,-1-1-ann=0. 
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451. Let 

	

) 	 . 	 ( 

xt = an, 2
1) 
 = an; 

	

,12) 	• — '9219 ,(2) 	• 
219 9^ 	= ,̀22 ,  

X(r )  Mmi; X2(m)  = Km2; . . .; X n(m)  = amn 

be m solutions of some system of homogeneous linear equa-
tions. These solutions are termed linearly dependent if there 
exist constants cl, c2„ cm  not all zero, such that 

	

clap  + c2a2i  + ... + cmcc,n, = 0 	 (2) 
(i= 1, 2, .. „ n). 

If the equations (2) are only possible when c1=c2= 	= cm  = 0, 
then the solutions are termed linearly independent. 

Let us agree to write the solutions as rows of a matrix. 
Thus, the system of solutions of (1) is written in matrix form as 

7 an c(12 	C(ln 

a21 CX22 	°C2n 	=A. 

amt amt chm„ 

Prove that if the rank of matrix A is r, then the system (1) has r 
linearly independent solutions and all other solutions of (1) are 
linear combinations of them. 

452. Prove that if the rank of a system of m homogeneous 
linear equations in n unknowns is equal to r, then there exist n — r 
linearly independent solutions of the system, and all other solu-
tions of the system are linear combinations of them. 

Such a system of n—r solutions is termed a fundamental system 
of solutions. 

453. Is 	1— 2 1 0 0 a fundamental 
1 	—2 0 1 0 
0 	0 

( 

1 — 1 0 
1 	—2 3 —2 0 

system of solutions of the system of equations 

x1+ x2 + x3+ x4+ x5 =0, 
3x1+2x2 + X9+ X4 — 3X4 = 0, 

2x3 +2x4 +6x5=0, 
5x1+4x2 +3x5 +3x4 — x5=0? 

(1) 
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454. Write a fundamental system of solutions of the system of 
equations of Problem 453. 

455. Is 	1— 2 	1 	0 0 a fundamental 

0 
( 

0 	— I 	1 0 
4 0 	0 —6 2 

system of solutions of the system of Problem 453? 
456. Prove that if A is a rank r matrix that forms a fundamental 

system of solutions of a system of homogeneous linear equations, 
and B is an arbitrary nonsingular matrix of order r, then the 
matrix BA also forms a fundamental system of solutions of the 
same system of equations. 

457. Prove that if two matrices A and C of rank r form funda-
mental systems of solutions of some system of homogeneous 
linear equations, then one of them is the product of some non-
singular matrix B of order r by the other; that is, A=BC. 

458. Let / an  C(12 	• • 	• Cqn 	be a fundamental system of so- 

c(21 c(22 	• 	• 	• M2n 

\ ar1 art 	• • • °Crn 

lutions 	of some system of 	homogeneous 	linear 	equations. 
Prove that 

XI C1111+ C2C(21+ • • • + Cr(Xrl 

X2 = CICC12 C2C422 + • • • + Crar2I 

x„= ciocin + coc2„-P 	crocn, 

is the general solution of this system of equations, i.e., that any 
solution of the system may be obtained from it for certain values 
of el, c2, cr, and conversely. 

459. Write the general solution to the system of Problem 453. 
460. Verify that (11 1 —7) is a fundamental system of solu-

tions of the system of Problem 403, and write the general solution. 
461. Write the general solutions of the systems of Problems 

408, 409, 410, 412, 413. 
462. Knowing the general solution of the system of Problem 

453 (see the answer to Problem 459) and the fact that x1= — 16, 
x2 =23, x3=x4 =x5 =0 is a particular solution of the system of 
Problem 411, find the general solution of the system of 411. 

463. Write the general solutions of the systems of Problems 
406, 414, 415. 



*466. Find Ern (  
n —> co — - 

1 

n 

0, 
1 

) n 

, where a is a real number. 

CHAPTER 4 

MATRICES 

Sec. 1. Operations on Square Matrices 

464. Multiply the matrices : 

(a) (

2 

3 

(c) 	2 
( 1 

1 
(d) 2 

( 3 

1 
(e) 	0 

( 3 

311 

21  

1 
2 

2 
4 
6 

2 
1 
1 

). (11  

2 	• 
3 ) 

3 
6 • 
9 ) 

1 
2 	. 

if 

) 

73 	\ 

— 11)' 	(b)  \ 6 	— 1 j . 

1 	1-1 
2 	— 1 	1 	, 
1 	0 	1 

—1 	--2 	— 4 
— 1 	—2 	— 4 , 

1 	2 	4 

2 	3 	1 	1 	2 
—1 	1 	0 	- 	0 	1 

1 	2 	—1 	3 	1 

) 

7 

 — 23 

1 
2 	, 
1 

12)' 

a b c 	1 a c 
(f) 	c ( b a•I b b. 

1 1 1 	1 c a 

465. Perform the following operations : 

2 1 	1 2 	 2 

	

(3 1 0 , 	1 )3 	( 3 	2)5  (a) 	 (b) ( 1  3 ' (c) 	— 4 	2 ' 
0 1 2 

/cos so — sine  \ n 

(d)  CO 11 \i' (e)  sin p 	cos p) • 
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467. Prove that if AB= BA, then 

(a) (A + B)2  = A2  + 2AB + B2, 

(b) A2  —B2  = (A + B) (A — B), 

(c) (A + B)" = A" + An-1  B+ . . . + Bn  

468. Compute AB — BA if: 

(a) A= 

(b) A= 

	

(1 
	2 

	

2 	1 

	

1 	2 

1 
(2 

—1 

1 
2 
3 

1 
1 
2 

, 

0 
2 
1 

B= 

, 	B= 

	

4 	1 

	

—4 	2 

	

1 	2 

3 
3 

—3 

1 
0 	; 
1 

1 
— 2 

5 

— 2 
4 	. 

—1 

469. Find all matrices that commute with the matrix A : 
7 1 	1 \ 

(a) A = 	1 	2  \ 	(b) A = 

	

\ — 1 — 1 ' 	\ 0 11 

1 0 0 
(c) A = (0 1 (). 

3 1 2 

470. Find f (A): 

(2 
	1 1 

(a) f (x)= x2  — x — 1 , A= 3 	1 2 ; 
1 —1 0 

— 1 \ 
(b) f (x)= x2  — 5x+3, A =( 2  

— 3 	3/' 
(a b\ 

471. Prove that every second-order matrix A = c  
d 

fies the equation 

x2  — (a+ d)x + (ad — bc)= 0. 

472. Prove that for any given matrix A there is a polynomial 
f(x) such that f(A) = 0 , and that all polynomials with this proper-
ty are divisible by one of them. 

*473. Prove that the equation AB — BA=E is impossible. 
474. Let Ak =O. Prove that (E — A)-  = E + A + A2  + . . . + Ak 

satis- 
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475. Find all second-order matrices whose squares are equal 
to the zero matrix. 

476. Find all second-order matrices whose cubes are equal to 
the zero matrix. 

477. Find all second-order matrices whose squares are equal to 
the unit matrix. 

478. Solve and investigate the equation XA =0, where A is the 
given matrix and X is the second-order matrix sought. 

479. Solve and investigate the equation X2=A, where A is the 
given matrix and X is the desired second-order matrix. 

480. Find the inverse of the matrix A: 

2 \' 

	

(ac  bd),  
(a) A=(1

2 5) (b) 
A= 

1 2 —3 	
, 1 3 —5 	7 \  

(c) A= 0 1 	2 , (d) A= 0 0 	1 	2 ( 
0 0 	1 	

0 1 	2 — 3 \ 

	

0 0 	0 	1/ 

2 	2 3 (i li  
(e) A= 	1 — 1 0 , (f) A= 

‘ —1 	2 1 	
1 

\ 1 

	

1 	1 	1\ 

	

1 	—1 	—1 
—1 	1 	—1 
—1 	—1 	1l 

(g) A= 

	

72 	1 0 0 

	

3 	2 0 0 

	

1 	1 	3 4 
\2 —1 2 3 

	

0 	1 	1 	... 	1 '  

	

1 	0 	1 	... 	1 
, 	(h) A= 1 	1 	0 ... 1 

	

1 	1 	1 	... 0 

1 	1 	1 
1 	e 	e2 	en —1 

(1) A= 1 2 	e4 	 e2n —2 

1 _ 	1 	e2n —2 	e(n — 1)2  

27t 	2n where e = cos —

n 

+ i sib —11 
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2 	—1 	0 . . . 	0\ 

	

—1 	2 	— 1 . . . 	0 

	

0 	—1 	2 . . . 	0 (J) A = 

0 	0 	0 . . . — 1 2, 

1 	3 	5 7 . . . 2n — 1 
2n— 1 	1 	3 5 . . . 2n — 3 

(k) A= 2n — 3 2n — 1 1 3 . . . 2n — 5 

(1) A = 

3 	5 	7 	9 . . . 	1 

'1 	0 0 . . . 0 c1 \ 
0 	1 	0 . . . 0 c2  
0 0 	1 . . . 0 c3  

 

0 0 0 	. . . 1 	c„ 

	

\ b, b2  b, 	b„ a, 

1 	—x 	0 . . . 	0\ 
0 	1 	— x . . . 	0 

(m) A = 
0 	0 	0 ...1 	—x 

\ a, 	al 	a4 • • • 	an , 

/ 1 , 1 	1 

(n) A = 

1 	1 	1 	... 	1 + 
/ 

(o) Knowing the matrix B-1, find the inverse of the bordered 
B 

	

( 	U\.  
matrix 

V a 

481. Find the desired matrix X from the equations: 

2 5 

	

 
(a) ( 
	6 \ 

3) X 
=( —

j  2 	1 ' 
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) 

	

(1 
	1 	—1 	1 —1 3 

(b) X • 2 	1 	0= 4 	3 2 , 

	

1 	1 	1 	1 	—2 5 

/1 	1 	1 	1\ 	'2 	1 	0 	0\ 
0 	1 	1 	1 	1 	2 	1 	0 

(c) 0 0 1 	1 -X= 0 1 2 ... 0 

\ 0 	0 	0 ... 1/ ,0 0 0 ... 2/ 

(d) (23 21 ).X.( -3  
5 

2\ 

—3/ 

	

1 	1 	1 	. 	1 	1 

	

—1 	1 	0 . . . 	0 0 
(e) 0 	— 1 	1 . . . 	0 0 

41 ) ,  

1 —1 	0 	0\ 
1 	1 —1 	0 

X. 1 	0 	1 	0 

0 	0 0 ... —1 	1 	1 	0 	0 	.. 1/ 

	

11 	0 	0 	0 	0 

	

0 	2 — 1 	0 	0 
0 —1 	2 ... 	0 	0 

	

0 	0 	0 ... 	2 —1 

	

\ 0 	0 	0 ... —1 	2 

1 \ 	2 1\ 

	

(f) 

/2 

 1)• 	(2  1); (g) 	x•(2 	

(01 01 ) 

482. Prove that if AB=BA, then A-1B=BA-1. 

2 	1).  
484. Find all the second-order real matrices whose cubes are 

equal to the unit matrix. 
485. Find all the second-order real matrices whose fourth 

powers are equal to the unit matrix. 
486. Establish that there is an isomorphism between the field 

of complex numbers and the set of matrices of the form 

483. Compute p (A), where p (x) = 1 +x , A = ( 
1 2 

a b 

(—b a) 
for real a, b. 
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487. Establish that for real a, b, c, d, the matrices of the form 
a+bi c+di 

\—c +di a — bi 
constitute a ring without zero divisors. 

488. Represent (4+ b? + c? + d?) (4+14+ c3+ c13) as a sum of 
four squares of bilinear expressions. 

489. Prove that the following operations involving matrices 
are accomplished by premultiplication of the matrix by certain 
nonsingular matrices : 

(a) interchanging two rows, 
(b) adding, to elements of one row, numbers proportional 

to the elements of another row, 
(c) multiplying elements of a row by a nonzero scalar. 
The same operations involving columns are performed via 

postmultiplication. 
490. Prove that every matrix can be represented as PRQ, 

where P and Q are nonsingular matrices and R is a diagonal mat-
rix of the form 

/ 1 
1 

R= 
0 

0 

*491. Prove that every matrix may be represented as a product 
of the matrices E+ocetk, where ea  is a matrix whose element of 
the ith row and kth column is unity, and all other elements are 
zero. 

*492. Prove that the rank of a product of two square matrices 
of order n is not less than r1+r2  — n, where r1  and r2  are the ranks 
of the factors. 
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493. Prove that every square matrix of rank 1 is of the form 

7 A1E-Li Al 112 	• • • Al 1ln 

A2 [41 A3 P•2 	• • • A2 [In 

An An 112 	• • • An 1-1'„ 

*494. Find all third-order matrices whose squares are 0. 
*495. Find all third-order matrices whose squares are equal to 

the unit matrix. 
*496. Let the rectangular matrices A and B have the same 

number of rows. By (A, B) denote the matrix obtained by adjoining 
to A all the columns of B. P:ove that the rank of (A, 	rank of 
A + rank of B. 

*497. Prove that if A' = E, then the rank of (E+ A)+ the rank 
of (E — A)=n, where n is the order of the matrix A. 

*498. Prove that the matrix A with the property A2  = E can be 
represented in the form PBP-1, where P is a nonsingular matrix 
and B is a diagonal matrix, all elements of which are equal to ± 1. 

499. Find the condition which a matrix with integral elements 
must satisfy so that all the elements of the inverse are also integral. 

500. Prove that every nonsingular integral matrix can be repre-
sented as PR, where P is an integral unimodular matrix, and R is 
an integral triangular matrix all the elements of which below the 
principal diagonal are zero, the diagonal elements are positive, 
and the elements above the principal diagonal are nonnegative 
and less than the diagonal elements of that column. 

*501. Combine into a single class all integral matrices which 
are obtained one from the other by premultiplication by integral 
unimodular matrices. Compute the number of classes of nth-or-
der matrices with a given determinant k. 

502. Prove that every integral matrix can be represented as 
PRQ, where P and Q are integral unimodular matrices and R 
is an integral diagonal matrix. 

503. Prove that every integral unimodular matrix of second or-
der with determinant 1 can be represented as a product of powers 
(positive and negative) of the matrices 

/1 0\ 
A 4 0 1 
	 1 1

1 l ) and B = 
. 
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504. Prove that every second-order integral unimodular mat-
rix can be represented in the form of a product of the powers of 
the matrices 

A  = (1 	) 	 /0 1 \ 

0 1 and 
C= 

0j• 

505. Prove that every third-order integral matrix, different 
from unit matrix, with positive determinant and satisfying the 
condition A2 =E can be represented in the form QCQ-1, where 
Q is an integral unimodular matrix and C is one of the matrices 

(

1 	0 	0 	(1 — 1 	0 
0 —1 	0 	or 	0 —1 	0 . 
0 	0 —1 	0 	0 —1 

Sec. 2. Rectangular Matrices. Some Inequalities 

506. Multiply the matrices: 

2 1 

	

(a) (3 	,.. 	1 	
3 	1 

) 
u 1 	

and 2 
( 

	

1 	0 
1  ); 	(b) 	1;) 	1 	21 	

1 

) 
and 2 

	

/ 3 2 	( 

3 

	

2 	 2 
(c) 	1 	and (1 2 3); (d) (1 2 3) and 	4 . 

( ) 
( 

507. Find the determinant of the product of the matrix 

/ 4 1 1 3

3 2 1 2) 
by its transpose. 

\  
) 

508. Multiply the matrix 	
b, c1 

by its transpose and 
a2  b2 C2 

apply the theorem on the determinant of a product. 
509. Express the mth-order minor of the product of two mat-

rices in terms of the minors of the factors. 
510. Prove that all the principal (diagonal) minors of the mat-

rix AA are nonnegative. Here, A is a real matrix, and A is the 
transpose of A. 

511. Prove that if all the principal kth-order minors of the 
matrix AA are zero, then the ranks of the matrices AA and A 
are less than k. Here, A is a real matrix and A is its transpose. 

512. Prove that the sums of all diagonal minors of a given 
order k computed for the matrices AA and AA are the same. 

3 	 1 
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513. Using multiplication of rectangular matrices, prove the 
identity 

(a? + a2 + . . . + 	(bf + b3+ . . . + Ni) 

— (a, b1+ a2  b2  + . . . + an  b)2  = 	(a, b k — ak b1)2  
i(k  

514. Prove the identity 

I ai  bk  ak  bi  
k 

2 

 

Here, a1, b1  are complex numbers and b; are the conjugates of b,. 
515. Prove the Bunyakovsky inequality 

2 	n 

(E a bi) 	

n
E a? • E 

i=1 	 i=i 	i=1 

for real a1, b, by proceeding from the identity of Problem 513. 
516. Prove the inequality 

12 	n 

alb; 	a1
12.E b 1 12 

~ i=1 	i=li=t 

for complex a1, bi .  
*517. Let B and C be two real rectangular matrices such that 

(B, C) = A is a square matrix [the symbol (B, C) has the same 
meaning as in Problem 496]. Prove that I A I 2  I BB I • ICC I. 

*518. Let A = (B, C) be a rectangular matrix with real elements. 
Prove that 

I AA I 	1 BB I. I CC I . 

519. Let A be the rectangular real matrix 

7  an a12 . . . a,„ 

a A = 	a22  

a, 1 a,n2  • • • — 
a 

tun 

Prove that I AA 	E a?k  • Eazk • • • E a„,k. 
k=1 	k= 1 	 k=1 



CH. 4. MATRICES 	 85 

520. Let A be a rectangular matrix with complex elements and 
A* the transpose of the complex conjugate of A. Prove that the 
determinant of the matrix A* A is a nonnegative real number and 
that this determinant is zero if and only if the rank of A is less 
than the number of columns. 

521. Let A=(B, C) be a complex rectangular matrix. Prove 
that IA*A1---1B*B1 • C*C . 

522. Prove that if laid 5 M, then the modulus of the determi-
nant 

all  a12 	a1 
a21 a22 
	a2„ 

an1 ant 	a,,,, 

does not exceed Mnnn12. 

*523. Prove that if aik  are real and lie in the interval 0 
then the absolute value of the determinant made up of the 

n+1 

numbers aik  does not exceed Mn 2 —n  X (n+ 1) 2  . 

524. Prove that for determinants with complex elements the 
estimate given in Problem 522 is exact and cannot be improved. 

525. Prove that for determinants with real elements the esti-
mate given in Problem 522 is exact for n =2m. 

526. Prove that the maximum of the absolute value of the de-
terminants of order n having real elements which do not exceed 1 in 
absolute value is an integer divisible by 2n-1. 

*527. Find the maximum of the absolute value of the determi-
nants of orders 3 and 5 made up of real numbers that do not 
exceed 1 in absolute value. 

*528. The adjoint of the matrix A is a matrix whose elements 
are minors of order n-1 of the original matrix in the natural 
order. Prove that the adjoint of the adjoint is equal to the origi-
nal matrix multiplied by its determinant to the power n-2. 

*529. Prove that the mth-order minors of an adjoint matrix 
are equal to the complementary minors of the appropriate minors 
of the original matrix multiplied by On'-1. 

530. Prove that the adjoint of a product of two matrices is 
equal to the product of the adjoint matrices in that order. 

531. Let all combinations of numbers 1, 2, ..., n taken m at a 
time be labelled in some fashion. 
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Given an n x n matrix A= (aik). Let Aar, be the mth-order minor 
of A, the row indices of which form a combination with the index 
a, the column indices, a combination with the index [3. Then, 
using all such minors, we can construct a matrix Am = (Acco) of 
order C;;7'. In particular, =A, AL _ 1  is the adjoint of A. 

Prove that (AB); „= AL, BL,, E;,,= E, (A-1)L,= (A ,'„) -1. 
532. Prove that if A is a "triangular" matrix of the form 

7 an  a12  • • • am \ 

A= 
	0 
	

a22 • • • a'-'n 

then under an appropriate labelling of the combinations, the 
matrix AL, will also be triangular. 

533. Prove that the determinant of the matrix A;,, is equal to 

A lc n  
534. Let the pairs (1, k), i =1, 2, ..., n; k =1, 2, ..., m, be label-

led in some fashion. The Kronecker product of two square mat-
rices A and B of orders n and m, respectively, is the matrix C= 
=A x B of order nm with elements c«, «,= 	bk, k, where a, is 
the index of the pair (ii, k1), a2  the index of the pair (i2, 	. Prove 
that 

(a) (A ± A x B = (Ai x B) ± (A 2 X B), 

(b) A x (Bi  ± B2) = (A x B2) ± (A x B2), 

(c) (A' x B1) • (A" x B") = (A' • A") x (B' • B"). 

*535. Prove that the determinant A x B is equal to I Al"' • 
536. Let the matrices A and B of order mn be partitioned into 

n2  square submatrices so that they are of the form 

All Al2 • B11 B12 

, A21 A22 • • • A2n 
, B = B " B22 

 

	

An1  A,,2 	 \Bn1 

	

..... n2 	 B ra  

where .11,k and Bo, are square matrices of order m. Let their pro-
duct be C and let it be partitioned in the same way into submat-
rices Ca,. Prove that 

C ;lc = A a Bik + A r 2 B2k . • • + Ain 

A= 

Bin  \ 

B2r, 

B,,„ 
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Thus, multiplication of submatrices is performed by the same 
formal rule as when numbers take the place of submatrices. 

*537. Let the matrix C of order mn be partitioned into n2  equal 
square submatrices. Let the matrices Au, formed from the elements 
of the separate submatrices commute in pairs under multiplica- 

tion. Form the "determinant" E + A r,„ A2„, ... An« =B from the 

matrices A ik. This "determinant" is a certain matrix of order m. 
Prove that the determinant of the matrix C is equal to the deter-
minant of the matrix B, 



CHAPTER 5 

POLYNOMIALS 
AND RATIONAL 

FUNCTIONS 
OF ONE VARIABLE 

Sec. 1. Operations on Polynomials. 
Taylor's Formula. Multiple Roots 

538. Multiply the polynomials: 

(a) (2x4 	+x + 1) (x2  — + 1), 

(b) (x3  + x2  —x — 1) (x2  — 2x — 1). 

539. Perform the division (with remainder): 

(a) 2x4  —3x3 + 4x2 -5x+6 by x2 -3x+ 1, 

(b) x3-3x2 —x— 1 by 3x2  —2x +1. 

540. Under what condition is the polynomial x3+px+q di-
visible by a polynomial of the form x2  + mx— 1? 

541. Under what condition is the polynomial x 4+px2+q di-
visible by a polynomial of the form x2+mx+ 1? 

542. Simplify the polynomial 
x 	x(x-1) 	 (x—  n+ 1)  1 
1 

— + 
 1 • 2 	

+(— 
n! 

543. Perform the division (with remainder): 

(a) 4  - 2x3 +4x2 -6x+8 
	

by x-1, 

(b) 2x5  — 5x3  — 8x 
	

by x+3, 

(c) 4x3  + x2 
	

by x+1+i, 

(d) — x2  —x 
	

by x-1 +2i. 

544. Using Horner's scheme, compute f (x0): 

(a) f(x)= x 4  3x3  + 6x2  10x + 16, x0 =4, 

(b) f(x)= x5  + (1 +20x4  — (1 +30x2  +7 , x0= —2—i. 

545. Use the Horner scheme to expand the polynomial f(x) in 
powers of x — xo: 

(a) f(x)---=x4+2x3-3x2-4x+1, 	 — ; 
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(b) f(x) = x5  , 	 x0 -= 1 

(c) f(x)= x4  - 8x3  +24)(2- 50x+90, 	x0 =2; 

(d) f(x)=x4 + 2ix3- (1 + Ox2 -3x + 7 + 

(e) f(x)= x4  + (3 -80x3-(21+180x2  

- (33 -200x +7 +181, 	x0= -1 +21. 

546. Use the Horner scheme to decompose into partial frac-
tions: 

(a) 
x3-x+ 
(x- 2)" 

(b\  x4- 2x2  + 3 
1 	(X +1)5  

*547. Use the Homer scheme to expand in powers of x: 

(a) f(x + 3) where f(x)=x4-x3+1, 

(b) (x -2)4 +4(x -2)3 +6(x -2)2 +10(x -2) +20. 

548. Find the values of the polynomial f(x) and its derivatives 
when x=xo: 

(a) f(x)= .x5  - 4x3+6x2 -8x+10, 	x0 =2, 

(b) f(x) = x 4  — 3ix3-4x2 + 5ix - 1, 	x0=1 +2i. 

549. Give the multiplicity of the root: 

(a) 2 for the polynomial x5 - 5x4  + 7x3-2x2 + 4x - 8, 

(b) -2 for the polynomial x5 +7x4 +16x3+8x2 -16x-16. 

550. Determine the coefficient a so that the polynomial x5  - 
-ax2-ax+ 1 has -1 for a root of multiplicity not lower than 
two. 

551. Determine A and B so that the trinomial Ax 4  + Bx3  + 1 is 
divisible by (x -1)2. 

552. Determine A and B so that the trinomial Ax"-"- + Bx" + 1 
is divisible by (x - 1)2. 

*553. Prove that the following polynomials have 1 as a triple 
root: 

(a) x24- nx" +1  + nxn -1  - 1, 

(b) x2n+1—  (2n +1)xn+1+ (2n + 1)x" - 1, 

(c) (n -2m)xn -nxn-  m + nx"' - (n -2m). 
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554. Prove that the polynomial 

x2n+1 	n (n + 1) (2n + 1)  xn+2±(11-1)(n+  2) (2n+ I) 
 xn+1 

6 	 2 

(n —1) (n + 2) (2n +1) xn + n (n + 1) (2n + 1) 
6 

is divisible by (x-1)5  and is not divisible by (x-1)6. 
*555, Prove that (X-,•1)10-1  divides the polynomial 

f(x) ao  + x4-1  + , „ + an  

if and only if 

a0 + 	a2 + ...+ 	an = 0, 
ai+2a2 + +n an = 0, 
a1+ 4a2 + + n9  an =0, 

ai+2ka2 +...+nkan =0. 

556. Determine the multiplicity of the root a of the polyno-
mial 

x 2 	a  Li°  (x) + f(a)l— f (x) + f (a) 

where f(x) is a polynomial. 
557. Find the condition under which the polynomial x5 + ax3  + b 

has a double root different from zero. 
558. Find the condition under which the polynomial x5+ 10ax3  

+5bx+ c has a triple root different from zero. 
559. Prove that the trinomial xn +axn-m+b cannot have non-

zero roots above multiplicity two. 
560. Find the condition under which the trinomial 

xn +axn-rn+ b has a nonzero double root. 
*561. Prove that the k-term polynomial 

al  xPz + a2  xPz + . . . + ak  xpk 

does not have nonzero roots above multiplicity (k —1). 
*562. Prove that every nonzero root of multiplicity k — 1 of 

the polynomial 

a, xPz + a2 xP2 + . . . + ak  xPk 

satisfies the equations 

a1 x" (PO= a2  xP2 Cp' (PO= . . . = ak  xP  k (Pk) 

xn-1 1 
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where 

cf,  (t) = (t —Pi) (t —PP (t —PO • • • (t —PO 

and conversely. 
*563. Prove that a polynomial is divisible by its derivative if 

and only if it is equal to a0(x — x„)n. 
564. Prove that the polynomial 

1 + ± 2  + I 	1 • 2 

does not have multiple roots. 
565. Prove that for x0  to be a root of multiplicity k of the nu- 

merator of the fractional rational function f(x) =  9  ()  ' the de-

nominator 	
() 

nominator w(x) of which does not vanish for x = x0, it is necessary 

and sufficient that 

J (x0)=f' (X0) =  • • • =f(k-1)  (x0)= 0, P (xo) O. 

566. Prove that the fractional rational function f (x) = 
w 

( (xx) 
) 

can be represented in the form 

f(x)=f(x0)+ f'  (1x°)  (x xo)+ 	+ f(n)X°)  (-)C 'COY'  

F (x)  

	

w (x) 	
x. on +1 

where F(x) is a polynomial. It is assumed that w(xo) 00 (Taylor's 
formula for a fractional rational function). 

*567. Prove that if x0  is a root of multiplicity k of the polyno-
mial f1  (x) f2 (x)— f, (x) fi (x), then x0  is a root of multiplicity 
k+ 1 of the polynomial f1  (x) f2  (x0)—f 2  (x) (x0) if this latter 
polynomial is not identically zero, and conversely. 

*568. Prove that if f(x) does not have multiple roots, then 
(x)P —f(x) f"(x) does not have roots of multiplicity higher than 

n —1, where n is the degree of f(x). 
*569. Construct a polynomial f(x) of degree n, for which 

[f' (x)]2 —f(x)f"(x) has a root xo  of multiplicity n — 1, which is not 
a root of f(x). 

xn 

n! 
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Sec. 2. Proof of the Fundamental Theorem 
of Higher Algebra and Allied Questions 

570. Define 8 so that for Ix' <8 the polynomial 

x5-4x3 +2x 

is less than 0.1 in absolute value. 

571. Define a so that 1f(x)—f(2)1< 0.01 for all x satisfying the 
inequality Ix-21 <8;  f(x)= x4  —3x3  + 4x +5. 

572. Define M so that for Ix! > M 

I x4  —4x3 +4x2 +2 1>100. 

573. Find x so that I f(x)I < I f(0)1 where 

(a) f(x)= x5 — 3ix3 +4, (b) f(x) = x5  —3x3  + 4. 

574. Find x so that Ifix)1< lf(1)1 where 

(a) f(x)=x4-4x3+2, 

(b) f(x)= x 4  - 4X3  6X2  - 4x +5, 

(c) f(x)=x4-4x+5. 

575. Prove that if z — i = a (1 — i), 0 <a< 	then 

If(z) I < 1/ 5  
where 

f (z)=(1 + i) z5  + (3 —5i) z4  — (9 +5i) z3  

—7(1—i)z2 +2(1+3i)z+4—i. 

*576. Prove that if f(z) is a polynomial different from a con-
stant, then, in arbitrarily small neighbourhood z0, there is a z, 
such that I f (z,) I > I f (zo) I. 

577. Prove the d'Alembert lemma for a fractional rational 
function. 

578. Prove that the modulus of a fractional rational function 
reaches its greatest lower bound as the independent variable 
varies in a closed rectangular domain. 

579. It is obvious that the theorem on the existence of a root 
does not hold for a fractional rational function. Thus, the func- 

tion — has no root. What prevents 'proving' this theorem by 

the scheme of that for a polynomial? 
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*580. Let f(x) be a polynomial or a fractional rational function. 
Prove that if a is a root off(z)—f(a) of multiplicity k and f(a) 0, 
then for a sufficiently small p there will be, on the circle I z—a = P, 
2k points at which I f (z) = I f (a) I. 

*581. Prove that if a is a root of f(z)—f(a) of multiplicity k, 
then for a sufficiently small p there will be, on the circle I z — a I= 

p, 2k points at which Re (f (z)) = Re (f (a)) and 2k points at which 

Im (z))=Im (f (a)). Here, f (z) is a polynomial or a fracti-

onal rational function. 

Sec. 3. Factorization into Linear Factors. 
Factorization into Irreducible Factors 

in the Field of Reals. 
Relationships Between Coefficients and Roots 

582. Factor the following polynomials into linear factors: 

(a) x3-6x2 + 1 lx —6, (b) x4 +4, (c) x4 + 4x3 + 4x2 + 1, 

(d) x4 — 10x2 + 1. 

*583. Factor the following polynomials into linear factors: 

(a) cos (n arc cos x), 

(b) (x+ cos 0+ i sin 0)"+ (x+ cos 0— i sin 0)n, 

(c) xm — 	xm-i+ 	Xm-2  — . . . ±( — 

584. Factor the following polynomials into irreducible real 
factors : 

(a) x4 +4, (b) x6 +27, (c) x4 + 4x3 +4x2 + 1, 

(d) x'n —an +2, (e) x4 — ax2  + 1, —2 < a < 2, 

(f) X2n  Xn  + 1  • 

585. Construct polynomials of lowest degree using the follo-
wing roots: 

(a) double root 1, simple roots 2, 3, and 1 + 

(b) triple root —1, simple roots 3 and 4, 

(c) double root i, simple root —1 — i. 

586. Find a polynomial of lowest degree whose roots are all 
roots of unity, the degrees of which do not exceed n. 
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587. Construct a polynomial of lowest degree with real coef-

ficients, using the roots: 

(a) double root 1, simple roots 2, 3 and 1 +i, 

(b) triple root 2 —3i, 

(c) double root i, simple root —1 — i. 

588. Find the greatest common divisor of the polynomials: 

(a) (x— 1)3  (x +2)2  (x —3) (x —4) and (x — 1)2  (x +2) (x +5), 

(b) (x— I) (x2 — 1) (x3 -1) (x4 -1) and (x + 1) (x2 +1) (x3 + 1). 

•(x4 +1), 

(c) (x3 -1) (x2 -2x+ 1) and (x2 — 1)3. 

*589. Find the greatest common divisor of the polynomials 

xm— 1 and xn-1. 

590. Find the greatest common divisor of the polynomials 

xm + a"' and xn+an. 

591. Find the greatest common divisor of the polynomial 
and its derivative: 

(a) f(x)=(x —1)3  (x + 1)2  (x —3), 

(b) f(x)=(x —1) (x2-1) (x3-1) (x4 -1), 

(c) f(x)= xin+ n  — Xn1  —Xn  +1. 

592. The polynomial f(x) has no multiple roots. Prove that 

if x0  is a root of multiplicity k > 1 of the equation f :(( x.2  = 0, 

then the equation f( vu, x1)=  0 has xo  as a root of multiplicity 

k —1. It is assumed that v (xo) 00, v' (x0)00. 
593. Prove that X2  ± X + 1 divides x3'n +.x3r:+1+x3P+2. 
594. When is x3"'— x3n +1+x3P+ 2  divisible by x2  — x + 1? 
595. What condition is necessary for x4  +x2 + 1 to divide x3"' + 

±x3,z+1+  x3p +2? 

596. What condition is necessary for x2+x+ 1 to divide x2"i+ 
+x'n+1? 

597. Prove that 

xkat 	xlca2-1-1 	 A,k a k+k —1 

is divisible by xk-1+xk-2+...+1. 
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598. For what values of m does x2+x+ 1 divide (x +1)"' — 
— 1? 

599. For what values of m does x2+x+ I divide (x + 1)"' + 
+xnz+ 1 ? 

600. For what values of m does (x2+x+ 1)2  divide (x + 
xn2  —1? 
601. For what values of m does (x2+x+ 1)2  divide (x+ 1)"'+ 

+ xfr n + 1? 
602. Can (x2+x +1)3  divide the polynomials (x +1)rn + x"i + I 

and (x +1)m —xln —1? 
603. Transform the polynomial 

x 	x (x-1) n  x (x-1) . . . (x—n+l)  _ o 
1 	1 	2 	 1 . 2 . . . n 

by assigning to x the values 1, 2, ..., n in succession. (Compare 
with Problem 542.) 

604. For what values of m does X„(x) divide X„(xn2)? (X„ is a 
cyclotomic polynomial.) 

Prove the following theorems: 
605. If f(x") is divisible by x — 1, then it is also divisible by 

xn —1. 
606. If f(x") is divisible by (x—a)k, then it is also divisible by 

(x"—an)k for a O. 
607. If F (x) f, (x3) + xf, (x3) is divisible by x' + x + 1 , then 

f, (x) and f 2  (x) are divisible by x-1. 
*068. If the polynomial f(x) with real coefficients satisfies 

the inequality f(x) 0 for all real values of x, then f(x)--=[soi(x)]2  + 
+ FP2(x)12  where cp,(x) and c, o 2(x) are polynomials with real coeffi-
cients. 

609. The polynomial f(x) aoxn + 	+ . . . + a „ has the 
roots x1, . . x„. What roots do the following polynomials have: 

(a) c/o  xn —a, .xn + a2 	— . . . + ( — 1)11  a „, 

(b) an  xn + a„_, 	1 	. . . ± a 0  , 

(c) f (a) + f  (a)  X+ f' (a)  A2  + 	f  (n)   (a) 
1 	1 • 2 	 n! 

(d) xn + a, bxn-1 a+ 2b2 xn-2+ 	+an t,n? 

610. Find a relationship between the coefficients of the cubic 
equation .x 3  +px2  + qx+r =0 under which one root is equal to the 
sum of the other two. 
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611. Verify that one of the roots of the equation 36x3-12x2-
- 5x+ 1 =0 is equal to the sum of the other two, and solve the 
equation. 

612. Find a relationship among the coefficients of the quartic 
equation x4 + ax3+ bx2+ cx+ d= 0 under which the sum of two 
roots is equal to the sum of the other two. 

613. Prove that the equation which satisfies the condition of 
Problem 612 can be reduced to a biquadratic equation by the sub-
stitution x=y+a for an appropriate choice of a. 

614. Find a relationship among the coefficients of the quartic 
equation x4 + ax3+ bx2+ cx+ d= 0 under which the product of 
two roots is equal to the product of the other two. 

615. Prove that the equation which satisfies the hypothesis of 
Problem 614 may be solved by dividing by x2  and substituting 

y=x + ±-ax  (for a 

616. Using Problems 612 to 615, solve the following equations: 

(a) x4 -4x3 + 5x2 — 2x— 6 =0, 

(b) x4 +2x3 + 2x2  +10x + 25 =0, 

(c) x4 +2x3 + 3x2 + 2x— 3=0, 

(d) x4 + x3-10x2 — 2x+ 4=0. 

617. Define A so that one of the roots of the equation x3  — 7x + 
+ A=0 is equal to twice the other root. 

618. Define a, b, c so that they are roots of the equation 

x3 — ax2 + bx —c= 0. 

619. Define a, b, c so that they are roots of the equation 

x3+ax2+bx+ c= 0. 

620. The sum of two roots of the equation 

2x3 —x2 -7x+A= 0 

is equal to 1. Determine A. 

621. Determine the relationship between the coefficients of 

the equation x3+px+q=0 under which x3= 1 — + 1 — . 
Xy 	)C2 

622. Find the sum of the squares of the roots of the polynomial 

xn+ai xn-l+ . + an. 
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*623. Solve the equation 

	

xn aixn--1 a2 x„-2+ 	+ an = 0 

knowing the coefficients al  and a2  and that its roots form an 
arithmetic progression. 

624. Do the roots of the equations 

(a) 8x3-12x2-2x + 3 = 0, 

(b) 2x4 + 8x3 +7x2 — 2x-2=0 

form arithmetic progressions? 
625. Given the curve 

y=x4+ax3+bx2+cx+d. 

Find a straight line whose points M1, M2, M3, M4  of intersection 
with the curve intercept three equal segments M1M2=M2M3=- 
=M3.3/4. Under what condition does this problem have a solu-
tion? 

*626. Form a quartic equation whose roots are a,, — a, — 1 

*627. Form a sextic equation with the roots 
1 	 1 	1 

a, — , 
cc 	

1cc  	1 
' 	1 

1 
— o: ' 	cc ' 	1 

1 — -- 
cc 

628. Let f (x)=(x 	(x — x 2) ... (x — x„). 
Find f' (xi), f” (xi) and prove that 

af ' (xi) 	1 	„ 
axi = 2 f (xi)•  

629. Prove that if f (x1)--f"(x1)=0 but f' (x1) 0 0, then 

1 
	_O. 

xl  - Xi 
1=2 

630. The roots of the polynomial xn+a1xn-4+ ...+a„ form an 
arithmetic progression. Determine f' (xi). 

Sec. 4. Euclid's Algorithm 

631. Determine the greatest common divisor of the following 
polynomials: 

(a) x4 + x3-3x2 -4x-1 and x3+x2 —x-1; 

(b) x5+ x4  —x3-2x— 1 and 3x4 +2x3 +x2 +2x-2; 

4. 1215 
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(c) x6 — 7x4 + 8x8 — 7x +7 and 3x5-7x3+3x2-7 ; 

(d) x5-2x4 +x3+ 7x2 — 12x + 10 

and 3x4 — 6x3+ 5x2+ 2x — 2; 

(e) x6 + 2x4 — 4x3 — 3x2 + 8x — 5 and x' + x2 —x + 1 ; 

(f) x5+ 3x4 — 12)0— 52x2 — 52x — 12 

and x4 + 3x3 — 6x2 — 22x — 12 ; 

(g) x' + x4 — x' — 3x2 — 3x — 1 

and x4 — 2x' —x2 — 2x + 1; 

(h) x4 — 10x2 + 1 and x4-4y'2 	6x2 + 41/ 2 x + 1 ; 

(i) x4 + 7x3 + 19x2 +23x + 10 

and x4 +7x3+ 18x2 +22x+ 12; 

(j) x4 -4x3 + 1 and x3-3x2  + 1 ; 

(k) 2x6 — 5x' — 14x4 + 36x' + 86x2 + 12x —31 

and 2x5-9x4 + 2x3+ 37x2 + 10x — 14 ; 

(1) 3x6 —x5 — 9x4 — 14)0— 11x2 — 3x — 1 and 

3x5+8x4 +9x3+15x2 +10x+9. 

632. Using Euclid's algorithm, choose polynomials M1  (x) 
and M2 (x) so that fl  (x) M2 (x) +12 (x) Mi.  (x) = a (x) where a (x) 
is the greatest common divisor off,. (x) and 12  (x): 

(a) fl  (x)=x4+2x3—x2 — 4x -- 2, 

12 (x) =x4  + xs —x2-2x —2 ; 

(b) fl  (x)=x5 +3x4+x3+x2 +3x+ 1, 

f2(x)=x4 +2x3+x+2; 

(c) f, (x)=x6-4x5+11x4-27 x3+37x2 — 35x + 35, 

f2 (x)=x5 — 3x4  +7 x3-20x2+ 10x — 25 ; 

(d) fl  (x)= 3x7 + 6x6 -3x5+ 4x4 + 14x3 — 6x2 — 4x + 4, 

12 (x)=3x6-3x4  + 7x3— 6x + 2 ; 

(e) jel  (x)=3x5+5x4— 16x3 — 6x2— 5x — 6, 

f2 (x)-3x4  — 4x3 —x2 —x-2; 

(f) fl  (x)=4x4-2x3 — 16x2  + 5x + 9, 

12 (xl =2.x3  —x2  — 5x + 4. 
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633. Using Euclid's algorithm, choose polynomials M1  (x) 
and M2  (x) so that ft  (x) M2 (x)+f2 (x) M1  (x)= 1 : 

(a) fi  (x)=3x3  — 2x2  +x + 2, f2 (x) = X2  X + 1 ; 

(b) (x) = x4  — x3  — 4x2  + 4x + 1, f2 (x) = X2 	1 ; 

(c) f1 (X) = X5  — 5x 4  — 2X3  + 12X2  — 2x + 12, 

f2 (x)= x3  — 5x2  — 3x+ 17; 

(d) f1 (x)=2x4  +3x3  — 3x2  — 5x + 2, 

f2  (x)= 2x3  + x2  — x —1; 

(e) f1  (x)=3x4  — 5x3  + 4x2  — 2x + 1, 

f2 (x)=3x3  — 2x2  +x — 1 ; 

(f) f1  (x)=x5  +5x4  +9x3  +7 x2  +5x + 3, 

f2 (x)=x4 +2x3+2x2 +x+ 1. 

634. Use the method of undetermined coefficients to choose 
M]. (x) and M2  (x) so that (x) M2 (x)  +f2  (x) M1  (x) =1 : 

(a) fi 	( x)= x4  — 4x3  + 1, f2 (x) = x3  - 3x2  + ; 

(b) f1(x)=x3, 	f2 
(
(x)=(1 —x)2; 

(c) f1  (x)= x4, 	f2  (x)= (1 —x)4. 

635. Choose polynomials of lowest degree, M1  (x), M2 (x), 
so that 

(a) (x4  — 2x3-4x2 + 6x + 1) M1  (x) 

+ (x3  — 5x —3) M2 (X) = X4  ; 
(b) (x4  + 2x3  +x + 1) M1  (x) 

+ (x4  + x3  —2x2  + 2x — 1) M2 (X) = X3  — 2x. 

636. Determine the polynomial of lowest degree that yields a 
remainder of: 

(a) 2x when divided by (x— 1)2  and 3x when divided by (x-2)3; 
(b) x2  + x + 1 when divided by x4  —2x3  — 2x2  + 10x —7 and 2x2  — 

— 3 when divided by x4  — 2x3  — 3x2  + 13x — 10. 
*637. Find polynomials M (x) and N (x) such that 

M (x)+ (1 — x)^ N (x)=1. 

638. Let f1(x) M (x) +f2  (x) N (x) = a (x) where a (x) is the 
greatest common divisor of f1  (x) and f2  (x). What is the greatest 
common divisor of M (x) and N (x)? 

4" 
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639. Separate the multiple factors of the polynomials: 

(a) x5 — 6x4 — 4x3+ 9x2 + 12x +4, 
(b) x5 — 10x3 — 20x2 — 15x — 4, 

(c) x6 — 15x4 + 8x3  + 51x2 — 72x + 27, 

(d) x5 — 6x4 +16x3 — 24x2 + 20x — 8, 
(e) x6  — 2x5  — x 4  — 2X3+5X2 + 4x +4, 
(f) x7 — 3x6  + 5x5  —7 x 4  + 7x2  — 5x2  +3x-1, 

(g) x8 + 2x7 +5x6 +6x5+8x4 +6x3+5x2 +2x+ 1. 

Sec. 5. The Interpolation Problem 
and Fractional Rational Functions 

640. Use Newton's method to construct a polynomial of lo-
west degree by means of the given table of values: 

2 3 4 1,, 

	

x 	I 	0 	1 ib  \ X 	I —1 01 23 

4 6 

‘"/ f (x) I 

X 

1 	2 

9 
1 

4 

3 4 

4 

6' 

25 
4 

f(x) I 	6 5 0 3 2 	' 

X 	I 	1 2  3 find (c) 
f(x) 1 

3 
2 

2  
5 
2 

f (2); (d) 
f(x) I 5 6 1 —4 10 

641. Use Lagrange's formula to construct a polynomial by 
the given table of values : 

	

x  1 1 2 3 4 \  X Ili 	—i 
'a' y I 2 1 4 3 ' 	(b)  y I 1 2 	3 	4 

*642. Find f (x) from the following table of values: 

X 	I 1  el  E2 • • En—i 	 2rck 	2rck 

	

Ek = cos 	+ i sin 	 -n  f (x) 1 2 3 . . n 

643. A polynomial f (x), whose degree does not exceed n-1, 
takes on values yl, Y25 • • •, yrz in the nth roots of unity. Find f (0). 

*644. Prove the following theorem: so that 

f(x)=-„1  [f(xi)+f(x2)+ • • •+f(x.)1 

for any polynomial f (x) whose degree does not exceed n —1 it 
is necessary and sufficient that the points x1, x2, ..., x,, be located 
on n circle with centre at xo  and that they divide it into equal parts. 
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*645. Prove that if the roots x1, x 2, ..., xn  of a polynomial 
cp (x) are all distinct, then 

cp' (xi) 
i =1 

n 	n-1 

646. Find the sum E 	(notations are the same as in 
c?' (xi)  

= 

Problem 645). 
647. Derive the Lagrange interpolation formula by solving the 

following system of equations: 

a,+ x1+ . . . + an _i  x7-1  = yi, 
no + a, x2+ . . . an _i  x2-1=Y2, 

no+ xn+ . . . + an _i  xnn-l= yn. 

*648. Use the following table of values to construct a poly-
nomial of lowest degree : 

x I 0 1 2 . . . n 
Y 1 1 2 4 . . . 2n' 

*649. Use the following table of values to construct a poly-
nomial of lowest degree: 

x 1 0 1 2 . . .  n 
yllaa2 ...an' 

*650. Find a polynomial of degree 2n which upon division by 
x (x —2)...(x —2n) yields a remainder of 1, and upon division 
by (x-1) (x-3)...[x — (2n —1)] yields a remainder of —1. 

*651. Construct a polynomial of lowest degree, using the 
table of values 

x 1 1 	2 3 . . .  n 
1 	1 	1 
2 3 	n 

*652. Find a polynomial of degree not exceeding n — 1 that 

satisfies the condition f (x)=x a 	 at the points x1, x2, ..., 

xn, x1 0 a, i= 1, 2, ..., n. 
*653. Prove that a polynomial of degree k c 	which assumes 

integral values for n+ 1 successive integral values of the inde-
pendent variable, takes on integral values for all integral values 
of the independent variable. 

—0 for 10..s<n-2. 
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*654. Prove that a polynomial of degree n, which takes on 
integral values for x =0, 1, 4, 9, ..., n2, assumes integral values 
for all squares of the natural numbers. 

*655. Decompose into partial fractions of the first type : 
x2  	1  

(a)  (x— 1) (x+ 2) (x+ 3) ' (b)  (x — 1) (x — 2) (x — 3) (x — 4) ' 

3 +x  (d) 	
x2  	

, 	(e) 	3
1  

(x-1) (x2+ 1) ' 	x,  —1 	x2-1 

1 	\ 	1 	 1  
x4+4 ' (g)  xn 1 , (h

)  xn + 1 

n1 
x (x —1) (x —2) . . . (x — n) ' 

(2n)1
(k) 	1  

x (x2 — 1) (x2 — 4) . . . (x2  — n2) ' 	 cos (n arc cos x) • 

*656. Decompose into real partial fractions of the first and 
second types: 

1 	 x2  (a) x81 	 ; (b) x4
x216 ; (c) x4± 4  ; (d) — 	 x8 +27 

rn 	 x2nx+i_i (e) m < 2n + 1; 

m 

(f) 	

 

 x2/14-1+ 1 9 m<2n+ 1; 

(g) 
xsnl_ 1   ; (h)  )0xna: , m  < n  ; 

1  
(i) x (x2 + 1) (x2+ 4) . . . (x2 + n2) • 

*657. Decompose into partial fractions of the first type: 

(   • 	5x2 + 6x— 
(a) 	

23  
(x2 — 1)"

b) 
 (x2 — 1)2  ' (c) 

(x — 1)3  (x + 1)2  (x —2) ' 

1 	 1  
(xn —1)2 ; (e)  xm (1 —x)n ; (f)  (x2 — a2)n ' a 0; 

(g) 	(h) 
g (x)  1  

(xa a2y: 	[f (42 

where f 	(x — x1) (x — x 2) . . . (x — xn) is a polynomial with 
no multiple roots and g (x) is a polynomial of degree less than 2n. 

(d) 
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658. Decompose into real partial fractions of the first and 
second type: 

x 	 2x-1  
(a) 	  , (b) (x +1) (x2  + 1)2 	x (x+ 1)2  (x2 + x + 1)2  ' 

(c) 	, 	(d) 
(X4 

 1 
- 1 )2 	 (x21/

1 

 1)2 • 

659. Let cp (x)= (x — x1) (x — x 2) ... (x — x „). 
Express the following sums in terms of cp (x): 

(a) E 
xxi ; (b)  E 	x' 	(c) E 	• x_xi 9 	 (x_x02 

*660. Compute the following sums, knowing that x1, x2, ... 
are roots of the polynomial co (x): 

(a)  
1 	1 

+ 
1 cp (x) = x3  — 3x — 1; 2—x1 	2_x2  2—x2  ' 

1 1 1 
(b)  — 3x, + 2 + 3x2  + 2 + 4 — 3x2 + 2 	' 

cp(x)=x3 +x2 -4x+ 1; 
1 1 1 

(c)  xi-2x1+1 4 —2x2 + 1 4 —2x2 + 1 	' 
cp (x)= x3  + x2  — 1 

661. Determine the first-degree polynomial which approxi-
mately assumes the following table of values: 

x 1 	0 	1 2 3 4 
y 	I 	2.1 	2.5 3.0 3.6 4.1 

so that the sum of the squares of the errors is a minimum. 
662. Determine the second-degree polynomial which appro-

ximately assumes the table of values 
x 1 	0 1 2 3 4 
Y 	I 	1 1.4 2 2.7 3.6 

so that the sum of the squares of the errors is a minimum. 

Sec. 6. Rational Roots of Polynomials. 
Reducibility and Irreducibility 
over the Field of Rationals 

663. Prove that if 11  is a simplified rational fraction that 

is a root of the polynomial f (x) aox" + 	+ . . . +a" with 
integral coefficients, then 
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(1) q is a divisor of a0, 
(2) p is a divisor of a,„ 
(3) p—mq is a divisor of f (m) for any integral m. In particu-

lar, p—q is a divisor of f (1), p+q is a divisor of f (-1). 
664. Find the rational roots of the following polynomials: 

(a) x3-6x2 +15x —14, 
(b) X 4  2 X3  - 8 X2  + 13x-24, 

(c) x5-7x3-12x2 +6x+36, 
(d) 6x4 +19x3-7x2 -26x +12, 
(e) 24x4-42x3-77x2 +56x +60, 
(f) x6-2x4-4x3+4x2  —5x +6, 
(g) 24x6 +10x4 —x3-19x2 — 5x + 6, 
(h) 10x4-13x3 +15x2 -18x —24, 
(i) x4 +2x3-13x2-38x-24, 
(j) 2x3+3x2 +6x —4, (k) 4x4 -7x2 -5x-1, 

(1) x4 +4x3-2x2 -12x+9, 

(m) x6 + x4 — 6x3  — 14)0 — llx — 3, 

(n) x6 — 6)0+ 11x4 —x3-18x2 + 20x —8. 

*665. Prove that a polynomial f (x) with integral coefficients 
has no integral roots if f(0) and f (1) are odd numbers. 

*666. Prove that if a polynomial with integral coefficients 
assumes the values ± 1 for two integral values x1  and x2  of the 
independent variable, then it has no rational roots if 1x1—x2 1> 2. 
However, if 1 x1 —x 2  I 2, then the only possible rational root 

is 1 (x1+x2). 

*667. Use the Eisenstein criterion to prove the irreducibility 
of the polynomials 

(a) x4 — 8x3+12x2 — 6x+2, 

(b) x5  — 12x3  + 36x-12, (c) X 4  - X3  ± 2x +1. 

*668. Prove the irreducibility of the polynomial 

X p (x) = xP-1
i 	

p prime. x 
*669. Prove the irreducibility of the polynomial 

pk 
X IC(x)_  Xk_i 

1 	
p prime. 
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*670. Prove that the polynomial f(x)=a,xn+aixn-i+ 	+a„ 
with integral coefficients that has no rational roots is irreducib-
le if there exists a prime number p such that a, is not divisible 
by p; a2, a3, ..., a, are divisible by p and an  is not divisible by p2. 

*671. Let f(x) be a polynomial with integral coefficients 
for which there is a prime number p such that a, is not divisible 
by p; ak+i, ak,, ...,a„ are divisible by p and an  is not divisible 
by p2. Prove that in that case f(x) has an irreducible factor of 
degree ?.-n—k. 

672. Using the method of factorization into factors of the 
values of a polynomial with integral values of the variable, de-
compose the following polynomials into factors or prove their 
irreducibility: 

(a) x 4  —3x2  +1, (b) x4 + 5x3 — 3x2 — 5x +1, 

(c) x4 + 3x3 — 2x2 — 2x +1, 

(d) x 4  -X3  - 3X2  + 2x + 2. 

673. Prove that a polynomial of degree three is irreducible 
if it has no rational roots. 

674. Prove that the fourth-degree polynomial x4 + ax3+bx2+ 
+cx+d with integral coefficients is irreducible if it has no inte-
gral roots and is not divisible by any polynomial of the form 

cm— amt 
x2 +   X -F M 

a' — m2  

where m are divisors of the number d. Polynomials with frac-
tional coefficients may be disregarded. Polynomials like those of 
Problems 614, 615 are a possible exception. 

675. Prove that the fifth-degree polynomial x5+ax4+bx3+ 
+cx2+dx+e with integral coefficients is irreducible if it has 
no integral roots and is not divisible by any polynomials with 
integral coefficients of the following form: 

am' — cm2  — dn+ be  
X2  + 	 x m 

m3  — 72 2  + ae — dm 

where m is a divisor of e, [17= m. 

676. Factor the following polynomials and prove their irre-
ducibility using Problems 674, 675: 

(a) x4 — 3x3+ 2x2 + 3x — 9, (b) x4 — 3x3  + 2x2  + 2x — 6, 
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(c) x4 + 4x3 — 6x2 — 23x — 12, 

(d) x' + x4 — 4x3 + 9x2  — 6x + 6. 

677. Find the necessary and sufficient conditions for redu-
cibility of the polynomial x4  +px2+q with rational (possibly 
fractional) coefficients. 

678. Prove that, for the reducibility of a fourth-degree poly-
nomial without rational roots, it is necessary (but not sufficient) 
that there exists a rational root of a cubic equation obtained in 
a solution by the Ferrari method. 

*679. Prove the irreducibility of the polynomial f (x) = 
=(x—a1)(x—a2) 	(x—;)-1; a1, a2, ..., an  are distinct in- 
tegers. 

*680. Prove the irreducibility of the polynomial f (x)= 
=(x—a1)(x—a2) 	(x — a,) +1 for distinct integers a1, a2, 	a„ 
with the exception of 

(x — a) (x — a -- 1) (x — a-2) (x — a —3)+1 

= [(x— a-1) (x — a —2)-112  
and 

(x — a) (x — a — 2)+ I =(x — a —1)2. 

*681. Prove that if an nth-degree polynomial with integral 
coefficients assumes the values ± 1 for more than 2m integral 
values of the variable (n=2m or 2m +1), then it is irreducible. 

*682. Prove the irreducibility of the polynomial 

f (x)=(x— a1)2  (x — a 2)2  . . . (x — a„)2  +1 

if a1, a2, 	a„ are distinct integers. 

*683. Prove that the polynomial f (x) with integral coeffi-
cients which takes on the value +1 for more than three inte-
gral values of the independent variable cannot assume the va-
lue —1 for integral values of the independent variable. 

*684. Prove that an nth-degree polynomial with integral 

coefficients assuming the values ± 1 for more than 	integral 

values of the independent variable is irreducible for n 12. 

*685. Prove that if a polynomial ax2+bx+ 1 with integral 
coefficients is irreducible, then so is the polynomial a [cp (x)]2+ 
+ b (x)+1 where cp (x)=(x — al) (x— a2) ... (x — an) for n 7. 
Here, al, 	an  are distinct integers. 



(a) 1 +max 

(b) p +max 

, k = 1, 2, . . . , n; 

ak  
ao Pk 1 

 

ak 

ao  
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Sec. 7. Bounds of the Roots of a Polynomial 

686. Prove that the roots of the polynomial aox" +aixn -1+ 
+ ... +an  with real or complex coefficients do not exceed, in 
absolute value, 

k= 1, 2, ..., n; p is any positive number; 
k 

ak (c) 2 max VI —ao  , k = 1, 2, . . 	n; 

  

k -1 

+max 1/' 

  

(d) al  
a0  

ak 
a1  

, k = 1, 2, .. . , n. 

687. Prove that the moduli of the roots of the polynomial 
aoxn+aixn-1+ 	+a„ do not exceed a unique positive root 
of the equation boxn—bixn-1—b2xn-2 — ... —be, where 0< 
<bo < I a°  1, 	al  I, b2 ?- I a2  1, 	b„ 	an !. 

688. Prove that the moduli of the roots of the polynomial 
f (x)= aoxn + ar  xn-r + 	+an, ar  0, do not exceed 

r 	  

(a) 1 + 1/max I `` 1 , k =r, . . . , n; 
a0  

(b) p+ max i  ak  
ao  pk -r 

k = r, 	n, and p is any positive number; 

  

k-r 

+ max -V 

  

(c) a, 

ao 
ak 

ar 
, k=r, 	n. 

689. Prove that the real roots of a polynomial with real coef-
ficients do not exceed a unique nonnegative root of a polynomial 
obtainable from the given polynomial by deleting all terms (ex-
cept the highest-degree one), the coefficients of which are of sign 
that coincides with the sign of the leading coefficient. 

Prove the following theorems: 
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690. The real roots of the polynomial aoxn + aixn --1+ + an  
with real coefficients (for ao  > 0) do not exceed 

(a) 1 + 1/ max .̀ 
ao 
ak 	r is the index of the first negative 

coefficient and ak  are negative coefficients of the polynomial; 

(b) p+ Vmax as  p 
a:_r  - where r is the index of the first 

negative coefficient, ak  are negative coefficients, and p is any 
positive number; 

(c) 2 max V 	I  aak  I  , ak  are negative coefficients of the polyno- 

mial; 
k—r 	 

ak (d) I  aar I  + max 1/ —
a, 

, r is the index of the first ne- 

gative coefficient, and ak  are negative coefficients. 

691. If all the coefficients of the polynomial f (x) are nonne-
gative, then the polynomial does not have positive roots. 

692. If f (a) > 0, f' (a) 0, ..., f (n)  (a) 0, then all real roots 
of the polynomial do not exceed a. 

693. Indicate the upper and lower bounds of the real roots 
of the polynomials: 

(a) x4 — 4x3+ 7x2 — 8x + 3, (b) x5+ 7x3 — 3, 

(c) x7  — 108x5 — 445x3+ 900)0+ 801, 

(d) x4 + 4x3 — 8x2 -10x + 14. 

Sec. 8. Sturm's Theorem 

694. Form the Sturm polynomials and isolate the roots of 
the polynomials: 

(a) x3-3x — 1, (b) x3+x2 -2x — 1, 

(c) x3  —7x +7, (d) x3 —x + 5, 

(e) x3+3x — 5. 

695. Form the Sturm polynomials and isolate the roots of 
the polynomials: 

(a) x4-12x2 — 16x —4, (b) x4 —x — 1, 
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(c) 2x4-8x3+8x2-1, (d) x4 +x2-1, 

(e) x4 + 4x3  — 12x + 9. 

696. Form the Sturm polynomials and isolate the roots of 
the following polynomials: 

(a) x4-2x3-4x2 +5x+5, (b) x4 -2x3+x2 -2x+1, 

(c) x4 — 2x3 — 3x2  + 2x + 1, (d) x4  — x3+ x2 —x — 1, 

(e) x4 -4x3-4x2 +4x+1. 

697. Form a Sturm sequence and isolate the roots of the fol-
lowing polynomials: 

(a) x4 — 2x3  — 7x2 + 8x + 1, (b) x4 — 4x2 +x + 1, 

(c) x4  — x3 — x2 — x + 1, 	(d) x4 -4x3+8x2-12x+8, 

(e) x4  —x3 — 2x + 1. 

698. Form a Sturm sequence and isolate the roots of the fol-
lowing polynomials: 

(a) x4 -6x2-4x+2, 	(b) 4x4-12x2 +8x-1, 

(c) 3x4 +12x3 +9x2 -1, (d) x4 —x3-4x2 +4x+1, 

(e) 9x4-126x2-252x-140. 

699. Form a Sturm sequence and isolate the roots of the fol-
lowing polynomials: 

(a) 2x5-10x3+10x-3, 

(b) x6-3x6-3x4 +11x3-3x2 -3x+1, 

(c) x6 +x4-4x3-3x2 +3x+1, (d) x6-5x3-10x2 +2. 

700. Form a Sturm sequence using the permission to divide 
the Sturm functions by positive quantities, and isolate the roots 
of the following polynomials: 

(a) x4 +4x2-1, (b) x4 -2x3+3x2 -9x+1, 

(c) x4-2x3+2x2-6x+1, 
(d) x6 +5x4 +10x2-5x-3. 

701. Use Sturm's theorem to determine the number of real 
roots of the equation x3  + px + q= 0 for p and q real. 

*702. Determine the number of real roots of the equation 

xn +px+ q= 0. 
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703. Determine the number of real roots of the equation 

x5-5ax3+5a2x+2b= 0. 

704. Prove that if a Sturm sequence contains polynomials 
of all degrees from zero to n, then the number of variations of 
sign in the sequence of leading coefficients of Sturm polynomials 
is equal to the number of pairs of conjugate complex roots of 
the original polynomial. 

705. Prove that if the polynomials f (x), f1  (x), f2  (x), . . ., 
fk  (x) have the following properties: 

(1) f (x) fi (x) changes sign from plus to minus when passing 
through the root f (x); 

(2) two adjacent polynomials do not vanish simultaneously; 
(3) if fa  (xo)=0, then f;,_, (x0) and fx4.1  (x0) have opposite signs ; 
(4) the last polynomial f, (x) does not change sign in the in-

terval (a, b), 
then the number of roots of the polynomial f (x) in the inter-
val (a, b) is equal to the increment in the number of variations 
of sign in the sequence of values of the polynomials f, f1, ..., fk  
when going from a to b. 

706. Let x, be a real root of f' (x): 

A (x) ---x — 1xo f' (x); 

A (x) is the remainder, after division of f (x) by f1  (x), taken with 
reversed sign; f 3  (x) is the remainder, left after dividing f1  (x) 
by f 2  (x), taken with reversed sign, and so on. It is assumed that 
f (x) has no multiple roots. Relate the number of real roots of 
f (x) to the number of variations in sign in the sequence of values 
of the polynomials constructed for x= — co, x=xo, and x= + co. 

*707. Construct a Sturm sequence for the Hermite polyno-
mials 

x2 

Pn (x)  = ( — 1)n e' dn e  dx: 

and determine the number of real roots. 
*708. Determine the number of real roots of the Laguerre 

polynomials 

. 1 ' , (x) = ( _ i)n ex  dn (edxn - x xn) 
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Determine the number of real roots of the following polyno-
mials: 

*709. En  (x)= 1 + _x -F 1

X2 

 2 -I- 

j_ 	
n! 
Xn  
 • 

*710. P„(x)= (- 1)"+1 x2n+2 e  X  cin+1  (e1x)  
dxn+1 	• 

*711. P„(x)= (-1211)n (x2 + 0,7+1  dn +1  
dxn 

x2 
 

*712. P„(x)=(- 1)n (X2  ± 1)n+2 +1  dn ( 	1  	) 

Sec. 9. Theorems on the Distribution of Roots 
of a Polynomial 

Prove the following theorems: 

715. All roots of the Legendre polynomial Pn  (x)-dn (.0 1)n 
dxn 

are real, distinct and are in the interval (- 1, + 1). 
716. If all the roots of the polynomial f (x) are real, then all 

the roots of the polynomial a f (x)+ f ' (x) are real for arbitrary 
real A. 

*717. If all the roots of the polynomial f (x) are real and all 
the roots of the polynomial g (x)= aoxn + aixn + . . . + a„ are 
real, then all the roots of the polynomial 

F (x)= a, f (x)+ air (x)+ ... +a„ f (n)  (X) 

are real. 
*718. If all the roots of the polynomial f (x)= aoxn + aixn -1  + 

+ ... +a„ are real, then all the roots of the polynomial 

xn + mxn-1 a2 m (m - I) xn-2  

dx" V x2 +1 

*713. Let f (x) be a third-degree polynomial without multip-
le roots. Show that the polynomial F (x) = 2f (x) f" (x) - f' (x)]2  
has two and only two real roots. Investigate the case when f (x) 
has a double or a triple root. 

714. Prove that if all roots of the polynomial f (x) are real 
and distinct, then all roots of each of the polynomials of the 
Sturm sequence constructed by the Euclidean algorithm are real 
and distinct. 

+ 	+ an m (m - 1) . . . (m - n + 1) 

are real for arbitrary positive integral m. 
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*719. If all the roots of the polynomial f (x)= aoxn + aixn-1  + 
+ 	+ ; are real, then all the roots of the polynomial 

G(x)=a0 xn+C;i ai xn-l+C,a2 x4-2+...+; 

are real. 
720. Prove that all the roots of the following polynomial are 

real: 
xn 	n\2  xn_i 

k 	2 
n(n—  2  xn-2 	+ 1 . 

) 	 • 

*721. Determine the number of real roots of the polynomial 

nxn — xn-i_ xn —2 	1. 

722. Determine the number of real roots of the polynomial 
- F1 

	

x2,2,1-1 + x212,1-1 	 x2n, + a . 

723. Determine the number of real roots of the polynomial 
f (x)=(x— a) (x — b) (x — c)— A2  (x — a) — B2  (x — b)— C2  (x — c) for 
a, b, c, A, B, C. 

724. Prove that 

Al A2 	 A2 
(p (x)= 	+ 	2 +...+ 	 n  +B x— 	x—a2 	x—an  

does not have imaginary roots for real al, a2, 	Al, A 2, 

A„, B. 
Prove the following theorems: 
725. If the polynomial f (x) has real and distinct roots, then 
(x)]2  —f (x) f" (x) does not have real roots. 

726. If the roots of the polynomials f (x) and cp (x) are all real, 
prime and can be separated, that is, between any two roots of 
f (x) there is a root of cp (x) and between any two roots of cp (x) 
there is a root off (x), then all roots of the equation of (x) + p.c,o (x)= 
=0 are real for arbitrary real A and 

*727. If all the roots of the polynomials F (x) = X f (x) + cp (x) 
are real for arbitrary real A and 	then the roots of the polyno- 
mials f (x) and cp (x) can be separated. 

*728. If all the roots of f' (x) are real and distinct and f (x) 
does not have multiple roots, then the number of real roots of 
the polynomial [f' (x)]2  —f (x) f" (x) is equal to the number of 
imaginary roots of the polynomial f (x). 

*729. If the roots of the polynomials f1  (x) and f2  (x) are all 
real and separable, then the roots of their derivatives can be se-
parated. 
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*730. If all the roots of the polynomial f (x) are real, then 
all the roots of the polynomial F (x)=yf (x)+ (X+ x) f'(x) are 
real for y > 0 or y< — n and for arbitrary real A as well. 

*731. If the polynomial 

f (x)— a0+ aix + . . . + anxn 

has only real roots, and the polynomial 

	

cp (x)= bo  + bix + 	+bkxk 

has real roots that do not lie in the interval (0, n), then all the 
roots of the polynomial 

aocp (0)+aicp (1) x+a2 cp (2) x2 + ... +an  cp (n)xn 

are real. 
*732. If all the roots of the polynomial f(x) = a0+ 	+ . + anxn 

are real, then all the roots of the polynomial ao+ aiyx + a2y (y — 
—1)x2  + 	+ a„ y (y —1) ...(y — n +1) xn are real for y> n —1. 

*733. If all the roots of the polynomial f (x)= a0+ + 
. . . + a„xn are real, then also real are the roots of the polynomial 

Y (Y-1) 2  2 
	 y (y-1) . . (y—n+ 1) 

ao+ — x + 	a x + ... + 	 xn 
a 	 (a+1) 	 (oc+1) 	(a+n-1) 

for y>n —1, a >0. 
*734. If all the roots of the polynomial f (x)= ao+ 	+ . . . 

. . . + anxn are real, then all the roots of the polynomial 

ao  + al  wx+ a2  w4  x2  + . . . + 	xn 

are real for 0 < w 
*735. If all the roots of the polynomial a0+ai x+a2 x2+ 

+ . . . anxn  are real and of the same sign, then all the roots of the 
polynomial a0  cos cp+al  cos (cp +0) x + a2  cos (cp +20) x2 + • • • +an  
cos (cp +n0) xn are real. 

*736. If all the roots of the polynomial 

(ao  + ibo)+ (al  + 	x + . . . +(an+ ib„)xn 

lie in the upper half-plane, then all the roots of the polynomial 

ao+ 	+ . . . + anxn and bo +bix+ 	+ b,,xn 

are real and separable (the numbers a0, al, . . a., b0, b1, . . bn  
are real). 

*737. If all the roots of the polynomials cp (x) and cP (x) are 
real and separable, then the imaginary parts of the roots cp (x)+ 
+ i (x) have the same signs. 
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*738. If all the roots of the polynomial f (x) lie in the upper 
half-plane, then all the roots of its derivative likewise lie in the 
upper half-plane. 

*739. If all the roots of the polynomial f (x) are located in 
some half-plane, then all the roots of the derivative are located 
in the same half-plane. 

*740. The roots of the derivative of the polynomial f (x) lie 
within an arbitrary convex contour which contains all the roots 
of the polynomial f (x). 

*741. If f (x) is a polynomial of degree n with real roots, then 
all the roots of the equation [f (x)]2  + k2  + rrom2=0 have an 
imaginary part less than kn in absolute value. 

742. If all the roots of the polynomials f (x) — a and f (x)— b 
are real, then all the roots of the polynomial f (x) —A are real 
if X lies between a and b. 

*743. For the real parts of all the roots of the polynomial x"+ 
+ aix"-1+ . . . + ; with real coefficients to be of the same sign, 
it is necessary and sufficient that the roots of the polynomials 

x"— a2  x"-2 + a4  Xn-4-  . . . 

and 

xn-1  — a3  x"-3± 

be real and separable. 

*744. Find the necessary and sufficient conditions for the real 
parts of all the roots of the equation x3+ ax2+ bx + c=0 with 
real coefficients to be negative. 

*745. Find the necessary and sufficient conditions for the ne-
gativity of the real parts of all the roots of the equation x4 + axs  + 
+ bx2  + cx + d= 0 with real coefficients. 

*746. Find the necessary and sufficient conditions for all 
the roots of the equation x3+ ax2  + bx + c = 0 with real coefficients 
not to exceed unity in absolute value. 

*747. Prove that if a, a1  ?. a2  ... an  > 0, then all the roots 
of the polynomial f (x)-- aox" + aix"-1  + . + a„ do not exceed 
unity in absolute value. 
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Sec. 10. Approximating Roots of a Polynomial 

748. Compute to within 0.0001 the root of the equation x3-
-3x2 -13x-7=0 which lies in the interval (-1, 0). 

749. Compute the real root of the equation x' — 2x — 5 = 0 
with an accuracy of 0.000001. 

750. Compute the real roots of the following equations to 
within 0.0001: 

(a) x3-10x-5=0, 	(b) x3+2x-30=0, 

(c) x3-3x2 -4x+1=0, 	(d) x3-3x2 —x+2=0. 

751. Divide a hemisphere of radius 1 into two equal parts by 
a plane parallel to the base. 

752. Evaluate the positive root of the equation x' — 5x — 3 = 0 
to within 0.0001. 

753. Compute to within 0.0001 the root of the equation: 

(a) x4 +3x3-9x — 9=0 	lying in the interval (1, 2); 

(b) x4-4x3+4x2-4=0 	lying in the interval (-1, 0); 

(c) x4+3x3+4x2 +x-3=0 lying in the interval (0, 1); 

(d) x4-10x2-16x+5=0 	lying in the interval (0, 1); 

(e) x4  —x' — 9x2 + 10x — 10 =0 lying in the interval (-4, —3); 

(f) x4 -6x2 +12x-8=0 	lying in the interval (1, 2); 

(g) x4-3x2 +4x-3=0 	lying in the interval (-3, —2); 
(h) x4 —x3-7x2 -8x-6=0 lying in the interval (3, 4); 

(i) x4 — 3x3 + 3x2  — 2 =0 	lying in the interval (1, 2). 

754. Compute to within 0.0001 the real roots of the following 
equations: 

(a) x4 + 3x3-4x —1 =0, 

(b) x4 +3x3 — x2 -3x+1=0, 

(c) x4 -6x3+13x2 -10x+1=0, 
(d) 4  - 8x3-2x2 +16x-3=0, 

(e) x4 -5x3+9x2 -5x-1=0, 
(f) x4-2x3-6x2 +4x+4=0, 

(g) x4 +2x3+3x2 +2x-2=0, 
(h) x4+4x3-4x2-16x-8=0. 



CHAPTER 6 

SYMMETRIC  
FUNCTIONS 

Sec. 1. Expressing Symmetric Functions 
in Terms of Elementary Symmetric Functions. 
Computing Symmetric Functions of the Roots 

of an Algebraic Equation 

755. Express the following in terms of the elementary symmet-
ric polynomials: 

(a) x?+ 	4-3xixax,, 
(b) x?x2  + xix3+.4x3+ xixR + x3x, + x2 x3, 

(C) x4 + x2 + 4-244-244-244, 
(d) 44+ x1 x2 + 4x3 + xi x3 + 4x3 + 

(e) (xi  +x2) (xi  +x3) (x2  +x,), 
(f) (x?+.4) (4+ xN) (4+4), 
(g) (2x1— X2 — X3) (2x 2 — — X3) (2X3 — — X2), 

(h) (x1 —x2)2  (x1— x3)2  (X2 — X3)2. 

756. Represent the following in terms of the elementary sym-
metric polynomials: 

(a) (xi  +x2) (xi  +x3) (x, +x4) (X2 + X3) (X2 + X4) (X3 + X4), 

(b) (XIX 2 + X3X4) (X1X3 + X 2X 4) (XIX 4 + X2X3), 

(c) (xi  +X 2 — X3 — X4) (X1 — X2 + X3 — X4) (X1 — X2 — X3 + X4). 

757. Represent the following monogenic polynomials in terms 
of the elementary symmetric polynomials: 

(a) 4+ • • • , 	(g) x?x2x3  + • • • , 	(n) 4x2x3x4  + . . . , 
(b) 4+ • • • , 	(h) x;x2x3  + • • • , 	(o) 3  X2 2 Xi X3 + • • • , 

(C) XjX2X3 + • • 	(i) 44+ • • • , 	(p) 3 3  Xi X2 + • • • , 

(d) .4.4+ • • -, 	(J) 4x2+ • • • , 	(q) 4 -Xi X2X3 + • • • , 

(e) .4x2  + • • • , 	(k) 4+ • • ., 	(r) 44+ • • • , 

(f)
4  Xi + • • • , 	(1) XX3X3X4 + . . . , 	(s) 4x2 X2  + • • • , 

(m) 4.4X3 + • • • , 	(t) 4 + • • • 
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758. Express the following in terms of the elementary sym-
metric polynomials: 

(a) ( 	+x2  + x3  + +x,,)2  + (xi  —x2  +x3  

+ . . . +x„)2  + (xi  +x2  —x3+ +x„)2  
+ + (x, +x2  + xa  + —x„)2, 

(b) (—xi+x,+x2 + ...+x„) (x1—x2 +x, 
+ 

759. Express the following in terms of the elementary sym-
metric polynomials: 

(a) E (xi -x02, (b) 	+ X03, 

i>k 	 i>k 

(c) 	(xi — xkr, 	(d) 	E (xi +xk -x.,)2. 
i>k 	 1>k 

lOi;1#k 

760. Express the following monogenic polynomial in terms 
of the elementary symmetric polynomials: 

xDc3 • • • xl2, + • • • 

761. Express the following in terms of the elementary sym-
metric polynomials: 

E (a1xh -f-a2xi2 -1- • • • +au x-4)2. 

The sum is extended over all possible permutations i1, i2, • • • 

of the numbers), 2, ..., n. 
762. Express the following in terms of the elementary sym-

metric polynomials: 
(a)  xi  	X2 	X3 	X2 	X3 .4_ Xl 

X2 	x3 Xi Xi X2X3 

(b) (X1 —  X2)2   +  (X2 — X3)2  ± (X3 - 	X1)2  

Xi+ X2 	X2+ X3 	X3+ 

(c) f
1

/  X2 + 	+ \ 	+ X2 + X2 ). 

1 xi 	X2 	X3 / \ X2 	X3 	Xi / 

763. Express the following in terms of the elementary sym-
metric polynomials: 

(a) xixi_ +  x1x3 	x2x3 
	X2X4 	X3X4 

 
x3x4 	x2x4 	X2X3 	XIX," 	x1X3 	X1X2 

(b) Xl+X2 ± Xi+X3+ Xi+X4 +X2+X3 +X2+X.2 + X3+X4  

X3 + X4 X2 + X4 X2 + X3Xl+ Xri x1  + X3 X1 + X2. 
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764. Express the following in terms of the elementary sym-
metric polynomials: 

	

(a) E .,4= , 	(b) E x; ' 	

(c) E :a, x. 
, io; 

	

(d) E f_q_, 	(e) E XP 	(f) E „xk  

x. 	 , 	xi • Jo., 	., 	'of 	i0 .1 
i#k 
j>k 

765. Compute the sum of the squares of the roots of the equ-
ation 

x3+ 2x — 3 = 0. 

766. Compute xix2 +x1x3+x3x3+x2x3+.4x1+x3x? of the roots 
of the equation x' — x2  — 4x + 1 =0. 

767. Determine the value of the monogenic symmetric function 

4x2x3+ 
of the roots of the equation 

x4+ x3 — 2x2  — 3x + 1 = 0. 

768. Let xi, x2, x3  be the roots of the equation x3+px+q =O. 
Compute: 

Xi 	X2 	X3 	X2 	X3 	Xi (a) — +—+—++—+ —,  
X2 	X3 	Xj. 	x1 	x2 	x3 

(b) xf4+ 44 + 44 + 4.4 + 4.4+ x34, 
(c) (4— x2x3)(4— xlx,)(xi — x2x1), 
(d) (xi  + x2)4  (x1'+3)4 (X2 +X3)4, 

	

xi 	x2 	xi  
(e)  

(X2 + 1) (X2+ 1) 	(X1+ 1) (X3+ 1) 	(Xi+ 1) (X2 + 1) 

	

(f 	
4  

	

(x1+1)2 	(X2 + 1)2 	(X3 + 1)2 '  

769. What relationship is there between the coefficients of the 
cubic equation 

x3+ax2+bx+c=0 
if the square of one of the roots is equal to the sum of the squares 
of the other two? 
L' 770. Prove the following theorem: for all roots of the cubic 
equation x3-Fax2+bx+c=0 to have negative real parts, it is ne-
cessary and sufficient that the following conditions hold: 

a > 0, ab—c>0, c>0. 
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771. Find the area and the radius of a circle circumscribed 
about a triangle whose sides are equal to the roots of the cubic 
equation 

,3 -ax2 + bx—c= 0. 

*772. Find the relationship among the coefficients of an equa-
tion whose roots are equal to the sines of the angles of a triangle. 

773. Compute the value of a symmetric function of the roots 
of the equation f (x) = 0 : 

. . . , f (x) = 3 x-. 3  — 5x2  + 1; 

. . . , f (x)=3x4  — 2x3  + 2x2  + x — 1; 

(c) 	+ 	+ 4)(4+ x2x3  + (x3+ x,xi+ 

f (x)= 5x3  — 6x2  + 7 x — 8. 

774. Express in terms of the coefficients of the equation 

a f,x3  + aix2  + a 2x + a3=-0 

the following symmetric functions: 

(a) 4 (x1 — x9)2  (x1  — x3)2  (x2  — x3)2, 
(b) 4(4- x2x3)(4- x1x3)(4- x1x2), 

(c)
(x1- x2)2 	(xi- x2)2 	(x2- x.)2  

xsxs 	x2xs  

(d) a3(4+ x1x2 + 4)(4 + x2x3 + x3)(x3+ x,x, + x?). 

775. Let x1, x2, ..., x„ be the roots of the polynomial 

xn + 	+ 	+ an.  

Prove that the symmetric polynomial in x 2, x3, . x„ can be 
represented in the form of a polynomial in x1. 

776. Using the result of Problem 775, solve Problems 755(e), 
755 (g), 774 (b), 774 (d). 

al 
777. Find E ;k  where fk  is the kth elementary symmetric uxi  

=1 
function of x1, x2, ..., 

778. Let the expression of the symmetric function F (x1, x 2, ..., 
x,) in terms of the elementary symmetric functions be known. 

Find the expression of E a!  in terms of the elementary sym- 
i =1 

(a) xlx2+ 

(b) + 

metric functions. 
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Prove the theorems: 
779. If F(xi, x 2, ..., xn) is a symmetric function having the 

property 

F (xi+ a, x2+ a, ..., xn + a)= F 	x 2, 	x,) 
and if 0:13. (f1, f 2,..., f„) is its expression in terms of the elementary 
symmetric functions, then 

do + (n — 1)f, P,5-- + a o n  
dfi 	 uJ 2 	

fn-i ofn  — 

and conversely. 
780. Every homogeneous symmetric polynomial of degree 

two having the property of Problem 779 is equal to a E (xi — xk)2  
i<k 

where a is a constant. 
781. Find the general form of homogeneous symmetric poly-

nomials of degree three having the property of Problem 779. 
782. Using the result of Problem 779, express the following in 

terms of the elementary symmetric polynomials: 

E (x, - xj)2  (x1  — xk)2  (xj  — xk )2. 
i<pck 

783. Prove that among the symmetric polynomials F(xi, x 2, 
xn) having the property 

F (x1, x2, ..., x„)= F (x,+ a, x2+a, 	xn + a) 

there are n-1 "elementary polynomials" y2, y3, ..., y„ such that 
each polynomial of the class under consideration can be expres-
sed in the form of a polynomial in y2, c03, • (P„. 

784. Express the following symmetric functions in terms of 
the polynomials y2, y, of Problems 783: 

(a) (x1 —x,)2  (x1 —x,)2  (x2  —x3)2, 

(b) (x1—x2)4  + (Xi —  X3)4  + (X2 — X3) 4. 

785. Express the following symmetric functions in terms of 
the polynomials y2, y3, p4  of Problem 783: 

(a) (x1+x2 —x3  — x 4) (x1 —x2+ xa — x4) (x1 —x2 —x3+x4), 

(b) (x1— x2)2  (x1— x3)2  (x1 — x4)2  (x2 —  x3)2  (x2 — x4)2  (x3—x4)2. 
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Sec. 2. Power Sums 

786. Find an expression for s2, Sd, S4, S5, s6  in terms of the ele-
mentary symmetric polynomials, using Newton's formulas. 

787. Express f2, f 4, f5, f6  in terms of the power sums sl, s„ 
, using Newton's formulas. 

788. Find the sum of the fifth powers of the roots of the equ-
ation 

x6 — 4x5+ 3x3 — 4x2 +x + 1 =0. 

789. Find the sum of the eighth powers of the roots of the 
equation 

.X4 	— 1 =0. 

790. Find the Sum of the tenth powers of the roots of the 
equation 

791. Find 

x3-3x+1 =0. 

s1, s 2, 	s„ of the roots of the equation 
xn- 2 

Xn  + 1 	1 2 + 	+ • • • +
n

1 
=O. 

•  

792. Prove that 
— 

ak  (xi` + 4)=( —  l)k  [bk  — k  bk-2  ac + k(1 2
3)  bk-4 a2c2 

k (k — 4)  (k —  5) bk-6 a3c3 
1.2.3 

if xl, x2  are the roots of the quadratic equation ax2+bx+c=-0. 
793. Prove that for any cubic equation 

S3 	3 (fi—f2)•

794. Prove that if the sum of the roots of a quartic equation 
is equal to zero, then 

S5 	Ss 	S2 

5 	3 	2 • 

795. Prove that if s5 =s3 =0 for a sextic equation, then 
57 	S5 	S2 

7 	5 	2 • 

796. Find nth-degree equations for which 

s,=s2 =•••=4_1=0. 

797. Find nth-degree equations for which 

Sa = 53= ...=Sn=0. 
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798. Find an nth-degree equation for which 

s2= 1, s3=s4= •••=sn=s.+1=0. 

799. Express Exk 4 in terms of power sums. 
<3 

*800. Express E (x1 -1- xi)k in terms of power sums. 
<j 

*801. Express E 	xf )2k in terms of power sums. 
1<j 

802. Prove that sk = 

f, 

2f2 

3f3 

kf 

1 	0 	0 

f1 	1 

f2 

k 	fk-i 	fk-2 	• • • fi 

Sl 	1 	0 	• • • 0 

S2sl 2 0 
803. Prove that 	

1 
fk = ki  S3 	s2 Si.  3 	• • • 	0 

s k 	Sk-1 Sk— 2 • • 	• 	Si 

xn xn —1 xn — 2 	1 

sl 1 0 	0 

804. Compute the determinant S2 sl 2 	0 

Sn 	Sn_i Sn-2 	• • • n 
*805. Find sm  of the roots of the equation 

X„ (x)=0. 

*806. Prove that f 2, f3  and f 4  of the roots of the equation X„ (x) = 
=0 can only take on values 0 and ± 1. 

*807. Solve the system of equations 

F x2+ • • • -F 

4+4+ • • • -1-x,z2 =a, 

x? +x2+ • • • +x,,n=a 

and find x7+1 + 4+1 + • • • +4+1 
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*808. Compute the power sums sl, s2, 	sn  of the roots of 
the equation 

.X" + (a + b) xn-1  + (a2  + ab+b2) .Xn-2  

+ 	• • +(an+an-lb+ • • • +bn)--.0. 

*809. Compute the power sums sl, s2, 	s„ of the roots of 
the equation 

	

xn + + b) xn-i + (a2 + b2) xn-2 	+ (an bn)=_. O.  

Sec. 3. Transformation of Equations 

810. Find equations whose roots are: 

(a) xi+ x2, x2 + x3, x3-Fx1; 

(b) (x1 —x2)2, (x2  —X3)2, (X3 — X1)2  ; 

(C) X? — x2x3, 	x3x1, 	xix2; 

(d) (x1 — x2) (x1 — x3), (x2 — x1) (x2  — x3), (x3 — x1) (x3 — x2); 
(e) x?, 4, 4; (f ) 	4, 4 

where xi, x2, x3  are the roots of the equation x3  + ax2  +bx+ c =O. 

811. Find an equation whose roots are 

(xi  +x2  e+x, e2)3  and (xi  +x2  e2 +x3  03  

	

I 	"1/ -  where e— — 
2 

+ i  2 ; x1, x2, x3  are the roots of the equation 

x3+ax2+bx+c =O. 

812. Find an equation of lowest degree, one of the roots of 

which is 11- + 
x
2+  x2, where xi, x2, x3  are the roots of the cu- 

	

x2 	x2 	x1 
bic equation x3+ ax2+bx+ c= 0, and the coefficients of which 
are expressed rationally in terms of the coefficients of the given 
equation. 

813. Find an equation of lowest degree, one of the roots of 
xi  which is — where x1, x2, x3  are the roots of the equation x3+ 
X2 

+ax2+bx+c=0, and the coefficients of which are expressed in 
terms of the coefficients of the given equation. 

814. Find an equation of lowest degree with coefficients ex-
pressed rationally in terms of the coefficients of a given equation 
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x4  + ax3  + bx2  + cx+ d= 0, one of the roots of the desired equ-
ation being: 

Sa) x1x2 + x3x4, (b) (xi  + x2  — x3  — x4)2, (c) x1x2, 

[(d) xi  +x2, (e) (x1 — x2)2. 

815. Using the results of Problems 814 (a) and 814 (b), express 
the roots of a quartic equation in terms of roots of the auxiliary 
cubic equation of Problem 814 (a). 

[816. Write a formula for the solution of equation 

x4 — 6ax2 + bx — 3a2 =0. 

1817. Write an equation, one of the roots of which is 

(x1x2+x2x3+x3x4+x4x5+x5x1) 
x (x1x3+x3x5+x5x2+x2x4+x4x1) 

where x1, x2, x3, x4, x5  are roots of the equation 

x5+ax+b=0. 

Sec. 4. Resultant and Discriminant 

14'818. Prove that the resultant of the polynomials 

(x) 	 ...+an  and qo (x)= box'n + ...+b„, 

is equal to a determinant made up of the coefficients of the re-
mainders left after dividing co (x), xcp (x), xn-1 cp (x) by f (x). 
It is assumed that the remainders are arranged in order of increa-
sing powers of x (Hermite's method). 

!Remark. The remainder rk  (x) left after dividing xk -1  cp (x) by 
f (x) is equal to the remainder obtained upon division of xrk _i(x) 
by f (x). 

*819. Prove that the resultant of the polynomials 

f (x)=a0xn + aixn-1+ 
and 

cp (x)= boxn + bixn-1+ .+ b„ 

is equal to a determinant composed of the coefficients of poly-
nomials of degree n-1 (or lower) 

Yk (x) (aoxk  + aixk-2 + • • • + ak-i)p(x) 

—(bo xk-1+bixk-2+ • • 	+bk _i)f(x) 

k = 1, 	n (Bezout's method). 
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Remark. 41=aoy —bo f, 

`Pk = X4k-1+ ak-1p bk-1J• 

*820. Prove that the resultant of the polynomials 

f (x)= ao xn + aixn-1  + • • • + a. 
and 

cp (x)= box'n + bixm —'+ • • • + bn, 

is equal, for n> m, to a determinant made up of the coefficients 
of polynomials xk(x) of degree not exceeding n —1 determined 
from the formulas 

Xk (X)= 
xk-l p (X) for 1 	—m, 

Xk (x)=
(aoxk-n+m-i avck-n+m-2 

+ ak,+.-1) 	m (x) — (bock-  n +in-1  

+ bixk-n-Fm-2+ • • • 
±bk-n+m-1)f(X) 

(the polynomials Xk  are arranged in order of increasing powers 
of x). 

Remark. Xn-.+1=a0xn-m cp (x)— bo f 00, 

Xk = XX1,-1+ak-n+m--1 Xn-m (x) — bk_n+m_if(X) 

for k>n—m+ 1. 

821. Compute the resultant of the polynomials: 

(a) xs — 3x2  + 2x + 1 and 2x2  —x — 1 ; 

(b) 2x3-3x2 +2x+ 1 and x2 +x+3; 

(c) 2x3  —3x2  — x + 2 and x4-2x2-3x+4; 

(d) 3x3+2x2 +x+ 1 and 2x3 +x2  —x-1; 

(e) 2x4  —x3  + 3 	and 3x3  — xs + 4 ; 

(f) a,x2+a1x + a2 	and box2+bix+b2. 

822. For what value of X do the following polynomials have a 
common root: 

(a) x3 — Xx+2 	and xs + Xx + 2; 

(b) x3-2Xx+ X3  and xs + X2-2; 

(c) xs+ Xxs —9 and x3 +Xx-3? 

823. Eliminate x from the following systems of equations: 

(a) xs —xy +ys = 3, 	xsy +xys = 6 ; 
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(b) x3  — xy — y 3  + y=0, 	x2 +x—y2 -1=0; 

(c) y =x3  — 2x2  — 6x+8, 	y=2x3-8x2 +5x+2. 

824. Solve the following systems: 

(a) y2 — 7xy + 4x2  +13x-2y-3=0, 

y2 -14xy+9x2 +28x-4y —5=0; 

(b) y2  + x2  — y — 3x = 0, 

y2 — 6xy —x2 + lly + 7x — 12 = ; 

(c) 5y2 -6xy+5x2 -16=0, 

y2 — xy + 2x2  — y —x — 4 = 0 ; 

(d) y2 +(x-4)y+x2 -2x+3=0, 

y3-5y2 +(x +7)y+ x3  —x2-5x-3=0; 

(e) 2y3-4xy2 — (2x2 — 12x + 8)y +x3+ 6x2 — 16x =0, 

4y3 —(3x+10)y2 —(4x2 -24x+16)y-3x3  

+ 2x2 — 12x +40 =0. 

825. Determine the resultant of the polynomials 

an xn +aixn-i+ • • • +an 
and 	

ao  yn 	aixn - 2 ± 	+ _1.  

826. Prove that 9i (f, cpl  92) = %(.f, Pi) • 9i. (f, P2). 
*827. Find the resultant of the polynomials 

Xn  and xrn-1. 

*828. Find the resultant of the polynomials X„, and X. 
829. Compute the discriminant of the polynomial: 

(a) x3 —x2-2x+1, 	(b) x3 +2x2 +4x+1, 

(c) 3x3+3x2 +5x+2, 	(d) x4 — x3 — 3x2  + x + 1, 

(e) 2x4 —x3-4x2 +x +1. 

830. Compute the discriminant of the polynomial: 

(a) x5-5ax3+5a2x—b, 	 (b) (x2 — x + 1)3 — X (x2  — x)2, 
(c) ax3 —bx2+ (b — 3a) x + a, 

(d) x4 — Xx3+ 3 (X-4) x2 — 2(X —8) x-4. 
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831. For what value of X does the polynomial have multiple 
roots: 

(a) x3-3x+ X; (b) x4 -4x+ A, 

(c) x3-8x2 + (13 — A) x—(6 +2A), 

(d) x4 — 4x3 + (2 — A) x' +2x — 2? 

832. Characterize the number of real roots of a polynomial 
with real coefficients by the sign of the discriminant: 

(a) for a third-degree polynomial; 
(b) for a fourth-degree polynomial; 
(c) in the general case. 
833. Compute the discriminant of the polynomial xn +a. 
*834. Compute the discriminant of the polynomial xn+px+q. 
*835. Compute the discriminant of the polynomial 

aoxin+ n  aixm + a2. 

836. Knowing the discriminant of the polynomial 

	

aoxn + aixn —1 + 	+ an  

find the discriminant of the polynomial 

anxn + a„_ ixn-i + • • 	+ a,. 

837. Prove that the discriminant of a fourth-degree polyno-
mial is equal to the discriminant of its Ferrari resolvent (Prob-
lem 814(a) and Problem 80). 

838. Prove that 

D ((x — a) f (x))= D (f(x)) [ f(a)]2  

*839. Compute the discriminant of the polynomial 

	

xn-1 + xn-2 + 	+ 1.  

*840. Compute the discriminant of the polynomial 

xn+axn-1+axn-2+ 	+ a. 

841. Prove that the discriminant of a product of two polyno-
mials is equal to the product of the discriminants multiplied by 
the square of their resultant. 

842. Find the discriminant of the polynomial 

zen-1 X .-1 	• 
P 	XP 	— 1 

*843. Find the discriminant of the cyclotomic polynomial X. 
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*844. Compute the discriminant of the polynomial 
x 	x2 En =n!(1+ -1- + .2+ • • • + :14). 

*845. Compute the discriminant of the polynomial 
a 	 1 )  - 2+ 	+ a (a —1)(a—  n+ 1) F.= x.± x„_ 

• 

a(a- 2   xn   
n1 

*846. Compute the discriminant of the Hermite polynomial 
x2 

	

xR 	
— 

P„ (x)= ( — )ne 2 due 
dxn

2 

 • 

*847. Compute the discriminant of the Laguerre polynomial 

P „(x)= (— 1)n  dn (dne”  . 

*848. Compute the discriminant of the Chebyshev polynomial 

2 cos (n arc cos I ). 

*849. Compute the discriminant of the polynomial 

1).  (x)  	 x2r 	
dn (

+1 	1 -1- x2 )  
dxn 

*850. Compute the discriminant of the polynomial 

n  
1  

V I 
P „(x)= (— 1)n (1 ± X2)

n+—  
2  

d 

dXn

X2 

 

*851. Compute the discriminant of the polynomial 

p.(x)= ( 	x2n+2e--; dn+  (e x  )  

	

dxn+ 	• 

*852. Find the maximum of the discriminant of the polynomial 
xn + aixn + • • • + a„ 

all the roots of which are real and connected by the relation 

x; 	+ +4=n (n— 1) R2. 

853. Knowing the discriminant of f (x), find the discriminant 
of f (x9. 

854. Knowing the discriminant of f (x), find the discriminant 
of f (xn"). 
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855. Prove that the discriminant of F (x)= f (cp (x)) is equal to 

[D (f)1" fl  D (cp (x)— xi ), 

where m is the degree of cp (x); x1, x2, ..., x„ are roots off (x). The 
leading coefficients of f and cp are taken equal to unity. 

Sec. 5. The Tschirnhausen Transformation 
and Rationalization of the Denominator 

856. Transform the equation (x-1) (x — 3) (x + 4)=0 by the 
substitution y =x2  — x — 1. 

857. Transform the following equations: 

(a) x3-3x-4=0 	by the substitution y = x2  + x + 1 ; 

(b) x3  +2x2  +2=0 	by the substitution y =x2 + 1; 

(c) x 4 — X — 2=0 	by the substitution y =x3  — 2; 

(d) x4 — x3  — x2  + 1 = 0 by the substitution y = x3  +x2  + x + 1 . 

858. Transform the following equations by the Tschirnhausen 
transformation and find the inverse transformations: 

(a) x3 —x+2 =0, 	y=x2+x; 

(b) x4  —3x + 1 =0, 	y=x3+x; 

(c) x 4  +5x3+6x2  — 1 =0, y =x3  + 4x2  + 3x- 1. 

859. Transform the equation x' — x2  — 2x +1=0 by the substi-
tution y=2 —x2  and interpret the result. 

860. Prove that for the roots of a cubic equation with rational 
coefficients to be expressed rationally with rational coefficients 
in terms of one another, it is necessary and sufficient that the 
discriminant be the square of a rational number. 

861. Rationalize the denominators: 
1 	 7  (a) 

1-FV-2-1/ 	

1 (b) 	3 	3 	, (c) 	4 

1-42-1-2114 	1—V2-1- 

862. Rationalize the denominators: 

(a) 	 + 1 ' 
th, 
 c

2-3a -1 
0-1-2oc+1 ' 

oc3 -3oc+ 1 = 0; 

+ oc2  3cx + 4 = 0; 

5. 1215 



PART I. PROBLEMS 

0(4  — cc3 +2oc + 1 = 0; 

oc4 	— 4a2 — 3a± 2 0. 1  
(d)  oc3 -1-3a2 -1- 	+ 2 ' 

863. Prove that every rational function of a root x1  of the 
Axi + B  cubic equation x3 + ax2+bx+ c=0 can be represented as 
Cxi + D 

with coefficients A, B, C, D, which can be expressed rationally 
in terms of the coefficients of the original expression and in 
terms of the coefficients a, b, c. 

864. Let the discriminant of a cubic equation that has rational 
coefficients and is irreducible over the field of rationals be the 
square of a rational number. It is then possible to establish the 

+13  relation x2 = 	 among the roots. What condition do the 
yx,-1- - 

coefficients a, (3, y, a have to satisfy? 
865. Make the transformation y =x2  in the equation 

ao xn +aixn-l+ • • • +an = O. 

866. Make the transformation y =x3  in the equation 

aoxn+aixn-'+ • • • +an = O. 

*867. Prove that if all the roots xi  of the polynomial 

f (x)-- xn+aixn-i+ • • • +a,, an 0 

with integral coefficients satisfy the condition I xi  S 1, then they 
are all roots of unity. 

Sec. 6. Polynomials that Remain Unchanged 
under Even Permutations of the Variables. 

Polynomials that Remain Unchanged 
under Circular Permutations of the Variables 

868. Prove that if a polynomial remains unchanged under 
even permutations and changes sign under odd permutations, 
then it is divisible by the Vandermonde determinant made up of 
the variables, and the quotient is a symmetric polynomial. 

869. Prove that every polynomial that remains unchanged un- 
der even permutations of the variables can be represented as 

F1+F, A 

where F1  and F2  are symmetric polynomials and A is the Vander-
monde determinant made up of the variables. 
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870. Evaluate 

1 

1 

2 
XI XI 

X2 a2 

• • • 4-2  

• • 	• 

n +I 

X2+1 X2+I  

1 	x 	X2  n  • • • xnn —2 xn+I n  

871. Form an equation whose roots are axi + (3x2 +yx3, ocx2+ 
+ [3x3  yx, and ocx3 +3x1+yx2  where x1, x2, x3  are the roots of 
the equation x3+ axe + bx + c = O. 

872. Form an equation whose roots are x,y,+x2y2 +x3y2, 
x1y2 +x2y3 +x,),1, x1y3 +x2y1+x3y2  where x1, x2, x3  are the roots 
of the equation x3+px+q +0, and yl, y2, y3  are the roots of the 
equation y2  + p' y + g' =O. 

873. For the following equations with rational coefficients 

x3  + px+ q =0, 

y3  + p'y q' =0 

to be connected by a rational Tschirnhausen transformation, it 
is necessary and sufficient that the ratio of their discriminants A 
and A' be the square of a rational number and that one of the 
equations 

'  

u3  = 3pp'u + 
27 qq ± VAA  

2 

have a rational root. Prove this. 
874. Prove that every polynomial in n variables x1, x2, 	x„ 

which remains unchanged under circular permutations of the 
variables may be represented as 

Air°11 2  • • • 1.02-1  1, 

where 71,, 	..., 	are linear forms: 

= xlz 	+ x2e2  + • 	+ xn, 

712 = x10 	x2s4  + • 	+ Xny 

71,, 	xien —1 + x26.2n —2 ± 	 xn  

. 	 . 

E= COS 7 
	

stn
27 
 • 

The exponents al, oc2, 	oc„_, satisfy the condition: n divides 
cf.1+2a2 + 	+ (n — I) 

875. For rational functions that do not change under circular 
permutations of the variables, indicate n elementary ones (frac. 
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tional and with nonrational coefficients) in terms of which. all of 
them can be expressed rationally. 

876. For rational functions of three variables unaltered under 
circular permutations, indicate three elementary functions with 
rational coefficients. 

877. For rational functions of four variables that remain un-
changed under circular permutations, indicate four elementary 
functions with rational coefficients. 

878. For rational functions of five variables that remain fixed 
under circular permutations, indicate five elementary functions 
with rational coefficients. 



CHAPTER 7 

LINEAR 
ALGEBRA 

In this chapter we adhere to the following terminology and 
notations. The term space is used to denote a vector space over 
the field of real numbers, unless otherwise stated. This term is 
used both for the space as a whole and for any part of a larger 
space (the term subspace will be used only when it is necessary to 
specify that a given space is part of a larger space). A linear mani-
fold is a set of vectors of the form X0 + X, where X0  is some fixed 
vector and X runs through the set of all vectors of some subspace. 

The equation X --(x1, x2, ..., xn) means that X has coordinates 
x1, x2, xi, in some fixed basis of the space; when we deal with 
Euclidean space, the basis is assumed to be orthogonally norma-
lized. 

Vectors are sometimes called points, one-dimensional mani-
folds are called straight lines, and two-dimensional manifolds are 
called planes. 

Sec. 1. Subspaces and Linear Manifolds. 
Transformation of Coordinates 

879. Given a vector space spanned by the vectors X1, X2, 
X,,,. Determine the basis and dimension: 

(a) X1= (2, 1, 3, 1), X2 =(1, 2, 0, 1), 

X,=(- 1, 	1, -3, 0); 

(b) X1=(2, 0, 	1, 3, 	-1), X2 =(1, 	I, 0, -1, 1), 

13 = (0, 

(c) X1=(2, 

-2, 

I, 	3, 

1, 5, 	-3), X4 = (1, 	-3, 

- 1), 	X2 = - 1 , 1, 

2, 9, 

- 3, 

-5); 

1), 

X2 = (4, 5, 3, - 1), X4  = (1, 5, 	-3, 	1). 
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880. Determine the basis and dimension of the union and in-
tersection of spaces spanned by the vectors X1, 	Xk  and Y1, 
• 	Y.; 

(a) X1= (1, 2, 1, 0), 	Y1= (2, -1, 0, 1), 

X2 = ( - 1, 1, 1, 1), 	Y2=(1, -1, 3, 7); 
(b) X1=(1, 2, -1, -2), 	Y1=(2, 5, -6, -5), 

X2= (3, 1, 1, 1), 	Y2 =  ( 1 , 2, -7, -3), 

X3=(-1, 0, 1, - 1); 

(c) X,=(1, 1, 0, 0), 	Y1= (0, 0, 1, 1), 

X2 =(1, 0, 1, 1), 	Y2 = (0, 1, 1, 0). 

881. Find the coordinates of the vector X in the basis E1, 
E2, E3, E4: 

(a) X-(1,2, 1, 1), E1=(1, 1, 1, 1), 

E2 =(1, 1, -1, -1), 

E3=(1, -1, 1, -1), E4 =(1, -1, -1, 1); 

(b) X= (0, 0, 0, 1), El= (1
/
, 1, 0, 1), E2 = (2, 1, 3, 1), 

E3 (1,  1, 0, 0), E4 = (0, 1, -1, - 1). 

882. Develop formulas for the transformation of coordinates 
from the basis E1, E2, E3, E4 to the basis Ei, 4 E73, 

(a) El= (1, 0, 0, 0), 	E2 = (0, 1, 0, 0), E3 = (0, 0, 1, 0), 

E4 = (0, 0, 0, 1), 	El= (1, 1, 0, 0), (1, 0, 1, 0), 

E'=(1, 

(b) E1= 
/

(1, 

0, 

2,  

0, 1), 	E!,=(1, 1, 

-1, 0), 	E2 = (1, 

1, 	1); 

-1, 	1, 	1), 

E3=(- 	1 , 2, 1, 1), 	E4 = ( 1, 	- 1, 0, 1), 

E;= (2, 1, 0, 	1), 

E=(0, 1, 2, 2), 	E'=( -2, 1, 	1, 2), 

E4=(1, 3,  1, 2). 
883. The equation of a "surface" with respect to some basis 

E1, E4 has the form x;+.4-.4-4= 1. Find the equation 
of this surface relative to the basis 

E;=(1, 1, 1, 	1), E.=.(1, 	-1, 1, -1), 

E'2=(1, 1, -1, -1), E4= (1, -1, -1, 1) 

(the coordinates are given in the same basis E1, 	E4). 
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*884. In the space of polynomials in cos x of degree not ex-
ceeding n, write the formulas for transformation of coordinates 
from the basis 1, cos x, cos„  x to the basis 1, cos x, ..., cos nx, 
and conversely. 

885. Find a straight line in four-dimensional space that passes 
through the origin of coordinates and intersects the straight lines: 

x1=2+3t, x2 =1- t, x3= -1 +2t, x4 =3-2t 
and 

x1=7t, x2=1, x3=1+ t, x4= -1+2t. 

Find the points of intersection of this straight line with the 
given straight lines. 

886. Prove that any two straight lines in n-dimensional 
space can be embedded in a three-dimensional linear mani-
fold. 

887. Investigate, in general form, the condition for solvabi-
lity of Problem 885 for two straight lines in n-dimensional 
space. 

888. Prove that any two planes in n-dimensional space can be 
embedded in a five-dimensional linear manifold. 

889. Give a description of all possible cases of the mutual lo-
cation of two planes in n-dimensional space. 

890. Prove that a linear manifold can be characterized as a 
set of vectors containing the linear combinations aXi + (1 -a) X2 
of any two vectors X1, X2 for arbitrary a. 

Sec. 2. Elementary Geometry of n-Dimensional Euclidean Space 

891. Determine the scalar product of the vectors X and Y: 
(a) X=(2, 1, -1, 2), Y=(3, -1, -2, 1); 
(b) X=(1, 2, 1, 	-1), Y=(-2, 3, -5, -1). 

892. Determine the angle between the vectors X and Y: 

(a) X=(2, 1, 3, 2), Y-(1, 2, -2, 1); 

(b) X-(1, 2, 2, 3), Y= (3, 1, 5, 	1); 

(c) X=(1, 1, 	I, 	2), Y= (3, 1, -1, 0). 

893. Determine the cosines of the angles between the straight 
line x1=x2 = =x„ and the axes of coordinates. 

894. Determine the cosines of the interior angles of a triangle 
ABC which is specified by the coordinates of the vertices: 

A-(1, 2, 1, 2), B= (3, 1, -1, 0), C=(1, 1, 0, 1). 
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895. Find the lengths of the diagonals of an n-dimensional 
cube with side unity. 

896. Find the number of diagonals of an n-dimensional cube 
which are orthogonal to a given diagonal. 

897. In n-dimensional space, find n points with nonnegative 
coordinates such that the distances between the points and from the 
origin are unity. Place the first of these points on the first axis, 
the second, in the plane spanned by the first two axes, etc. To-
gether with the coordinate origin, these points form the vertices of 
a regular simplex with unit edge. 

898. Determine the coordinates of the centre and radius of a 
sphere circumscribed about the simplex of Problem 897. 

899. Normalize the vector (3, 1, 2, 1). 
900. Find the normalized vector orthogonal to the vectors 

(1, 1, 1, 1); (1, —1, —1, 1); (2, 1, 1, 3). 
901. Construct an orthonormal basis of a space, taking for 

two vectors of this basis the vectors 

(

1 1 1 1 1 
, -2- , 2  , 2- ) and ( 6  , g 1—  6) • 

902. By means of the orthogonalization process, find the or-
thogonal basis of a space generated by the vectors (1, 2, 1, 3); 
(4, 1, 1, 1); (3, 1, 1, 0). 

903. Adjoin to the matrix 

1 1 1 2 1 

1 

( 

0 0 1 —2 

2 1 —1 0 2 

two mutually orthogonal rows that are orthogonal to the first 
three rows. 

904. Interpret the system of homogeneous linear equations 

an + 2 x2  + . . . +Rln  x„=0, 

a21  + an  X2 	. . . a2„ x,,-0, 

a mi xi +a m2 x2 + 	+a,„„ x„--0 

and its fundamental system of solutions in a space of n dimen-
sions, taking the coefficients of each equation for the coordinates 
of a vector. 
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905. Find an orthogonal and normalized fundamental system 
of solutions for the system of equations 

3x1- x2 - x3  + x4  = 0, 

x1+ 2x2 - x3  x4 = 0. 

906. Decompose the vector X into a sum of two vectors, one 
of which lies in a space spanned by the vectors A1, A2, . 
and the other is orthogonal to this space (the orthogonal projec-
tion and the orthogonal component of the vector X): 

(a) X=(5, 2, -2, 2), Ai =(2, 1, 1, -1), 

A2 "A' (1 5 1, 3, 0); 
(b) X=(-3, 5, 9, 3), Ai =(1, 1, I, 1), 

A2=(2, -1, 1, 1), A3= (2, -7, -1, -1). 
907. Assuming the vectors A1, A2, . A. to be linearly inde-

pendent, give formulas for computing the lengths of the compo-
nents of the vector in Problem 906 when posed in general form. 

908. Prove that of all vectors of a given space P, the smallest 
angle with a given vector X is formed by the orthogonal projec-
tion of the vector X on the space P. 

909. Find the smallest angle between the vectors of the space P 
(spanned by the vectors A1, 	A,„) and the vector X: 

(a) X=(1, 3, - 1, 3), A,=(I, -1, 1, 1), 

A,= (5, 

(b) X=(2, 

1,  

2,  - 

-3, 

1, 

3); 

1), Ai =(1, -1, 1, 1), 

A,=(- 1, 2, 3,  1), A3=(1, 0, 5, 3). 

910. Find the smallest angle formed by the vector (1, 1, ..., 1) 
with the vectors of some rn-dimensional coordinate space. 

911. Prove that of all vectors X- Y, where X is a given vector 
and Y runs through a given space P, the vector X- X', where X' 
is the orthogonal projection of X on P, is of smallest length. 
(This smallest length is called the distance from the point X to 
the space P.) 

912. Determine the distance from the point X to the linear 
manifold A0 + ti  Ai+ 	+ t„,A 

(a) X=(1, 2, -1, 1), 	A0 =(0, -1, 1, 1), 

A1=(0, -3, -1, 5), 	A2 =  (4, -1, -3, 3); 
(b) X=(0, 0, 0, 0), 	A,=(1, 1, 1, 1), 	Ai=(1, 2, 3, 4). 
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913. Consider a space of polynomials of degree not excee-
ding n. The scalar product of polynomials f1, f2  is defined as 

f f1  (x) f2  (x) dx. Find the distance from the origin to the linear 

manifold consisting of the polynomials xn +a, xn + ...+ an. 
914. Indicate a method for determining the shortest distance 

between the points of the two linear manifolds X,+ P and Yo + Q. 
915. The vertices of a regular n-dimensional simplex (see Prob-

lem 897), the length of an edge of which is unity, are partitioned 
into two sets of m + 1 and n-m vertices. Linear manifolds of 
smallest dimension are passed through these sets of vertices. Deter-
mine the shortest distance between the points of these manifolds 
and determine the points for which it is realized. 

*916. Given, in a four-dimensional space, two planes spanned 
by the vectors A1, A2  and B1, B2. Find the smallest of the angles 
formed by the vectors of the first plane with the vectors of the 
second plane : 

(a) (1, 0, 0, 0), 	= (0, 1, 0, 0), 	B1=(1,  1, 1, 1), 

B2= (2, -2, 

(b) A, --- (1 , 0, 0, 

5, 2); 

0), A2=(0, 1, 0, 0), 	(1 , 	I, 	1, 1), 

B2 =(1, -1, 1, 	-1). 

*917. A four-dimensional cube is cut by a three-dimensional 
"plane" passing through the centre of the cube and orthogonal 
to a diagonal. Determine the shape of the solid obtained in the 
intersection. 

*918. Given a system of linearly independent vectors B1, B2, 
B .. The set of points made up of the endpoints of the vectors 

t,B, + t2B2+ + t „,B 05 t1  1, ..., 0 t n, 1, is called a paral-
lelepiped constructed on the vectors B1, B2, . B .. Determine 
the volume of the parallelepiped inductively as the volume of 
the "base" [B1, B2, ..., .13,,,_ ]] multiplied by the "altitude" equal 
to the distance from the endpoint of vector B,„ to the space span-
ned by the base. The "volume" of the one-dimensional "paral-
lelepiped" [B1] is considered equal to the length of the vector B1. 

(a) Develop a formula for computing the square of the volume 
and assure yourself that the volume does not depend on the num-
bering of the vertices. 

(b) Prove that V [cBi, Bz, 	B „,]=[ c V [B1, Bz, 	BR,]. 
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(c) Prove that V [1.3+B' ', B2, 	B] V [13, B2, ..., B m]+  
+ V [ifi', B2, 	B .] and determine when the equal sign holds 
true. 

;919. Prove that the volume of an n-dimensional parallelepiped 
in n-dimensional space is equal to the absolute value of the de-
terminant made up of the coordinates of the generating vectors. 

*920. Let C1, C2, ..., Cm  be the orthogonal projections of the 
vectors B1, B2, ..., B. on some space. Prove that 

	

V [Ci, C2, ..., Cm] V [Bi, B2, 	B 

*921. Prove that 

V [A1, A2, ..., A., B1, ..., Bk] 5 V [A1, ..., A .] • V [B1, ..., Bk ] 

(cf. Problem 518). 
922. Prove that 

V [Ai, A2, ..., A m]I A11 . 1A21 ••• 1 A mi 

(cf. Problem 519). 
923. Find the volume of an n-dimensional sphere using Cava-

lieri's principle. 
924. Consider the space of polynomials whose degree does not 

exceed n. For the scalar product we take f f1 (x) f2  (x) dx. Find 

the volume of the parallelepiped formed by the vectors of the 
basis relative to which the coefficients of the polynomial are its 
coordinates. 

Sec. 3. Eigenvalues and Eigenvectors of a Matrix 

925. Find the eigenvalues and eigenvectors of the following 
matrices: 

(a) (
2 1 0 a \ 

1 2 ) ' (b) 42 ' (c) 7 — a 0 j ' 

/ 	1 1 1 1\ 5 6 — 3 
/ 1 —1 —1 

(d) 
— 1 ' 

(e) —1 0 1 ), 

\1 —1 —I 1' 
1 2 — 1 
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(f) 

(i) 

5 

(2 

— 1 

— 

(3 

4 
4 

—1 

— 3 
0 

1 

—1 
—8 

PART 

2 

3 	, 
— 2 

0 

0 , 
—2 

I 

(g) 

( j) 

PROBLEMS 

0 0 1 

0 	1 	0 
1 	0 0 

2 	5 

4 	6 
3 	6 

, 	(h) 

—6 

—9 	• 
—8 

0 

— 2 
— 1 

2 

0 
— 3 

3 	, 
0 

926. Knowing the eigenvalues of the matrix A, find the eigen-
values of the matrix A-1. 

927. Knowing the eigenvalues of the matrix A, find the eigen-
values of the matrix A2. 

928. Knowing the eigenvalues of the matrix A, find the eigen-
values of the matrix Am. 

929. Knowing the characteristic polynomial F (X) of the mat-
rix A (of order n), find the determinant of the matrix f (A), where 
f (x) = b0  (x — 0 (x —U . .. (x — ,,,) 

930. Knowing the eigenvalues of the matrix A, find the deter-
minant of the matrix f (A), where f (x) is a polynomial. 

931. Knowing the eigenvalues of the matrix A, find the eigen-
values of the matrix f (A). 

932. Prove that all the eigenvectors of the matrix A are eigen-
vectors of the matrix f (A). 

*933. Find the eigenvalues of the matrix 

1 
/ 	1 

1 
s 

1 
E2 

1 

1 €2 e4 	. . . 	e2 (n-1) 

\ 1 E(n-1)  e2 (n-1) -1)' 

where c = cos —
n
- ±i sin 7` n an odd number. 

n 
*934. Find the sum 

1 + ,± 

935. Find the eigenvalues of the matrices: 

y 

x 

0 

x 	. . x \  

x 
7  a, 

a2 
an 

(a) y y 0 	. . . 	x , 	(b) an  a1  an-1) 

\a, a3 
\y y y 0 
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/ 	0 	1 

	

— 1 	0 1 

—1 0 

(c) 

0 	1 

— 1 0 /  

*936. Knowing the eigenvalues of the matrices A and B, find 
the eigenvalues of their Kronecker product. 

937. Prove that the characteristic polynomials of the matri-
ces AB and BA coincide for arbitrary square matrices A and B. 

938. Prove that the characteristic polynomials of the matrices 
AB and BA differ solely in the factor (— X)n-m. Here, A is a rec-
tangular matrix with m rows and n columns, and B is an n-by-m 
matrix, n > m. 

Sec. 4. Quadratic Forms and Symmetric Matrices 

939. Transform the following quadratic forms to a sum of 
squares: 

(a) 4 +2x1  x, + 24 + 4x, x, + 54, 

(b) — 4x1  x, + 2x1  x, +'44 + x3, 

(c) x, x2  + x2  x3  + x3  xi, 

(d) x? - 2x, x, + 2x, x, — 2x, x4  + 4 + 2x, x, — 4x, x, + 4 — 24, 

(e) x?+ x, x2  + x, x4. 

940. Transform the quadratic form 

Xi Xk 

i<k 

to diagonal form. 
941. Transform the quadratic form 

Ixi  x, 
i<k 

to diagonal form. 
942. Prove that all the principal minors of the positive quad-

ratic form are positive. 



142 	 PART I. PROBLEMS 

*943. Let the quadratic form 

= an  + a12  x1  x2  + . . . + aln  X1  x„ 

+ a21 X2 X1 a22 + 	+ a2„ x2 x„ 

+ 	x„ x1  -I- ant Xn  X2 	. . . 	a„„ x;; 

be reducible to the diagonal form cci  xi2  +a2 
x;2 + 	+an  ..x.,c2 by 

the "triangular" transformation 

= ± bi2 X2 + . . . bin  xn  

X2= 	 b2n An 

= 	 x . 

It is required to: 

(a) express the coefficients al, a2, 	a„ in terms of the cm-f- 
ficients a,k ; 

(b) express the discriminants of the forms fk (x1+1, • x„) = 
= 	x12 — 	42  in terms of the coefficients ad,. 

Find the condition under which a triangular transformation of 
the indicated type is possible. 

944. Prove that the necessary and sufficient condition for po-
sitivity of the quadratic form 

f = an  x?+ a12  _xi  x2+ . . . + ain  a 1  x„ 

a21  X2 Xi + a22  x2 + . . . + a x2  xn  

+ a„1  x,, x1+ ant  x„ x2  + . . . + an„ 

is fulfilment of the inequalities 

a11  a12  

a22 a22 

an  a12 	a1,, 

a21 	a22 • • • a2,, 

ant a„2 

an > 0; > 0; . . ; >0 

(Sylvester's condition). 
*945. Prove that if to a positive quadratic form we add the 

square of a linear form, the discriminant of the former increases. 
*946. Let f 	x2, ..., xn)= aux?+ ... be a positive quadratic 

form, 
p (x2, ..., x„)= f (0, x2, 	x„) 
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Df and D, their discriminants. Prove that 

D f  ( all  
947. Let 

f(x,, x 2, ..., x„)=1T+ n+ . . . + 42-1,241-1,2+2— 	—l2+0 

where 11,12, ..., 1,, 4+1,4+2, ...,1,+, are real linear forms in x1, 
x2, . . x„. Prove that the number of positive squares in a canoni-
cal representation of the form f does not exceed p, and the number 
of negative squares does not exceed q. 

*948. Let so, s1, ... be power sums of the roots of the equation 
xn + a, xn-1  + ...+ a„= 0 with real coefficients. Prove that the 
number of negative squares in a canonical representation of the 

quadratic form E Si+k+2 Xi Xk is equal to the number of pairs 
k =1 

of conjugate complex roots of the given equation . 
Prove the following theorems : 

949. Fulfillment of the following inequalities is a necessary 
and sufficient condition for all the roots of an equation with real 
coefficients to be real and distinct: 

so  S1  
So  S1 S2 

0 , 	51 S2 S3 

S2 S3 54 

>0; ...; A= 

So 

S1 	S2 . . . So  

 

> 0. 
S2 

 

Sn-1 Sn • • • Stn-2 

 

    

*950. If the quadratic forms 

f= all  x j + a12  x1  X2 . . . a„, 

+ a21  x2 	a22 x2 ± 	. + a2n x2 x„ 

+ an1 xn + a„2 Xn X2 + •+ a,;„ A n  

and 

=b„ x? +b, 2  x, .X2 . . . bln x1  Xn 

b21 X2 Xi + b22 ± • • • + b2n X2 An 

+ bn1  x„ xl  + b„2  x „ xo  + . . . + b „„ A 
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are nonnegative, then the form 

(f, so) = all b11 xi + a12 bi„ Xi X2 + • • • 4-  aln bin X1 Xn 

+ a21  b21  X2 X1 + a22 b22 x2 + 	+ azn b2n x2 x. 

+ an1  b„, x„ x, + an, b„2  x„ x2  + . . . + a„„b„„xli  

is nonnegative. 
951. Transform the following quadratic forms to canonical 

form by an orthogonal transformation: 

(a) 2x? + x2 — 4x1  x, — 4x2  x3, 

(b) x?+ 2x3 + 3x3 — 4x, x, — 4x, x,, 

(c) 3x? + 4x2 + 5x3 + 4x1  x2  — 4x2  x3, 

(d) 2x? + 5.4+ 54+ 4x1  x, — 4x1  x, — 8x2  x,, 

(e) xi — 2x2 — 2x3 — 4x1  x, + 4x1  x, + 8x2  x2, 

(f) 5x, + 6x2 + 4x3 — 4x1  x, — 4x1  x,, 

(g) 3x? + 6x2 + axi — 4x1  x, — 8x1  x, — 4x2  x3, 

(h) 7x? + 5x2 + axi — 8x1  X2 ± 8X2 X3, 

(i) 2x? + 	+ 2x3 + 	— 4x, x, + 2x, x4  + 2x, x, — 4x, x4, 

(j) 2x1  X2 + 2.X:3 x4, 

(k) x? + x2 + x3 + 	2x1  x2  - 2x1  xi  - 2x2  x, 2x3  x4, 

(1) 2x1  x2 2x1 x3 — 	2x1 x4 — 2X2 	2x2 x4 + 2x3  X4, 

(m) x? + x2 + x3 + x?, - 2x1  x, + 6x1  x, — 4x1  x4  

— 4x2  x3  + 6x, x4  — 2x3  x4, 

(n) 8x1  X3 + 2X1 X4 + 2X2 X3 + 8x2 X4. 

952. Transform the following quadratic forms to canonical 
form by an orthogonal transformation: 

(a) E x?+ 	xi  x 	(b) E xi xk • 
i= I 	i<k 	 i<k 

953. Transform the form 

X1  x,+x, x3 + ...+xn _l x„ 

to canonical form by an orthogonal transformation. 
954. Prove that if all the eigenvalues of a real symmetric mat-

rix A lie in the interval [a, b], then the quadratic form with mat- 
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rix A — A E is negative for A> b and positive for A < a. The con-
verse holds true as well. 

955. Prove that if all the eigenvalues of a real symmetric mat-
rix A lie in the interval [a, c] and all the eigenvalues of a real sym-
metric matrix B lie in the interval [b, d] then all the eigenvalues 
of the matrix A + B lie in the interval [a+ b , c+ d]. 

956. Let us call the positive square root of the largest eigen-
values of the matrix AA (A is a real square matrix, A is its trans-
pose) the norm of the matrix A and denote it by 11 A II. Prove 
that 

(a) II A 11=11 A II, 
(b) I AX I II  A  II' I X I; the equality holds for some vector X0, 
(c) A + B 
	

A II+ B 
(d) II ABII<IIA II IIB 11,  
(e) the moduli of all eigenvalues of the matrix A do not ex-

ceed II A II. 
957. Prove that any real nonsingular matrix can be represen-

ted as a product of an orthogonal matrix and a triangular matrix 
of the form 

b11 b12 	. bin   

b22 

I 
bt,„' 

with positive diagonal elements b1  and that this representation 
is unique. 

958. Prove that any real nonsingular matrix is representable 
in the form of a product of an orthogonal matrix and a symmet-
ric matrix corresponding to some positive quadratic form. 

959. Let there be a quadric surface in n-dimensional space 
given by the equation 

all  + an xi  x2  + . . . + a,„ xi  x„ 

+ 	x2  xi  + a22  X2 + . . . + a,„ A 2 x„ 

+ a„1  x„ + a„2  xn x2 + . . . + ant, 4, 

+2b1  x1+2b2 x2 + . . . + 2b„ + c = 0 
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or, in abbreviated notation, AX.X+2BX + c=0. Prove that 
for the centre of the surface to exist it is necessary and sufficient 
that the rank of the matrix A be equal to the rank of the matrix 
(A, B). 

960. Prove that the equation of a central quadric surface 
may be reduced to canonical form 

a, x; + . . . + ocr  + y = 0 

by a translati on of the origin and by an orthogonal transformation. 
961. Prove that the equation of a noncentral quadric sur-

face may be reduced to canonical form 

al 	± • • • + ar 	2  krr + 1 

by a translation of the origin and by an orthogonal transforma-
tion. 

Sec. 5. Linear Transformations. Jordan Canonical Form 

962. Establish that the dimension of a subspace into which 
the entire space is mapped under a linear transformation is equal 
to the rank of the matrix of this linear transformation. 

963. Let Q be a subspace of dimension q of the space R of di-
mension n, and let Q' be the image of Q under a linear transfor-
mation of rank r of the space R. Prove that the dimension q' of 
space Q' satisfies the inequalities 

min (q, r). 

964. Using the result of Problem 963, establish that the rank p 
of the product of two matrices of ranks r1  and r2  satisfies the 
inequalities 

r,+r2 —n,..p. min (r,., 

*965. Let P and Q be any complementary subspaces of the 
space R. Then any vector X E R decomposes uniquely into a sum 
of the vectors Y E P and Z E Q. The transformation consisting in 
going from vector X to its component Y is called projection on P 
parallel to Q. Prove that projection is a linear transformation 
and its matrix A (in any basis) satisfies the condition A2 = A. 
Conversely, any linear transformation whose matrix satisfies 
the condition A2 = A is a projection. 
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*966. The projection is termed orthogonal if P l Q. Prove 
that in any orthonormal basis, the matrix of orthogonal projec-
tion is symmetric. Conversely, any symmetric idempotent matrix 
of the same degree is a matrix of orthogonal projection. 

*967. Prove that all nonzero eigenvalues of a skew-symmet-
ric matrix are pure imaginaries, and the real and imaginary parts 
of the corresponding eigenvectors are equal in length and orthogo-
nal. 

*968. Prove that for a skew-symmetric matrix A it is possible 
to find an orthogonal matrix P such that 

0 a1  

— a, 0 

0 a, 

-- a, 0 

0 a, 

— a, 0 

0 

0 

(all elements not indicated are zero; a1, a2, ..., a, are real numbers). 
969. Prove the theorem : if A is a skew-symmetric matrix, 

then the matrix (E — A) (E + A)-' is an orthogonal matrix with-
out —1 as eigenvalue. Conversely, every orthogonal matrix 
that does not have —1 as an eigenvalue can be represented in 
this form. 

*970. Prove that the moduli of all eigenvalues of an orthogo-
nal matrix are equal to 1. 

*971. Prove that eigenvectors of an orthogonal matrix which 
belong to a complex eigenvalue are of the form X+ i Y, where 
X, Y are real vectors equal in length and orthogonal. 

*972. Prove that every orthogonal matrix can be represented as 

P -1,4P= 

Q-1  TQ, 
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where Q is an orthogonal matrix and T is of the form 

/ cos cp, — sin cp, 

sin co, 	cos cp, 
cos cp2  

sin cp2  

— Sill (p2  

cos cp2  

1 
1 

(all other elements being equal to zero). 
973. Reduce the following matrices to the Jordan normal 

form : 

(a) ( 

1 

0 
—2 

2 

2 
—2 

0 

0 
—1 

, (b) 

4 

—3 
—3 

6 

—5 
—6 

0 

0 	, 
1 

13 16 16 3 0 8 

(c) ( — 5 — 7 —6 	, (d) 3 — 1 6 	, 
—6 —8 —7 —2 0 —5 

—4 2 	10 7 —12 —2 

(e) — 4 3 	7 ) , (f) ( 3 — 4 0 , 
—3 1 	7 —2 0 —2 

—2 8 6 0 3 3 

(g) ( — 4 10 6 , (h) ( — 1 8 6 ), 
4 —8 —4 2 —14 —10 
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(

— 1 

(i) 	—5 
6 

— 

(4 

(k) 	2 
—1 

1 

21 
—26 

5 

—2 
—1 

1 

17 
—21 

—2 

1 	, 
1 

, 

(1) 

(j) 

8 	30 

—6 	—19 
—6 	—23 

3 	7 

	

—2 	—5 

	

—4 	—10 

—14 

9 	, 
11 

—3 

2 	, 
3 

(9 

— (m) 	1 
8 

22 

—4 
16 

—6 

1 	, 
—5 

(n) 

1 

3 
2 

—1 

—3 
—2 

2 

6 
4 

(o) (

1 

—3 
—2 

1 —1 

—3 3 	• 
—2 2 

974. Reduce the following matrices to the Jordan normal 
form: 

3 1 0 0 1 2 3 4 

7 	—4 — 1 0 0 0 1 2 3 
(a) 

7 1 2 1 
, 	(b) 

0 0 1 2 
\ —17 —6 —1 0 '  \0 0 0 1 	,1  

/0 1 0 	. . . 	o 
0 0 1 	... 0 

(c) 
0 0 0 	. . 	 . 	 1 

\1 0 0 	. . . 	 O t  

*975. Prove that any periodic matrix A (satisfying the condi-
tion An1=E for some natural m) is reducible to the diagonal ca-
nonical form. 

*976. Knowing the eigenvalues of the matrix A, find the eigen-
values of the matrix A,c, composed of appropriately arranged 
mth-order minors of the matrix A (see Problem 531). 

977. Prove that any matrix A can be transformed into its trans-
pose. 

*978. Prove that any matrix can be represented as a produc t 
of two symmetric matrices, one of which is nonsingular. 
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979. Starting with a given matrix A of order n, construct a 
sequence of matrices via the following process : 

A1= A, 	tr A1  =Pi, 	A,— pl E=B1 , 

B,A=A2, 	2- tr A 2=p2, A2 —p2 E=B2, 

R2 A= 	--- Ao=iy A —p 

B„_,A=A„, —ni  tr A„ =p„, A„—p„E=B„ 

where tr Ai  is the trace of matrix A. (the sum of the diagonal 
elements). Prove that n .1,, 2, • • • , pn are the coefficients of the cha-
racteristic polynomial of the matrix A written in the form 
(_ l)n [Xn Xn— _p2  Xn —2 —p„]; matrix B„ is a zero matrix;—p1  

finally, if A is nonsingular, then -- B„_,= 
Pn 

*980. For the equation X Y— YX= C to be solvable in terms 
of square matrices X, Y, it is necessary and sufficient that the 
trace of the matrix C be zero. Prove this. 
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CHAPTER 1 

COMPLEX 
NUMBERS 

11. See Problem 10. 
13. Demonstrate the validity of the theorem for each of the four opera-

tions on the two numbers and take advantage of the method of mathematical 
induction. 

18. Use the fact that the left members are easily represented as a sum of 
two squares. 

27. Set x=a+bi, y=c+di. 
28. Set z=cosp+i sin cp. 
31. Set z= t2, z'= t'2. Use Problem 27. 
37. Go over to the trigonometric form. 
38. 1+ (,) = — 
40. Pass to the half-angle. 

41. Convince yourself that z= cos 0 + i sin 0 ; 
1 
—z  = cos 0 T i sin 0. Take 

advantage of De Moivre's formula. 
) 2m  

" 51. Set a= cos x+ i sin x. Then cos' x= 	
2 	, etc. 

52. Show that the coefficient of (2 cos x)°' -2p is equal to (— 1)' ,Cfn _ p+ 
+CP-1  )' Take advantage of the method of mathematical induction. 

53. This is similar to Problem 52. 
54. Make use of the binomial expansion of (I +i)^. 
55. Use Problem 54. 

56. Expand ( 1 +i ---:— 
1/--3 

 In  using Newton's binomial formula. 
3 

68. Show that the problem reduces to computing the limit of the sum 
—1+1 

1 	cos
2

2a 
69. Take advantage of the fact that sine a— 

2  
71. Use the fact that 

cos 3a 	3 cos a 	 3 sin a 	sin 3a 
coss a= 	

4 	4 
+ 	 sin3  a= , 

4 	4 

1 +a-Fa2 + ..., where a= 
2 
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72. In computing sums of the type 1 + 2a+ 3a2+ + na"-  I- and 1+ 
+22a+33a3 +...+ Haan-1  it is useful first to multiply them by 1 - a. 

76. xi=a+P, x2 =aw+ 	x3=a0+ Po.), ce8+ (3.= -q, 34= -p. 
77. Multiply by -27 and regard the left member as the discriminant 

of some cubic equation. 
78. Set x=a+P. 
87. Show that e"= -1. 

2n 
88. If e = cos -

n 
+ 	

277 
sin -

n
, then the desired sum can be written as 1+ 

+,2+ ...+,n-1.  
89. Consider two cases: (1) k is divisible by n; (2) k is not divisible by n, 
91. 92. Multiply by 1- e. 
94. (a) Subtract from the sum of all 15th roots of I the sum of the roots 

belonging to the exponents 1, 3, and 5. 
97. The length of a side of a regular 14-sided polygon of radius unity is 

4-tr 
equal to 2 sin - 

4' 	 7 
Use the fact that cos - + i sin -

7-c 
 satisfies the equation x6 + 

1 	7 
+x5 +x4 +x3+x2 +x+1 =O. 

98. (1) If x1, x2, ..., xn  are roots of the equation aoxn+aix"-i+ ... +an  =0, 
then aoxn + aixn + ...+ an= ao  (x- xi) ...(x- xn). 

(2) If e is an nth root of 1, then 6, the conjugate of e, is also an nth root 
of 1. 

99. In the identities obtained from Problem 98 set x=1. 
100. Take advantage of the factorization of x"-1 into linear factors. 
101. In the factorization of x" - 1 into linear factors set: (1) x= cos 0+ 

+ i sin 0, (2) x= cos 0- i sin 0. 
103. Take advantage of the fact that the moduli of conjugate complex 

numbers are equal. 

=1 
x- 

107. Let 
S= cos cp + Cni cos (y+ x)x+... +cos (cp tux) xn , 

T -= sin cp + Cni sin (cp + x +.•. + sin (cp + me) xn. 

Compute S+ Ti and S- Ti and determine S from the resulting equations. 

113. First prove that cp (p°)=13°' (1- 1), if p is a prime number. To do 

this, count the numbers not exceeding I," that are divisible by p. 
116. Prove that all roots of xPm  1-1 and only such roots are not primi-

tive roots of xPm  - 1. 
117. Show that if n is odd, then to obtain all the primitive roots of degree 

2n of unity it is sufficient to multiply all primitive nth roots by -1. 
119. Use Problem 118. 
120. Use Problems 115, 116, 1 1 1 and show that (1) µ (p)= -1 if p is prime; 

(2) that p. (p")=0 if p is prime, a> I, (3) v. (ab)= (a) p. (b) if a and b are rela-
tive prime. 

122. Show that if e 	
2k7c 	2lor 

k =cos -
n

- + i sin 	 belongs to the exponent n1, 

then x- ek will enter the right member of the equation being proved to the 

power El,. (d1), where d1  runs through all divisors n  1.7  . 

105. (a) Reduce the equation to the form 
x+1  r 



CI-I. 2. EVALUATION OF DETERMINANTS 
	

153 

123. Consider the cases: (I) n is the power of a prim. • (2) n is the product 
of powers of distinct primes. For Case (1) use Problem 11 for (2) use Prob-
lems 119 and 122. 

124. Consider the cases: (I) n is odd and exceeds 1; (2) 	21‘; (3) n=2n1, 
n1  is odd and exceeds 1; (4) n=21cni, where k> 1, n1  is odd and exceeds 1. 

125. Use the identity 

Xi X2 +X1 X3+ +Xn_ Xn  

(x,+x, + +x„),—(xl +x2 + +x;;) 

2 

Consider the cases: (1) n is odd; (2) n=2121, n1  is odd; (3) n =21' ni, where k> 1, 
Ili  is odd. 

126. Multiply the sum S by its conjugate and take into account that ex' 
does not change when x+ n is substituted for x. 

CHAPTER 2 

EVALUATION OF DETERMINANTS 

132. Bear in mind that each pair of elements of a permutation constitutes 
an inversion. 

133. The number of inversions in the second permutation is equal to the 
number of orders in the first. 

145. Show that each term has 0 for a factor. 
149, 150. Replace rows by columns. 
153. Find out how the determinant will change if its columns are permu-

ted in some fashion. 
154. (a) Note that when x= ai, the determinant has two identical rows. 
155. To the last column add the first multiplied by 100 and the second 

multiplied by 10. 
156. First subtract the first column from each column. 
163. Subtract the first column from the second. 
179. Add the first row to all other rows. 
180.182. Subtract the first row from all other rows. 
183. Subtract the second row from all other rows. 
184. Add the first row to the second. 
185. Add all columns to the first. 
186, 187. From the first column subtract the second, add the third, etc. 
188. Expand by elements of the first column or add to the last row the 

first multiplied by xn, the second multiplied by xn-1, etc. 
189. Add to the last column the first multiplied by xn-  the second mul-

tiplied by xn -2, etc. 
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190. Construct a determinant equal to f (x+ 1)-f (x). In the resulting 
determinant subtract from the last column the first, the second multiplied by 
x, the third multiplied by x2, etc. 

191. Multiply the last column by a1, a2, ..., an  and subtract, respectively, 
from the first, second, ..., nth column. 

192. Add all columns to the first. 
194. Add all columns to the last one. 
195. Take a1  out of the first column, a2  out of the second, etc. Add to the 

last column all the preceding columns. 
196. Take h out of the first column; add the first column to the second, 
197. Multiply the first row and the first column by x. 
198. Subtract from each row the first multiplied successively by a1, a21 • • •N 

a,,. From each column subtract the first multiplied successively by a1, a2, 
199. Add all columns to the first. 
200. Add to the first column all the others. 
201. From each column, beginning with the last, subtract the preceding 

column multiplied by a. 
202. From each row, beginning with the last, subtract the preceding row. 

Then to each column add the first. 
203. Multiply the first row by b0, the second by b1, etc. To the first row 

add all succeeding rows. 
204. Take a out of the first row and subtract the first row from the second. 
205. Expand by elements of the first row. 
206. Represent as a sum of two determinants. 
208. Add a zero to each off-diagonal element and represent the determi-

nant as a sum of 2" determinants. Use Problem 206 or 207. 
211. Multiply the first column by xn - 1, the second by xn-2, etc. 
212. Expand by elements of the last column and show that An=x„An-i+ 

+ anxix .x,,_ , (an  denotes a determinant of crder a). Use mathematical in-
duction in computing the determinant. 

213. Expand by elements of the last column and show that An+1= xnAn+ 
+ anY 	.Y,,. 

214. Take a1  out of the second column, a 2  out of the third, ..., and an  out of 
the (n+ 1)th. Reverse the sign of the first column and add all columns to 
the first. 

215. Expand in terms of elements of the first row. 
216. Expand in terms of elements of the first row and show that 
= 	 An- i• 
219. Use the result of Problem 217. 
221. Expand by elements of the first row and show that 

A n  = xAn _ 1-An- 2. 

222. From the last row subtract the second last multiplied by--y"- -  
Yn - 1 

Show that An = Yn
(Xn Y n 	Xn -1 Yn) An-i• 

Y n -1 
223. Represent as a sum of two determinants and show that 

An= anAn-i+ aia2• • •an_ 
225. Represent as a sum of two determinants and show that 

An= (an -4 An_1+x (a1-x) ... (a _ 1- x). 

226. Setting x„= (x,,- a„)+ an, represent the determinant in the form of a 
sum of two determinants and show that 

An = (xn-  an) At1-1+ an (x1-a1) (x2-a2) • • • (xn-1-  an-1). 
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227. Represent in the form of a sum of two determinants and show that 

An=(xn-anbn) An_1+ an  bn (x1- b1) . • . (xn_1-an- 1bn- 1)• 

228. Represent in the form of a sum of two determinants and show that 
An= 	An _ i+(_ 

230. Expand by elements of the first row and show that 

Aar = (a2-  b2) Au, - 2• 

231. From each row subtract the preceding one and add to the second 
all subsequent rows. Then, expanding the determinant by elements of the 
last row, show that 

An=[a+ (n-1) b] An _ 2+ a (a+ b) ... [a+ (n- 2) b]. 

232. Represent as a sum of two determinants and show that 
n-1 

An = x (x - 2a „) An  _1+ a;2, xn-1 	(x - 2a,). 

233. Setting (x- a„)2  = x (x-2a„)+an2, represent the determinant as a sum 
of two determinants and show that 

An = x (x -2a„) An _ i+ 	(x -2a1) .. • (x - 2an -1) 

234. Represent as a sum of two determinants and show that 

	

An =An _ 1+(- 	b.,. 	... 

235. Represent the last element of the last row as an-an. Pr ove that 

	

An=(- 1)n-1  b1b2... bn_ l an- 	An _ i. 

236. From each row subtract the next. 
237. Set 1 =x1- (1 -x) in the upper left corner. Represent the determi-

nant as a sum of two determinants. Use the result of Problem 236. 
238. Multiply the second row by x1-1, the third by xn-2, ..., the nth by x. 

From the first column take out xn, from the second, xn—  ..., from the nth, x. 
239. Use the suggestion of the preceding problem. 
240. From each column subtract the preceding one (begin with the last 

column). Then from each row subtract the preceding one. Prove that An = 
--An _ 1. When calculating, bear in mind that Cnk= ck _1  + Cnk 

241. From each column subtract the preceding one. 
242. From each row subtract the preceding one. Prove that An =An_,. 
243. Take m out of the first row, m+1 out of the second, ..., m+n out 

1 	 1  
of the last. Take -

k 
out of the first column, 

 k+ 1 
out of the second, 

etc. Repeat this operation until all elements of the first column become 
equal to 1. 

244. From each column subtract the preceding one. In the resulting de-
terminant, subtract from each column the preceding one, keeping the first 
two fixed. Again, subtract from each column the preceding one, keeping the 
first three columns fixed, and so on. After m such operations we get a deter-
minant in which all elements of the last column are 1. The evaluation of this 
determinant presents no special difficulties. 
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245. From each row subtract the preceding one and show that ±i= 
= (x— 1) An. 

246. From each row subtract the preceding one and show that 	= 
= (n — 1)! (x-1) An. 

247. From each row subtract the preceding one; from each column sub-
tract the preceding one. Prove that An = aA„,. 

248. Represent the last element of the last row as z+(x—z). Represent 
the determinant as a sum of two determinants. Use the fact that the deter-
minant is symmetric in y and z. 

249. See the suggestion of Problem 248. 

252. Subtract from each row the first row multiplied by —
a
-. In the re- 

ab — 
suiting determinant, take

a (cc 
	 out of the first column and subtract from 

—p) 
the first column all the other columns. 

253. Add all columns to the first and from each row subtract the preceding 
one. See Problem 199. 

254. Use the suggestion of Problem 253. 
256. Regard the determinant as a polynomial in a of degree four. Show 

that the desired polynomial is divisible by the following linear polynomials in a: 

a+b+c+d, a+b—c—d, a—b+c—d, a—b—c+d. 

258. Adding all columns to the first, separate out the factor x+ al+ ... +an  
Then setting x=a1, a2, ..., an, convince yourself that the determinant is di-
visible by x— x—a2, 	x— an. 

259. The Vandermonde determinant. 
264. Expand by elements of the first column. 
265. From the second row subtract the first. In the resulting determinant 

subtract the second row from the third, etc. 
1 

269. Take —
2 

out of the third row, 
iii 

out of the fourth, etc. 

270. Make use of the result of Problem 269. 
271. Take 2 out of the second column, 3 out of the third, etc. When com-

puting 	Ii 	(i2 —k2) it is useful to represent 
n?i> k3 1 

(i2  — k 2) =11 (i — k) • II (i + k) . 

272. Take 	 out of the first column
' x— 1 

out of the second, etc. 

	

x 
X1 
 1 	 2

X2  

1— 
273. Take a7 out of the first row, a; out of the second, and so on. 
275. To the first column add the second multiplied by On, the third 

multiplied by Cl„, etc. 
276. Take advantage of the result of Problem 51. 
277. Take advantage of Problem 53. 
278. Adjoin the row 1. x,, x2, ..., x„ and the column 1, 0, 0, ..., 0. 
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279. Consider the determinant 

I 

x, 

1 1 

xn  

1 

z 
D =  .7c1 x2 . . 	xn 2.2  

x7 x1  21  xnn zn 

Compare the expansion of D by elements of the last column with the ex- 

pression D= H ( x; _xk) . n ( z_.„,) . 
i> k -1 	 1=1 

280. Use the suggestion of Problem 279. 
282. Adjoin the first row I, 0, ..., 0 and thefi rst column 1, 1, 1, ..., I. 

Subtract the first column from all the succeeding columns. 
285. Expand by elements of the last row. 
286. First, from each column (beginning with the last) subtract the prece-

ding column multiplied by x. Then, after reducing the order and taking out 
obvious factors, transform the first rows (dependent on x) using the relation 

(m+  os_ms=sms-i+  s(s2  1)  ms-2+ ,.. ± 1.  

287. From each column, beginning with the last, subtract the preceding 
column multiplied by x. 

288. (m) Add to the first column the sixth and the eleventh, to the second 
column, the seventh and the twelfth, ..., to the fifth column, the tenth and 
the fifteenth. Add to the sixth column the eleventh, to the seventh column, 
the twelfth, ..., to the tenth column, the fifteenth. 

From the fifteenth row subtract the tenth, from the fourteenth row sub-
tract the ninth, ..., from the sixth row subtract the first. 

293. Consider 

294.  

sin 

sin 

sin 

Consider 

1 	qao 	C 	. 

1 	Cna1 	C a 

1 	on  an  

a, 	cos 	a, 	0 	... 

a, 	cos a, 	0 	... 

an 	cos an 	0 . 

. . 	ag 

. 	. . 	Wiz 

. 	. 	. 	ain  

0 

0 

0 

• 

't 

cos 

sin 

bn 

b8-1  

1 

a, 

«, 

0 

b?  

b7-1  

1 

cos «2  

sin a, 

0 

. 	. 	t bnz 

. 

. 	cos en 

. .. 	sin 	an  

. 	 . 	 . 	0 

. 	1) 
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295. Consider 

1 	I 	. 	 . 	 . 	 1 

X1 	X2 	• • • 	 xn  

xn 	 . . . 	xi nz 

PART 

1 

x 

xn 

11. 

1 

1 

1 

0 

HINTS 

x, 	. . 

x2 	. . 

x„ 

0 	. .. 

TO SOLUTIONS 

. 	-1 	0 

. 	x2-1 	0 

0 

0 	1 

296. Raise to the second power. 
297. Subtract from the third column the first, from the fourth the second. 

Then multiply by 

cos y —sin cp 0 0 

sin cp cos cp 0 0 

0 0 cos 2cp —sin 2y 

0 0 sin 2cp cos 2<p 

298. Subtract from the second column n times the first, from the fourth, 
n times the second. Interchange the second and third columns. Multiply by 

cos ncp —sin lip 	0 	 0 

sin ny 	cos ncp 	0 	 0 

0 	0 	cos (n+1) cp 	--sin (n+1) cp  

0 	0 	sin (n+1) cp 	cos (n+1)(p 

299. Square it. Transform as a Vandermonde determinant and trans-
form each difference to the sine of some angle. This will yield the sign. 

300. Study the product 

as  a, a2  . 	• 	• an -1 1 1 	... 1 

an -1 ao  a1  . 	. 	. an-2 1  r. 	• • 	• en -1 

01  az  a3  ... no  1 e7  -1 	... et,z," 

2kn 	2krc 
where e k = COS 	+i sin 	 

12 

308. Consider e, = cos 7r + i sin - - . Then 

n (   ak —0) 

2 
k—O 1— 1 
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311. Use Problem 92. 

314. 	(ao + £k+ a2 q+ • • • + (72n - 1 ckn --  I) 

k=0 
n- I 

= 11 Rao + 0,0+ (al.+ ao +0 a + • • • + (an _i+ 02n _ 1) 07-1] 
r=0 
n-1 

X 1-1 Rao  — a„) + (ai  an + 1) Ps + • . . + (an _1 —  02n _ 
s=0 

kit 	, . kit 	 2rr; 	. . 	2r 7c 
ck=e0S ---H-t sin —

n 
; o,•,• = cos — — +1 sin —

n 
— ; 

0 	 0 

3s— cos 
(2s+ 1)  n 

+isin 
 (2s+ I)  rc 

n 	 n 

323. From each row subtract the first, from each column subtract the 
first. 

325. Use Problem 217. 
327. Represent in the form of a sum of determinants or set x=0 in the 

determinant and its derivatives. 
328. (1) From the (2n-1) th row subtract the (2n— 2)th, from the (2n-2)th 

row subtract the (2n-3)th, ..., and from the (n+ 1)th row subtract the nth, 
from the nth row subtract the sum of all the preceding ones. 

(2) Add to the (n+ i )th row the ith, i=1, 2, ..., n-1. 
329. Add to every row all the subsequent ones, and subtract from every 

column the preceding column. Prove that 

An +1  (X) = (X- n) (x-1). 

CHAPTER 4 

MATRICES 

466. Use the result of Problem 465 (e). 
473. Consider the sum of the diagonal elements. 
491. Take advantage of the results of Problems 489, 490. 
492. Use the result of Problem 490. 
494, 495. Use the results of Problems 492, 493. 
496. Argue by induction with respect to the number of columns of the 

matrix B, first having proved that if the adjoining of one column does not 
change the rank of B, then it does not change the rank of the matrix (A, B) 
either. 

A proof other than by induction can be carried out by using the Laplace 
theorem. 

497. Take advantage of the results of Problems 496, 492. 
498. From the matrix (E—A, E+ A) select a nonsingular square matrix P 

and consider the product (E-- A) P and (E+ A) P. 
500. Take advantage of the result of Problem 489. 
501. Prove the uniqueness of the representation in Problem 500 and thus 

reduce the problem to counting the number of triangular matrices R with a 

where 
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given determinant k. Denoting the desired number by F,,(k), prove that if 
k= a • b for relatively prime a, b, then Fn  (k)= F,, (a) F,, (b). Finally, construct, 
inductively, a formula for Fn  UP% where p is prime. 

505. Take advantage of the results of Problems 495, 498. Find the matrix P 
with the smallest possible determinant so that P AP is diagonal, and then 
use the result of Problem 500. 

517. Use the Laplace theorem and the Bunyakovsky inequality. 
518. Establish the equation I AA = I BB I • I CC I on the assumption 

that the sum of the products of the elements of any column of matrix B into 
corresponding elements of any column of matrix C is equal to zero. Then 
complete (in appropriate fashion) the matrix (B, C) to a square matrix and 
take advantage of the result of Problem 517. 

523. On the left of the determinant, adjoin a column, all elements of which 
 

are equal to 2 — • adjoin at the top a row, all elements of which (except the 

corner) are 0; then subtract the first column from all other columns. 
527. Take advantage of the results of Problems 522, 526. 
528. Establish a connection between an adjoint matrix and an inverse 

matrix. 
529. With respect to the minor formed from elements of the first m rows 

and the first m columns of the adjoint matrix, establish the result by consi-
dering the product of the matrices 

/ An 	• • • Am+1,1 	• • • An1 \ 

Al2 	• • • Am +1,2 11112 
/ au a12 . 	• • am  

Aim  .. • Am-FL m • • • Arun a21 a22 • • • a2n 

1 

\ ant ant • • • afirl 

I 	/ 
where Aik are the cofactors of the elements aik. 

Do the same for the general case. 
535. Represent A x B as (A x E,,,) • (E,,x B). 
537. First analyze the case when A11  is a nonsingular matrix and then 

argue by induction. Reduce the general case to this case, adding AE to the 
matrix. 

CHAPTER 5 

POLYNOMIALS AND RATIONAL FUNCTIONS 
OF ONE VARIABLE 

547. (a) Expand f (x) in powers of x-3, then substitute x + 3 for x. 
553. Differentiate directly and substitute x=1, then isolate the maximum 

power of x and continue the differentiation. 
555. Consider the polynomials 

(x)= of (x)— xf ' (x), f2 (x)= nfi  (x)— xf (x) 

and so on. 



567. Consider the function 	 or fi (x) 
f2 (x) 

12 (x)  
fi (x) 
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561. Prove by the method of mathematical induction. 
562. The nonzero root of multiplicity k— 1 of the polynomial f (x) is a 

root of multiplicity k —2 of the polynomial xf (x), a root of multiplicity k —3 
of the polynomial x [xf ' (x)]' , etc. 

Conversely, the general nonzero root of the polynomials f (x), xf ' (x), 
x [xf' (x)]' , . (a total of k —1 polynomials) is a root of f (x) of multiplicity 
not lower than k — 1. 

563. Differentiate the equation showing that the polynomial is divisible 
by its derivative. 

568. Relate the problem to a consideration of the roots 

p (x)=f (x)f '(x0)—f' (x) f (x2) 
where xo  is a root of [f (x)]2  — f (x) f" (x). 

569. Use the solution of Problem 568 and expand f (x) in powers of x— x0. 
576. Prove it like d'Alembert's lemma. 
580, 581. Represent the function in the same form as in proving the 

d'Alembert lemma. 
f a  k ) 

f (z)= f (a) + k̀ l 	(z—a)k [1+ co (z)], 	(a)= 0 . 

583. Find the roots of the polynomials and take into account the leading 
coefficients [in Problems (a) and (b)]. It is advisable, in Problem (c), to set 
x= tan2  0 when seeking the roots. 

589. Find the common roots. 
608. First prove that f (x) does not have any real roots of odd multipli-

city. 
623. Use the result of Problem 622. 
626. Use the fact that the equation should not change when —x is substi- 

tuted for x and —
1 

for x. 

627. The equation should not change when 1
x
- is substituted for x and 

1—x for x. 
637. Divide by (1 —x)n and differentiate m-1 times, assuming x=0 after 

each differentiation. Take advantage of the fact that the degree of N(x) is 
less than m and the degree of M (x) is less than n. 

642. Use the Lagrange formula. Perform the division in each term of the 
result and collect like terms using the result of Problem 100. 

644. Express f (x0) in terms of f (xi), f (x,), 	f (xd, using the Lagrange 
interpolation formula and compare the result with the hypothesis of the 
problem, taking into account the independence of f (x,), f (x,), 	f (xd. 
Then study cp (x)=(x—x1) (x—x2)...(x—xd, expanding it in powers of x— x0. 

645. Represent the polynomial xg in terms of its values by means of the 
Lagrange interpolation formula. 

648, 649. Construct an interpolation polynomial by Newton's method. 
650. Find the values of the desired polynomial for x=0, 1, 2, 3, ... , 2n. 
651. The problem can be solved by using Newton's method. A shorter 

way is to consider the polynomial F (x) = xf (x) —1, where f (x) is the desired 
polynomial. 

652. Consider the polynomial (x — a) f (x) — I. 

6. 1215 
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653. Construct the polynomial by Newton's method and, for conveni-
ence of computation, introduce a factorial into the denominator of each term. 

654. Consider the polynomial f (x2), where f (x) is the desired polynomial. 
655. The easiest way is by the Lagrange formula 

f (x)  v 	f (xk)  
cp (x) 	(x - xk) cp' (Xk) 

k= I 

(x1, x2, • • • , Xn are roots of the denominator). 
656. First expand by the Lagrange formula, then combine complex con-

jugate terms. 

657. (e) Use Problem 631. (f) Set 
a + x

= y. (d), (h) Seek expansions 

by the method of undetermined coefficients. Find part by the substitution 
x =x1, x2, ..., xn  after multiplying by the common denominator. Then diffe-
rentiate and again set x = xi, x2, • • xn• 

into 

partial fractions. 
665, 666. Take advantage of Problem 663. 
667. In Problem (c) expand the polynomial in powers of x-1. 
668. Expand in powers of x-1 (or put x=y +1). 
669. Set x =y+ 1 and use mathematical induction to prove that all coeffi-

cients of the dividend and divisor (except the leading coefficients) are divi-
sible by p. 

670, 671. The proof is like that of the Eisenstein theorem. 
679, 680. Assuming reducibility of f (x), set x= al, a2, ..., an  and draw a 

conclusion concerning the values of the divisors. 
681. Count the number of equal values of the presumed divisors. 
682. Use the fact that f (x) does not have real roots. 
683. Prove that a polynomial having more than three integral roots can-

not have for one of its values a prime in the case of an integral value of the 
independent variable; apply this to the polynomial f (x) -1. 

684, 685. Use the result of Problem 683. 
702. Construct a Sturm sequence and consider separately the cases of 

even and odd n. 
707-712. Derive recurrence relations between the polynomials of conse-

cutive degrees and their derivatives and use them to construct a Sturm sequ-
ence. In Problem 708, construct a Sturm sequence solely for positive values of 
x and use other reasoning to assure yourself that there are no negative roots. 
In Problem 709, construct a Sturm sequence for negative x. 

713. Use the fact that F' (x)=2f (x) f"' (x) and that f"' (x) is a constant. 
717. Factor g (x) and use the result of Problem 716 several times. 
718. Apply the result of Problem 717 to the polynomial xm. 
719. Use the fact that if all the roots of the polynomial aoxn+aixn-2+ 

+ an_ + an  are real, then all the roots of the polynomial anxn+ an_ 3xn-i+ . 
+a0  are real. 

721. Multiply by x-1. 
727. Prove by contradiction by taking advantage of Rolle's theorem and 

the result of Problem 581. 

1 
660. Use Problem 659. In Problem (b) decompose 	 

x2 - 3x +2 



CH. 5. POLYNOMIALS AND FUNCTIONS OF ONE VARIABLE 
	

163 

(x)  
728. Construct the graph of 9 (x)=

f' 
f 

(x) 
and prove rigorously that 

every root of [f' (x)]2  — f (x) f " (x) yields an extreme point for 9 (x) and con-
versely. Prove that 4, (x) has no extreme points in the intervals, between 
the roots of f' (x), that contain a root of f (x), and has exactly one extreme 
point in the intervals which do not contain roots of f (x). 

729. Use the result of Problems 727 and 726. 
730. Study the behaviour of the function 

(x) = 
(x)  + x +X 
	. 

f' (x) 	Y 
731. It is solved on the basis of the preceding problem for A=0. 
732. Prove by means of induction with respect to the degree of f (x), set-

ting f (x) = (x+ A) fi  (x), where L (x) is a polynomial of degree n-1. 
733. The proof is obtained by a double application of the result of Prob-

lem 732. 
734. If all the roots of f (x) are positive, then the proof is effected by ele-

mentary means, namely by induction with respect to the degree of f (x). Inc-
lude in the induction hypotheses that the roots x1, x2, ..., x,,_1 of the poly-
nomial b0+ blwx + ...+ b,,_ iw(n -1 

0 <x2 <x2 < ...<x,,_ 2  and xi>xi-2 w-2. 

To prove the theorem in the general case, it is necessary to represent wx' 
as the limit of a polynomial in x with roots not contained in the interval (0, n) 
and to take advantage of the result of Problem 731. 

735. Consider 	
(x)+4 (x)

where 
cp (x)-4 (x) 

	

cp (x) = a()  cos cp + 	+a" cos (9 + nO) x", 

ti) (x)=14 sin cp + . . . +b" sin (9 + nO) xn 

736. Consider the modulus of (x)+4 (x) where 
cp (x) - (x) ' 

cp (x)= ao+a,. x+ 	+at, x", 

Li) (x)=b0+b1 x+ ...+b,,xn. 

Having proved the real nature of the roots, multiply p  (x)+i  4  (x) by 
a— pi and consider the real part. Use the result of Problem 727. 

737. 
 

Decompose 
fix) 

 into partial fractions, investigate the signs of the 
cp x 

coefficients in this decomposition and study the imaginary part 

— i [cp (x) + 4 (x)]  _ (x) . 

	

p(x) 	p (x) 

f  
(x) 

738. Investigate the imaginary part of 

	

	by decomposing the 
f 

(x) 
 

fraction into partial fractions. 
739. Change the variable so that the given half-plane is converted into 

the half-plane Im (x) > 0. 
740. Relate to Problem 739. 

)2x"-' satisfy the condition 

6* 
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f'  (x  
741. Decompose 

f (x)
) 
 into partial fractions and estimate the ima- 

ginary part. 
743. Set x = yi and take advantage of the results of Problems 736 and 737. 
744, 745. Take advantage of the result of Problem 743. 

y  
746. Set x= 

1 +
y and use the result of Problem 744. 

1 —  
747. Multiply the polynomial by 1 —x and, setting I xI=p> 1, estimate 

the modulus of (1 — x) f (x). 

CHAPTER 6 

SYMMETRIC FUNCTIONS 

772. The sides of a triangle similar to the given one and inscribed in a 
1 

circle of radius —
2 

are equal to the sines of the angles of the given triangle. 

800. First compute the sum 

E (x+x,)k 

i=i 
and then substitute x —xi and sum from 1 to n with respect to j. Finally, de-
lete extraneous terms and divide by 2. 

801. The solution is like that of Problem 800. 
805. Every primitive nth root of unity raised to the mth power yields a 

primitive root of degree --11  , where d is the greatest common divisor of m and n. 

As a result of this operation performed with respect to all primitive nth roots 

of unity, all primitive roots of degree —
n 

are obtained the same number of 

times. 
806. Use the results of Problems 805, 117, and 119. 
807. It is necessary to find an equation whose roots are x1, x2, ..., xn. To 

do this, use Newton's formulas or a representation of the coefficients in terms 
of power sums in the form of a determinant (Problem 803). 

808. The problem is readily solved by means of Newton's formulas or by 
means of representing power sums in terms of the elementary symmetric func-
tions in the form of determinants (Problem 802). However, it is still easier to 
multiply the equation by (x— a) • (x— b) and compute the power sums for 
the new equation. 

809. The simplest way is to multiply the equation by (x — a) (x — b). 
818. Consider the roots of the polynomial f (x) as independent variables. 

Multiply the determinant of the coefficients of the remainders by the Vander-
monde determinant. 

819. First prove that all polynomials 41, have degree n-1. Then multiply 
the determinant of the coefficients of 4k  by the Vandermonde determinant. 

820. The solution is like that of Problem 819. 
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827. Use the fact that the mth degrees of the primitive nth roots of 1 run 

through all primitive roots of unity of degree d, where d is the greatest com- 

mon divisor of m and n. 
828. Use the result of Problem 827 and the fact that R (X Xn) is a di-

visor of R 	xn — 1) and R (Xn, xrn — 1). 
834, 835. Compute R(f' , f). 
839. Multiply by x —1. 
840. Multiply by x— 1 and use the result of Problem 835. 
843. Compute R (Xn, X,D. In computing the values of X;., for the roots 

of Xn, represent Xn  in the form 

) 
(xn —1) II (xa— 1) d  

considering that d runs through the proper divisors of n. 
844. Take advantage of the relation E;,----En —xn. 
845. Take advantage of the relation 

(nx — x — a) Fn  — x (x + 1) F,;+ - (a  — I) n•l • (a— n)  =0. 

846. Use the relations 

Pn= xPn_i — (n — 1) P._ 29 P;1= nPn—i. 

847. Use the relations 

xn,= nPn+ n2Pn_i, Pn= (x —2n + 1) Pn_ 1 — (n-1)2  Pn_ 2. 

848. Use the relations 

(4 —x2) FL+ nxPn= 2n Pn_ 1, P,,— xPn— 1+ Pn_ 2=0. 

849. Use the relations 

Pn-2x.P„,+(x2+1) P._ 2=0 , Pn= (n+ 1) Pn_i. 

850. Use the relations 

Pn —  (2n-1) xPn_ 1+ (n-1)2  (x2  +1) Pn— 2=0, P;i= n2Pn—i. 

851. Use the relations 

Pn —  (2nx+ 1) Pn_i+ n (n-1) x2P„_ 2= 0, 

p;i= (n+ 1) nPn _ 1.  

852. Solve the problem by Lagrange's method of multipliers. Write the 
result of equating the derivatives to zero in the form of a differential equation 
with respect to the polynomial that yields a maximum, and solve the equation 
by the method of undetermined coefficients. 

867. First demonstrate that there is only a finite number of equations 
with the given properties for a given n. Then show that the properties are 
not destroyed under the transformation y=xm. 



166 	 PART II. HINTS TO SOLUTIONS 

CHAPTER 7 

LINEAR ALGEBRA 

884. Use the results of Problems 51, 52. 
916. The smallest angle is to be sought among the angles formed by vec-

tors of the second plane with their orthogonal projections on the first plane. 
917. Specify the cube in a system of coordinates with origin at the centre 

and with axes parallel to the edges. Then take four mutually orthogonal dia-
gonals for the axes. 

918. Use the result of Problem 907. 
920. Prove by induction. 
921. Use the fact that V [Ai, ..., Am, B1, • • BO= V [Ai, • • • , Am] • V[B1, 

..., Bic] if A1 1B1 and use the result of the preceding problem. 
933. First find the eigenvalues of the square of the matrix. Then, to de-

termine the signs in taking the square root, use the fact that the sum of the 
eigenvalues is equal to the sum of the elements of the principal diagonal and 
that the product of the eigenvalues is equal to the determinant. Apply the 
results of Problems 126 and 299. 

934. Apply the result of Problem 933. 
936. Use the results of Problems 537 and 930. 
943. (1) Use the fact that the determinant of a triangular transformation 

is equal to unity. 
(2) Set 

Xis +2=--Xk+ 2= •••=Xn=0. 

945. For the new independent variable take the linear form whose square 
is added to the quadratic form. 

946. Isolate one square from the form f and use the result of Problem 945. 

948. Consider the quadratic form in the unknowns u1, u2, 	un: 

n 

f=  E cui + u2 xk+ + 
k=1 

where x1, x2, ..., x„ are roots of the given equation. 
950. Decompose f and p  into a sum of squares and use the distributivity 

of the operation (f, pp). 
965. In proving the converse, make use of the factorization X= AX+ 

+(E— A) X. 

966. Write the projection matrix in the basis obtained by combining the 
orthonormal bases P and Q. 

967. Be sure that AX • X=0 for any real vector X. Decompose the eigen-
value and eigenvector into a real part and an imaginary part. 

968. Multiply the matrix A on the right by P, on the left by 13-1, where P 
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is an orthogonal matrix, the first two columns of which are composed of nor-
malized real and imaginary parts of the eigenvector. 

970, 971. Use the fact that for the orthogonal matrix A, AX • AY= 
=X • Y for any real vectors X and Y. 

972. The proof is based on the results of Problems 970, 971 and, like 
Problem 968, on the results of Problem 967. 

975, 976. Go to the Jordan canonical form. 
978. Connect it with the solution of Problem 977. 
980. For necessity, see Problem 473. 
For the sufficiency proof, consider first the case when all diagonal ele-

ments of the matrix C are zero. Then use the fact that if C= X Y— YX, then 

S-1  CS= (S-1  XS) (S-1  YS)—(S-1 YS)(S-1  XS). 



PART III. ANSWERS AND SOLUTIONS 

CHAPTER 1 

COMPLEX 
NUMBERS 

5 
1. x= — —

4 
11 ' Y.—if • 

2. x= —2, 	
3 	 1 

y= 	z= 2, t= — 2  . 

3. I if n=4k; iif n=4k+1; —1 if n=4k+2; — i if n=4k+3; k an integer. 
5. (a) 117+44i, (b) —556, (c) —76i. 
6. If and only if: 
(1) none of the factors is zero; 
(2) the factors are of the form (a+ bi) and A (b+ai), where A is a real 

number. 

7. (a) cos 2a+ i sin 2a, (b) 
a2  —  b2 +i 2ab 
  

	

a2+62 	a2  + ba
, (c) 	

318 
44 — 5i 

(d) 
—1 

2
-
5

321
, (e) 2. 

8. 2in-2. 

9. (a) x=1 +i, y=i; (b) x=2+i, y=2—i; (c) x=3-11i, y= —3-9i, 

z= 1 —7i. 

1 . V3  
(b) 1. 

2 	2 ' 

11. (a) a2+1)2+c2 —(ab+bc+ac); (b) a3+b3; 

(c) 2(a3+63+c3)-3(a2b+a2c+b2a+ b2c+c2a+c2b)+12abc; 

(d) a2 —ab+b2. 

i 
12. (a) 0, I, 	

1 
 + 

i V3    ; (b) 0, 1, i, —1, 
2 	

2 , 
	

1 
2 	2 

15. (a) ± (1+i); (b) ±(2-2i); (c) ±(2—i); (d) ±(1 +4i); 

(e) ± (1 —21); 	(f) ± (5 +61); (g) ±. (1 +3i); (h) ± (1 —3i); 

10. (a) 
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(i) ±(3-i); (i) ±(3+i); (k) 	( 1/V13
2
+2  i  VV1-2  

2 

(1) ±V 8+21/ 17 ±i V -8+21/17; (m) ± (/4 	/i) ; 

	

1/2(±1+i)
, 
	1-Y3  

(n) 	2 - ' (o) (c' 	2 	 + 	2 	()' 	= 0. 

16. ±(13-0c0. 

17. (a) x1=3-i, x2 = -1+2i; (b) x1=2 + i, x2 =1 -3i; 
4-2i  

(c) x1=1  - t, .7c 2  - 
5 

18. (a) 1 ±2i, -4±21, (x2  - 2x + 5) (x2 + 8x+ 20); 

(b) 2 ±1 1/2 , -2±2i1/2, (x2 -4x+6) (x2 +4x+12). 

	

1r7- 	i 
2 19. (a) x= ± 	± 	• (b) ±4±i. 

2  

V9 P 

22. (a) cos 0+i sin 0; (b) cos t:+ i sin TC (c) cos 7± 	i i sin 	• 
2 	2 ' 

(d) cos arc
+i sin 	(e) 1/ 2 (cos 17-: +1 sin 7,44 I ; 

(f) vy (cos . 437` +i sin 3n); (g) 1/ 2 (COS 	+i sin 4) ; 

(h) 1/2-  (cos 7-t-417  +i sin -4-77'  ); (i) 2 (cos 	+i sin 731) ; 

2rc 	
sin 
	 4-rc 

(j) 2 (cos -3- +i sin -0; (k) 2 (cos 	+1 sin 	) 

(1) 2 (cos 3 +i sin -d; (m) 2 (cos 2-  i sin 7i) 

(n) 3 (cos 7C+ i sin >z); (o) 2 (cos 

(p) (1/24 V6) (cos ft2  +i sin 

1117r 
+i sin 

. 1 rc  
6 	6  

\ 
12 ) • 

Remark. Given here is one of the possible values of the argument. 

23. (a) 1/10 (cos 18°26'+i sin 18°26'); 

(b) 1/ .  (cos 345°57'48"+i sin 345°57'48"); 

1, 2, 3. 
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(c) V 5 (cos 153°26'6"+i sin 153°26'6"); 

(d) 1/-5 (cos 243°26'6" + i sin 243°26'6"). 
24. (a) A circle of radius 1 with centre at the origin. 

TC 
(b) A ray issuing from the origin at an angle of 	to the positive direction 

	

of the axis of reals. 	 6 
25. (a) The interior of a circle of radius 2 with centre at the coordinate 

origin. 
(b) The interior and contour of a circle of radius 1 with centre at the point 

(0, 1). 
(c) The interior of a circle of radius 1 with centre at the point (I, 1). 

3 	
4 
3 

26. (a) x= —
2 

— 2i, (b) x= +i. 

27. The identity expresses a familiar theorem of geometry: the sum of 
the squares of the diagonals of a parallelogram is equal to the sum of the 
squares of its sides. 

29. If the difference of the arguments of these numbers is equal to n+ 2kn, 
where k is an integer. 

30. If the difference of the arguments of these numbers is equal to 2kn, 
where k is an integer. 

34. cos (9+ cP)+i sin (9+ 4)).  

35 2  [cos (297— 12 )+i sin (2<p — 

36. (a) 2'2(1 +i), (b) 	 (c) (2 — 1/ 3 )12, (d) —64. 

38. cos 
nn 

 +1 sin —
3

. 

39. 2 cos  23" 

40. 

 

Solution. 1+ cos a+ i sin a 
a 	 a 

=2 cosy —2- + 2i sin 
a 

cos -f  =2 cos i (cos 2 +i sin 2 ); 

(1 +cos a + i sin a)" = 2n cos" ci (cos 	+ i sin 2I . 

43. (a) —i, 1/ 3 +i 	1/ 3 +i  • 

	

2 	' 	2 	' 

(b) —1+i, 1+1/ 5-  .4_ 1/3 -I 	I -1/ 3 	1 +1/  . 

	

2 	' 	2 	
i
' 	2 	2 	1;  

(c) 1+i, 1— i, —1+i, —1— i; 

(d) 1, —1 — 
1 4  la 	1 . V 3 

	1+. 
 V 	

1
T  1 . 	 

; 

	

2 	2 ' 	2 	2 ' -2 +1 	2 ' 2 	2  

(e) 11/3,   3+iia-3+fra  

	

2 	' 	2 	' 	2 	2 
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6 

44. (a) 	(cos 8°5'18"+i sin 8°5'181 ek,  
where ck= cos 120°k +i sin 120°k, k=0, 1, 2; 

6 

(b) 1/10 (cos 113°51'20" + i sin 113°51'20") ek, 

where ek=cos 120°k+ i sin 120°k, k=0, 1, 2; 
10 

(c) 1/13 (cos 11°15'29"+ i sin 11°15'29") ek, 

where ek= cos 72°k+ i sin 72°k, k=0, 1, 2, 3, 4. 

45. (a) 
1 

12 	
( cos 24k + 19 n+i sin  24k + 19 

72 	 72 
V 2  

where k =0, 1, 2, 3, 4, 5; 

, (b) 16-  
1 	( os 24k+5  

96 	
n+ i sin 	-is c 	

24k +5 \ 
96 	) 

1/2 

where k=0, 1, 2, 3, 4, 5, 6, 7; 

(c)  
12i 

	/ 	24k + 17 	24k + 17  
cos 

72 	
n +i sin 	 

7c), 
72 

-1/ 

where k=0, 1, 2, 3, 4, 5. 

+i sin (cos 46. f3 
2krc 	2k7c  \ 
n nr 

where k= 0, 1, 2, .. ., n- 1. 

47. (a) Solution. Consider (cos x+i sin x)s. By De Moivre's formula, 

(cos x+i sin x)6=cos 5x+ i sin 5x. 
On the other hand, 

(cos x+ i sin x)5 =cos6  x+ 5i cossx sin x-10 cossx sins x-10 i cos2 x 

sins x+ 5 cos x sins x+ i sins x= (cossx-10cossx sins x + 5 cos x sins x) 
+1(5 cossx sin x-10 cossx sins x+ sing x). 

Comparing the results, we have 

cos 5x=cos6  x- 10 cosi' x sins x+ 5 cos x sinsx; 

(b) coss x-28 cosex sins x+ 70 cos4 x sin4x-28 cog x sing x + sins x; 
(c) 6 cossx sin x-20 cossx sins x +6 cos x sinsx; 

(d) 7 cos' x sin x-35 cossx sinsx+ 21 cog x sins x-sin'x. 

48.  2 (3 tan cp - 10 tans + 3 tang  9) 
1-15 tans 9+15 tans 9 - tan6  cp 

49. cos nx=cosn x-qCOSn-  2 x sins x+ cosn-  x sinsx - +M 

where M=(-1) 2  sinnx if n is even, and 
n-1 

M= (-1) 2  n cos x sine-lx if n is odd. 
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sin nx=Cni cosn-1  x sin x— Cns cosn- 2 X sin' x+ 	+M 

n-2 

where M=(-1) 2  n cos x sine-1x if n is even, and 
n-1 

M= (- 1) 2  Sirin  x if n is odd. 

50. (a) Solution. Let a=cos x+ i sin x. Then 

a".= cos x-i sin x; 

ak =cos kx+ i sin kx; a-k =COS kx-i sin kx. 
,k 	 k 	—k ± 

Whence we have cos kx = 	; sin kx - a 
- 
2
a 

2  

a+ a" 
In particular, cos x- 	2 	

; sin x= 

0C-OL-1  )3  C(.3- 3a-F3a -1- a-3 	(a3-a-3)- 3 (a-a-1) 
sin3x = 	 

2i 	 -8i 	 -8i 

2i sin 3x- 6i sin x 	3 sin x - sin 3x 
sin3 x = 	 - 	  

-81 	 4 

(b) 
cos 4x-4 cos 2x+ 3 ; (c)  cos 5x +5 cos 3x+10 cos x ; 

8 	 16 

(d) cos 6x+6 cos 4x+ 15 cos 2x +10  
32 

52. Solution. 

Cgt-p+Cfn  ip-i= (m 
- p) (m  - p -1) 	(m  -2p + I)  

P! 
(m-p -1) ... (m -2p +1)  

(p -1)! 

m (m-p -1) (m-p - 2) . . . (m - 2p + 1) 
P! 

Denote 2 cos mx= Sni; 2 cos x= a. Then the equation that interests us 
may be written thus: 

S.= an'- mam -2+ (qt....2 + Cm1  _3) am -4  

- 	+ (-1)P (Cfn-p+Crj-p-1) arn  -2P ± 

It is easy to show that 
2 cos mx=2 cos x • 2 cos (m-1)x-2 cos (m -2)x or, in our notations, 

Sm=aSm_i-Sm- 20 
It can readily be verified that for m=1 and m=2, the equation being pro-

ved holds true. Let us assume that 

S._1= am-  - (m - 1) am-  3+ (Cm2  _3+ C;r2 _ 4) am-5 

- 1)P (Cgi _p I + cf7,7,1, _ 2) am--2p-1 

a-a' 
2i 	' 
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Sm_ 2 = a"' — 2  — (M — 2)dn 4  ± (Cm2  _4 + _ 5) am — 8 

(Cfn--1C - i÷ C rn--2p —2) am -2P + . 

Then S.= a'n - ma"' —2  

. . . ( 1)P (Cfn —p _1 + 	+ 07'11P —1+ Cg?—p —2) am-2P + 

Bearing in mind that Cf;,=Cak _1+Ciǹl7.11., we get the required result. 

sin mx 
53.  si

n 	
(2 cos x)m-1- C,17,_ 2 (2 cos x)n-  8  

Sill X 

+ _ a  (2 cos x)"1-5  - 	+ (-1)P Cg, _p_.1 (2 cos x)m-2P-1  + 

 nn 	 2n 	nrc 
54. (a) 2 2  cos ?IC  , (b) 2 2  sin 	. 	56. n -I sin  6 • 

3 2  

59. (a) Solution. 

S=1+ a cos p+ a° cos 2cp+ . . . +ak cos kcp. 

Form T= a sin cp + a2  sin 2cp+ . . . + ak  sin ky; 

S + Ti = 1 + a (cos cp +i sin + a2  (cos 2cp i sin 2cp) 

+ . . . + ak (cos kcp + i sin kcp). 

Setting a= cos 9+i sin cp, we have 
ak-Fi,k+1_1 

S + Ti = 1+ acc a9 	 ak ak 	  
aa - I 

S is equal to the real part of the sum obtained. We have 

ak-Fi ,k+i_i 	a,-1 - I 	ak  + 2 ock_ak-F1 ock- as-1+1 

	

S-1-  Ti =    =  	 . 
aa - I 	as-1-1 	a2  -a (a+a-')+1 

Whence S= 
ak +2  cos kcp -ak +1  cos (k +1) cp- a cos  cp+ I 

• a2 -2a cos cp +1 

(b) 
ak + 2 sin  (cp+ kh)._ ak +1 sin [9+ (k +1) h] -a sin (cp - h)+ sin p 

 
a2 - 2a cos h 

2n +1 
sin 

2 
• 

2 sin x  

60. Solution. 

(c) 

T=sin x+sin 2x+ ...+sin nx; 

S= cos x+ cos 2x+ ...+cos nx. 
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x 	x 
Let a.= cos -2  - +i sin 	Then S + Ti= oc2  + 	. . . 	Man, 

1 2  co (ce _ n) 
_ = 	_ 

12 

n + 1  
sin 	x 

\ 
= I cos 	x+i sin 

n + 1 
 x 2 	 2 	) 	2 x 

sin —
2 

Whence T= sin 

nx 
n  + 1  sin 

2 x x 
sin —

2 

61. 2 (2—cos x) 
5-4 cos x 

sin (a + n 	
2 	

1  h) sin 2 	. 

	

64. (a) 	 , 	i
h 	

n s even, 
cos 

— 

	

cos (a + 
n 	

2 
1 
 h) cos 

nh 
2  , if n is odd; 

cos
h  

 — 
2 

S+Ti=ccz 

(b) 
cos \a+ 	h)  

cos — 
2 

nh 
sin 2 

if n is even , 

   

sin (a + 
n — 1  h\ 

2 	) 

cos y 

cos 
nh 
2 if n is odd. 

   

66. (a) 2" cos" —

x 

cos 
n+2 	x; (b) 2" ens" x  sin 

n+ 
2x. 

2 	2 	 2 	2 

(n + 2) x ; - , (b) 2" sin" 2  sin 
x 	(n + 2)  x — nrc 67. (a) 2" sin" 	nn  — cos 

2 	2 	 2 

68. The limit of the sum is equal to the vector depicting the number 
3 + i  

5 

sin  4nx  
69.  

2 	4 sin 2x • 
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n +1 	
nx 
n 	3  (n + 	1) 	3 nx 3 cos 	x sin 	cos 	x sin 2 	2 	 2 	2 

x 
	+ 	 3x 	' 

3x 4 sin 2 	 4 sin —2 
(n+ 1) cos nx-n cos (n +1) x-1  

4 sine 
2 

4 sin 	 4 sin -2- 

n+ 1 	, 
2 x siǹx 

• 2 	
sin 3 (n + 1)  x n  3  nx 

2 3 sin 	 
2 

(b) 	  
(n+ 1) sin nx - n sin (n + 1)x 

• 

73, ea (cos b + i sin b). 

3+i -1/ 3 	3+54 3  

	

75. (a) -3, 	- 	; (b) -3, 
2 	 2 

(c) -7, -1+4 3 ; (d) -1, 	5±5i  	(e) 2, -1+1/S- 

3 	3 
3 	3 	 3 	3 

(f) -1/ 2 - -1/4 , 1/71.-1/ - 	11/ 3  (-1/T+ 1/fl; 
2 	2 

(g) -2-1/3 	21/32 	- 
'1/9  +i1/3  (1/9+ 2  -1/3); 

(h) 1 - -1/ 	2+ -
2

I/ 2  + -1/ 4 	1/3- (-1/71 -1/; 
2 

(i)  
3 	3 

-2-1-1a+TrT  i  
2 	- 2 

(j) 2, -1±2i 	; (k) 2, -1 ±34 3 ; (1) 2, -1+41 -1/ 3 ; 
(m) 1, -2±1/3; (n) 4, -1 ±4i-ra ; (o) -24 1, i; 
(p) -1 -i, -1-i, 2+2i; 

(q) - (a+ b), a+2  b  + 1  2 3  (a- b); 

3 

(r) - Vf 2  g+bil fg9, 

	

3 	3 	 3  

allig+171/ fg2 	/ 3  (a-1/ fag-b e  fga); 2 	2 

x 4 sins 2 
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(s) 2, 1149, —0,2541, —I, 8608; 

(t) 1,5981, 0,5115, —2,1007. 

76. Solution. 
xi — x2= oc (1— co) + (3 (1— co2)= (1— co) (a— (30); 

xi —x3= a (1— co2)± f3 (1— co)= (1—  co2) (a— (30; 

x2 —xa  =a (co— co2)+ (3 (cot— co)= (co — co2) (a— (3); 

(xi—x2) (x1—x3) (x2—x3)=3(co —6.12) (00-133); 
(x1—x2)2 (x1—x3)2  (x2 —x3)2 = —27[00+( 3)2-400(31= —27q2-4p3. 

77. Solution. 
The cubic equation mentioned in "Hints to Solutions" z2-3(px+ q)z+ 

+ x3  +113  —3qx —3pq = 0 having the obvious root z= —(x+p). The other roots 

of this equation are z2,3= 
x+p  ± -1/ — 3 (x  —p)2 + 128  By virtue of Problem 

76, the left member of the equation under study may be given as 

— 
2
17  (z5— z3)2 (z3—z1)2  (z1—z2)2  

— 	12q  12 

— 
- 

1 [-3;(x —p)2 + 128] [ 3 (x+P)+ V 
2

3 (x — p)2 
 

[  3 (x+P)— V  —3 (x—p)a+12q  
2 

= [(x—p)2-4q] (x2+Px+pa— q)  
whence the roots are readily found: 

x1,2 =p±2 -1/q, x3 —x4 — 
—p+  4q — 3p2  

2 

—p —1/  4q-3p2  
X5 = X5 = 

2 

78. The left member will be represented in the form 

ce6+ 135+5(a+ (3) (.2+4 + (32 —a) (a(3— a)— 2b =0. 
Answer. x=a+ (3 where 

5  	5 	  

/ b+-1/ 1.2  —a3, p=1/b— b2 —a5; aft= a. 

79. (a) ± VI; 1 ± i VT; (b) — 1 ± VT; ± i V 3 ; 

(c) ± -1/2, 1±i1/ 3 	(d) I -I V 5 	+  
2 	 2 	2 

	

(e) 
1  ± T3  ; 1  ±i; (f) 1  -±" 	; 

5+i lrf  
2 	 2 	2 

x 
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(g) +i, 	 (h) -1-175 1 ±i1r7  
2 

(i) ±i, —1±0/6;(j) —2+21/2, —1+4 
(k)1, 3, 1±1/ ; 	(1)1, —1,1+2i; 

(ln) 1+±1/22+21/5 	1-1/5+.1/22-21/5  
4 	 4 

 

    

(n) 
1+1-/5±1/30-61/ 5  

4 
1—V5±1/30+6Vg  

4 

(0 1+V2  ± I -,/ 	 

	

V —I —21/2, 
1—V 	

I V —1 +21/1; ' 	2 	 ± 2  

(p) I +1/-7- ± 1/6+21/7, I—V7 +V6-21/7 ; 

(c)  1±V41/3 —3 	1±V —4V3-3  , 
2 	 2 

(r) 1+1/5±V-2 —61/5 	1-1/5±V-2 +61/5  
4 	 4 

(s) 1+1/2 ±V-5+21/2 	1—/±j/-5-21/2 .  
4 	 4  

(t) 1+1/3±1/12+21/3  
, 	1—V3 ± V12-21a 

4 	 4 	• 

80. Solution. 
x2-faxa+bx2+cx+d 

= (x2+ 
a 
 x+ 2 +mx+n) (x2 + a  x+ 2 —mx—n); 

xi  X 2- 2  +n; x3 x4= 	—n; A=xix2+x3x4 . 

81. (a) ±1; (b) 1, 	± 	; (c) ±1, ± i; 

(d) ± 1, 	1 	"  • 	+1 ±i, ± " (1+i). 
±i 	2 	(e) 	 ' 

1 (f) ± 1, +i, ± 2 +i 21/3  , ±  2  ± 2  ; 

(g) ± I, ± ± 2 ± 	, ± 1/22  (1 ±1), ± 2  ± 

+V2 V6-1/2 	1/6+1/2  +i  	 +i 4 	 4 	 4 	 4 
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1 	-1, 	. 	 1 	V 3  . 
82. (a) -1; (b) - 	±i 	 , (c)  ±1; (d) 	+i 

2 	2 	 2 	2 ' 

-ii 	 i 
(e) ± 2 	

-1/- 	
2 

	

(1 ±i); (f) ± 	2 	± 	; 

(g) ± 
1/+1/  +i “---VT  + V-6--V 2  +i V 6 +V 2  , 

4 	 4 	 4 	 4 

83. (a) 20, 20, 180; (b) 72, 144, 12. 
1C7T 

84. cos 27  +i sin 
2lac 

	, where k=1, 2, 3, 4, 5, 6. 
7 

85. (a) Denoting ek= cos 
2krc

16 ' 
2krc  

16 
+i sin 	we get the following: 

eo belongs to exponent 1, 
es  belongs to exponent 2, 

£4, C12 belong to exponent 4, 
ea, e6, C101 e14 belong to exponent 8, 
the primitive 16th roots are EEEEEE -1, -, 5, 73 	9, 11, e12, 15• 

krc 
20 

(b) Denoting Ek= cos 220 	 +i sin 
21or 	, we find that 

E. belongs to exponent 1, 
eio belongs to exponent 2, 

En  en  belong to exponent 4, 
en es, C12, C16 belong to exponent 5, 
en C6, e14, els belong to exponent 10, 
the primitive 20th roots are en ea, Cif C9, Cu,  C13, C17, e19. 

(c) Denoting Ek  = cos 2127  i  sin 224"  , we find that 

e5  belongs to exponent 1, 
en  belongs to exponent 2, 

En  En  belong to exponent 3, 
e6, en  belong to exponent 4, 
en en belong to exponent 6, 

E., en  els, en belong to exponent 8, 
en £m £14, e55 belong to exponent 12, 
the primitive 24th roots are et , E E E - if -52 -if -112 -13, -17, -19, -33. 

86. (a) Xi  (x)= x - 1 ; (b) X2 (X) = X + 1 ; 

(C) X3  (x)=x2 +x+ 1 ; (d) /4 (X)=X2  + 1; 
(e) X5  (x)=x4+x2 +x2+x+1; (f) /6 (X)=X2  ---X+ 1; 
(g) X, (x)=x6+x6+x4+x3+x2 +x+ 1; (h) A'. (x)=x4+ 1; 
(i) X. (x)=x2 +x2 + 1; (j) Xi° (x)=x4-x2 +x2-x+1; 
(k) 	(x)=x10+x9+x8+x2+x8+x5+x4+x3+x2+x+1; 
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(1) X12 (X)=X4  — X2  + 1 ; (m) Xls (X)=X8  —X7  ±X5 — X4+X3  X + 1 ; 

(n) X105 (x) =x48 4_ x47 ± x46 x43 x48 2 x  41 x 40 x89 + x86 +x85 

+ x84 +x83 + x82 +x31 x28 x28 

— X24 --)C22 — X80+X"  +X16  +X"  +X"  ±X13  ±X12 — x9  — X8  

— 2.e —.X6 — X5  +X2  +X+ 1. 

2  
87. 1— c  

88.0 if n> 1. 

89. n if k is divisible by n; 0 if k is not divisible by n. 

90. m(x'n+1). 

91. — 
1 1  —lc 

if e01; 
n+ 1)  if a=1. 

2 

92. n2  (1 — + 2n c=1. 0  _ 0, 	
2 

if col; n (n+ 1 )( n + 1) if  
6 

93. (a) — i ; (b) — i cot vn  

94. (a) 1, (b) 0, (c) —1. 

95. x0=1; 

	

27c 	2n 	V 5 —1 	i . / 	 
xi  = cos 	

5 	4 +i sin 	= 	+ 4  V10+21/5 ; 

x2=cos 5 +i sin 5  4Tc = 
1/. +1 

 + 
i 
4 ' IV 10-2 V 5 ; 4  

	

6n 	. 6 
—5 
n 	V 5 +1 	i , 1 	 

V 10 —2 1/5; x3 = cos 
5 
 + i sm 	= — 

4 

	

8n 	 “ 	i -,/ 	 
10+2 V 5 . x4 = cos 	+i sin 

8n 
= 	 v 

	

5 	5 	4
-1 	

4  

	

— 1
' 	

V10  
96. sin 18°— Vg 
	

cos 18°=  
4 	

+ 
4
21/5 

 

97. Solution. Divide both sides of the equation x6 +x5+x4+ x2+x2+x + 1= 
=0 by e. A few simple manipulations yield 

	

1 3 	 2 
(X+ 	+ (X+ -Ix-) —2 (x+ Ic ) —1=0. 

The equation z2+z2-2z— 1 =0 is satisfied by z=2 cos —4" = —2 sin —
14 • 7 

Whence t= 2 sin 
14 

 satisfies the equation t3— t5-2t+ 1 =0. The resulting 

equation is the simplest in the sense that any other equation with rational 
coefficients having a common root with it is of higher degree. The proof of 
this fact requires information from subsequent sections of the course. 
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98. Solution. Let n=2m, then the equation xn - 1 =0 has two real roots, 
2kir 

	sin 	
 . 1 and -1 and 2m-2 complex roots. Here ek =cos 	 +i sin 	is as- 

sociated sin  with e2„,_ k= cos 	 + i sin 	 We thus have 

	

2m 	 2m 

xvn - 1 = (.0 - I) (x - s1) (x - Ez.) (x - ea) (x C2) 

• • • (X CM -1) (X C M -1); 

X2M  1 = (X'  - 1) [X2  - (ei  +El) x+ I] • • • [x2-(Em-i+ 
m-1 

x2m - 1=(x2 - 1) fl (x2 -2x cos n. +1). 

k= 

If n= 2m +1, then in analogous fashion we obtain 

x2.+1_1=(x_1) n  (x2 - 2x cos  2kTr  +1) . 
2m+1 

k =1 

99. Solution. (a) We have 

m- I 

Xx2271 = n (x2-2x cos : +1) • 
k =1 

m-i 

	

Putting x=1, we get m=2"2-1 	(l _cos 

k =1 
m — I 

or m=22 (m --1-) 	sine 
2m 

 and finally, 

k =1 

m_i 

vm  _ n 
2m-i 

k = I 

krc 
sin 2m . 

Formula (b) is obtained in similar fashion. 
n-1 

100. Solution. In the identity xn 1 = n  (x_.,) 
k =0 

where ek  = COS 
2kir 

+i sin an 	, put x= — _a . We get 

n— 
a 

(- 1)n
n  

— - 1 = (- on n (1;  ek) and so on. 
bn 

krc \ 
nz 

k=0 



n-1 n— 

H 
k=0 s=0 

n-1 n-1 

[t k 
ek 

—1)1 to  —1 	 [t_ ek (es— l)] 
k=0 s=0 

1 
— tn  
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101. Following the suggestion made in "Hints to Solutions", we get 

n-1 

	

cos ne + i sin ne —1=11 (cos 	i sin 0— ek), 

k=0 

n-1 

cos ne—i sin ne —1= n (cos o_i sin 0— ek). 

k=o 

We get the required result by multiplying together the last equations. 
102. Solution. 

n-1 	 n--1 n—, 

(t ekr  —1 	 — 1  J] H t 	 (t+Sk—ES)  
k=0 	 k=0 s=0 

n-1 n-1 	 n-1 
1 	 1 

= — Li Li  [t — ek (Es  — 1)]= 	n[ [tn_ (€s_ On ] to 
 

s=0 k=0 	 s=0 

n-1 

[t n  — (e k — I )1- 

k= 

103. We have I x I=Ix 1n-1, hence I x 1=0 or I x 1=1. If I x1=0, then 
x=0. But if I x1=1, then xx=1. 

On the other hand, x.Tc=xn. Hence, xn=1. Thus 

1crc 
x=0 and x= cos 

2kn 
 +i sin 

2 ,  k=0, 1, 2, ..., n-1. 

The converse is readily verified. 
n 

104. Solution. If z satisfies the given equation, then z — a  
z—b 

The locus of points the distance from which to two given points is the given 
ratio is a circle (a straight line in a particular case). 

105. (a) We have x +  1 21crc 	2krc — ck  where ck  = cos 	 + sin 	 
x-1 

k= 1, 2, ..., m-1. Whence x= ek+ 1   . Transformation of the last ex- 
ek —1 

pression yields xk= i cot —krc, k= 1, 2, ..., m-1 ; 

kir (b) xk =cot —, k= 1, 2, ..., m-1; 
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(C) X k = 	n 

en/ 2 — 1 

where ek = cos 
2krc 	2krc 

+i sin 	 k=0, I, 2, . . . , n— 1. 
n 	 n 

106. Solution. Let A= cos cp+i sin cp. Then 
1+ix 

=12  where 71k=cos 
y+2/cir 

 +i sin 
y+21crr , k=0, 1, ... , in-1 

1— ix 	k 	 2m 	 2m 
Whence, 

x= 	712k —1 	Yak -71k  I  
/ (74! +1) — i(7)k+7V) —tan  

cp.+ 2krr 
2m 

107. Solution. Using the hint, we have 

S+Ti=1..t (1 + Ax)a, S 	(1 -Joc)n 

where A= cos a+ i sin ; 1.i= cos cp+ i sin cp. Whence 

2S = 11  (1+ Ax)a+P. (1 +)\x)11. 

The equation becomes (1+ x)" + 17. (1 	= 0 ; 

X k= 

 

sin 
(2k  + 1) n — 

2n 

 

k = 0, 1, 2, ..., n-1. 
sin n 

( k + 1)  rc — 2p — 2na 
2n 

108. Solution. Let ma= I, pb= 1. Then („p)4b=(aa)b . (pb)a =1.  

109. Solution. Let e be the common root of xa— I and x5 — I ; s is the ex-
ponent to which e belongs. Then s is a common divisor of a and b and can 
therefore only be equal to 1 and e= I. The converse is obvious. 

110. Solution. Let ak  and ps  be roots of 1 of degree a and b; k=0, 1, 2, 
..., a— I ; s=0, 1, 2, ..., b— 1. On the basis of Problem 108 it suffices to show 

k  that all ak  Ps  are distinct. Suppose that al, 133, =ak.  ps.. Then —L = P s ,  
ack. 	Ps, 

i.e., oci= pi. On the basis of Problem 109, a= pi= 1, i.e., k1= k,, s1= se. 
111. Solution. Let a and p be primitive ath and bth roots of 1. Let 

(ap)s=1. Then ad's  = 1 , pas  = 1. It thus appears that bs is divisible by a and 
as is divisible by b. Hence, s is divisible by ab. 

Leta be a primitive abth root of unity. Then X-= ps (Problem 110). Let =0,19a,6 (ps)a,b = ak belong to the exponent al  < a. Then V .I. 	 I which is im- 
possible. In the same way it may be shown that Ps is a primitive bth root of I. 

112. It follows directly from Problem 111. 
113. 

 
Using the hint, write out all multiples of p that do not exceed pm. 

Namely, I • p, 2 • p, 3 • p, 	p"-1  • p. It is immediately seen that there are 
pc- such numbers. Whence y (p")=p"—pa —'=pa (1— 1  ). On the basis 

a 
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of Problem 112, cp (n) =cp (Pi') 	cp (pck`k)= n (1 — 	) (1 	) 
PI 	P2 

(1— --1 P k 

114. Solution. If e is a primitive nth root of 1, then e, the conjugate of e, 
is also a primitive nth root of 1. Here, e ± 1 since n> 2. 

115. Xp  (x)=xP-'+xP-2+ . . . + x+ 1. 

116. Xpm (x)=. x(P-
1) ptn I 

 +x (P  2) /In I + 	xpin + 1
. 

 

117. The suggestion can be utilized immediately on the basis of 
Problem 111. 

Let al, oca, 	a9(n) be primitive nth roots of 1. Then —al, — oc„ 	—04.9(„) 
are primitive 2nth roots of 1. We have 

X2. (x)= (x+ al) (x+c(2) . . . (x+ot,p(„)) = (— 09(0  ( 	— CO . . . 	— MVO) 

or (Problem 114) X2,, (x)= X,, (—x). 

118. Solution. Let ek= COs 
nd 
	2kn 

i sin 	be a primitive ndth root 
nd 	nd 

of 1, that is, k and n are relatively prime. Divide k by n, this yields k= nq+ r, 

2 	
2ris 	

2 rc+ 2rrc qrc-F 	 
where 0 < r <n. Whence ek= cos 	72 

 +i sin  q 
	

that is,d 

ek  is one of the values of the dth root of 	2rrc 	2rn = cos 	+ i sin 	 
n 	 n ' 

r is a primitive nth root of 1, since every common divisor of r and n is a com-
mon divisor of k and n. 

Now let n r = COS 
2rrc 	2rrc 

i sin 	be a primitive nth root of 1, i.e., r 

and n are relatively prime. 
2rrc 	 2ris 

2
n 	2-rc (r + nq)  Form eq  cos  	

qrc 
+ i sin 	— cos

d 	 nd 
27c (r 

nd 
+ nq)  

+ i sin   where 	0, 1, 2, ..., d —1; eq  is a primitive ndth 

root of 1. Indeed, if r+ nq and nd were both divisible by some prime p, 
then p would divide n and r, but this is impossible. 

119. Solution. Let e2, e2, 	€9(,,,)  be primitive roots of 1 of degree n'. 
cp(n') 

Then X,, (xno= fl (x" - ek). Furthermore, let (x — ek, i) (x — ek, 
k =1 

... (X— ek,,,-) be a factorization of x"— ek  into linear factors. Then X;, (xn") = 
Ic=--cp(n') 
i=n" 

ek, ). On the basis of Problem 118, each linear factor x— ek, 

k=1 
i=1 



(2) Let n= 2k, then Xn = 

n  
xn- 

=X 2 + 1 and Xn  (-1) is equal to 0 n 
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enters into the factorization of X,, (x), and conversely. Besides, since 
p (n)= n"cp (n'), the degrees of X,, (x) and Xn,  (el are equal. 

121. Solution. The sum of all nth roots of 1 is zero. Since each nth root of 1 
belongs to the exponent d, which is a divisor of /1, and conversely, it follows 

that E µ  (d)=0. 
din 

122. Solution. Let ek= cos —
210r 

 +i sin 
2  
—

k
—

rc  belong to the exponent 

	

n 	n 
n1. Then the factor x— ek  will enter into the binomials Xd  —1, where d is 
divisible by n1  (and only such binomials). Here, if d runs through all divisors 

of n that are multiples of n1, n  runs through all divisors of —n 
d  ni  

Thus, x— ek  will enter the right side with exponent E (.,. (di). This sum is 

d 
equal to zero if —n  01 and to 1 if n=n1. 

n, 
123. Solution. If n=p'l where p is prime, then X,, (1)=p. If n=p7' 

• • •PZ k, where pi, Pi, • . pk  are distinct primes, then (Problem 119) X,, (1)= 
= Xn,  (1), where n' 	Pi ••• Pk. 

Now let n=p1, Ps...Pk; 	2 ; 	n,=—. Note that in order to obtain 
Pk 

all divisors of n it is sufficient to adjoin to all divisors of n1  their products 
into pk. Therefore 

CI) 
Xp  (X)= fj (xd_i)  µ d  

din 

L2 = 	(xd_ (d) 

din, din, 

dp , 
(x K  —1) 	"P  k 

= [Xi, (XV I' • A'n, (P). 
Whence X„ (1)=1. 

124. Solution. (1) Let n be odd and greater than unity. Then (Problem 117) 
Xn (-1)= X2.(1)=1. 

x 2 — I 
if k=1 and to 2 if k >1. 

(3) Let n=2n1  where n1  is odd and greater than unity. Then (Problem 117) 
Xn(-1)=Xn (1) and, hence, Xn  (-1) is equal to p if ni=px (p prime) or is 
equal to 1 if n1 0p'. 

(4) Let n = 2k n1, where k >1 and ni =PT' Pc2'2  • • • /4s (P1, P29 • • • 	are 
distinct odd primes). In this case (Problem 119) Xn  (x)= X2pp,  ps  (x'), whe- 

re  A=  2k —1 pT —1.. pis — I . Whence it follows that X„ ( — 1)= X,, (1) = 1. 
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125. Solution. Let el, e2, • —, e,p(n) be primitive nth roots of 1: 

rt-t  (n)12  (e+ 	±  • • • +  eq) (17 ) )  
s=e1 e2 + e3+ • . • + e<p(n) —1 • e<p(n)= 	 2 

(1) Let n be odd, then c7 is a primitive nth root of 1 and e7= e3 for i=1 
only. Therefore 

€!-E 	+ . . . + e,p2  (n)  = 	(n) and s= 	(n)I2 	(n)  
2 

(2) Let n=2n1, n1  is odd. In this case — ei  (Problem 111) is a primitive nith 

root of unity and therefore [see (1)] 	+ . . . + 	( n)= 0'0= — (n). 
(n)12  + (n) Thus, in this case s— [P.  

2 

(3) Let n= 2kn1  where k> 1, n1  is odd. In this case ea belongs to exponent -122-- . 

On the basis of Problem 118, we assert that el, £2, • • • , eq, (n) are square 

roots of rhoh, 	• where x)1,112, 	
)1(P  G) 

n  are primitive 	th roots 
G)  

of 1. Whence it follows that 
n 

	

+ + . . . + e92  Kn) =2  (7)1+712 + • • • + 	n 	) 
9  (0) 

= 	y ; 

n 
S = — tot 	. 

2 
n —1 	Y n —1 	n —1 

126. Solution. S= E cx.= E ex.= E e( y+s). 
x=0 	x= y 	s =0 

for arbitrary integral y: 
n-1 	 n-1 	 n-1 	n-1 

E e —Y% S' S= E .—Y°s= E (z—y.. E .(y+s).) 
y=0 	 y =0 	y =0 	s=- 0 
n-1-1 	 n-1 	n-1 	 n-1 

= E 
n
E  e2ys -Fs° = E ( es' • E c,,,$)  = n+ E  

y =0 s = 0 s =0 y =0 s = 1 
n-1 

. E  (e2sN
)
y 
=n for n odd; 

n)2 

SS' =n  +nek21 =n  [1+ (-1)1 

n-1 

for n even (since E €2sy=0 for 2s not divisible by n). 

y = 0 
To summarize, I S I = 1/n if n is odd, and I S 

if n is even. 

   

cs. 
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CHAPTER 2 

EVALUATION OF DETERMINANTS 

127. (a) 5, (b) 5, (c) 1, (d) ab — c2  — 	(e) a2 p2— y2_ a2, (f) sin (a—(3), 
(g) cos (a + 	(h) sect a, (i) — 2, (j) 0, Zk) (b — c) (d — a), (1) 4ab, (m) — 1, 

(n) —1, (o) 
1 +i2  3 

128. (a) 1, (b) 2, (c) 2a2  (a+ x), (d) 1, (e) —2,  (f) —2 --V 2 , 
(g) —3i 1/ 3 , (h) —3. 

129. The number of transpositions is odd. 
130. (a) 10, (b) 18, (c) 36. 131. (a) i=8, k=3, (b) i=3, k=6. 

n (n-1) 	n (n 1) 
132. q. 133. 	134. (a) 	2 	, (b) 	2 	. 

n (3n+ 1) 	3n (n— 1) 
135. (a) 	2 	, (b) r 	 2 	• 

136. Consider a pair of elements ai and ak, where i <k." If these elements 
do not form an inversion, then a i  will precede ak  when the permutation re-
turns to its original order, and, hence, the indices will not yield an inversion. 

But if the elements a1  and ak  form an inversion, then ak  will precede ai  after 
the permutation is returned to its original ordering and, thus, the indices i 
and k will yield an inversion. 

137. In both cases the permutation is odd. This is due to the fact that the 
original arrangement is obtained from the other one by means of an even num-
ber of transpositions. 

138. (a) With the + sign; (b) with the + sign. 
139. (a) No, (b) yes. 140. i= 1, k=4. 
141. a11a23a3sa44, a12a20/34a41 and  a14a23a31a4a• 

142.  —au  a2c1 

a31 

a41 

a6i  

a32 

a42 

a5a  

as6  

a45 

a66  

143. With the+ sign. 144. With the sign (— OC727. 

n (n-1)  

146. 2, —1. 147. (a) n!, (b) (— 1) 	2 	, (c) nI. 
n (n±1) 	 n (n+1)  

148. (a) (-1) 	2 	(n!)n+1 (b) (_ 1) 	2 	oon-I-1.  

149. Solution. Interchanging rows and columns : (1) does not change the 
determinant; (2) makes the determinant a conjugate complex number. 

150. Solution. Interchanging rows and columns: (1) does not change the 
determinant; (2) results in the determinant being multiplied by —1. 

n (n-1)  

151. (— 	A. 152. Is multiplied by (— I) 2  
153. Zero, since the number of even permutations of n elements is equal 

to the number of their odd permutations. 



CH. 2. EVALUATION OF DETERMINANTS 	 187 

154. (a) xi= ai; x2= a2; ...; xn_ = an-1; 

(b) x1=0; x2 =1; ...; xn  _2= n-2; 
(c) xi= ai; x2 = a2 ; ...; xn - = an -1. 

156. 0. 158. 
(mq_np)  la GI 

I c d 

1 	1 	 1 
159. (a) ai  az  . . 	(-a]. + --

az 
+ . . . + -) 

an   
n (n-1)  

(b) ( -1) 	2 	ai a2 • • • a,, 

160. 3a- b + 2c + d. 161. 4t-x-y-z. 162. 2a- b- c- d. 

163. -1,487,600. 164. -29,400,000. 165. 48. 166. 1. 
167. 160. 168. 12. 169. 900. 170. 394. 171. 665. 

172. 

174. 

177. 

179. 

182. 

185. 

187.  

188.  

a' + b' + c2- 2(bc+ ca+ ab). 	173. -2(x3+3,2). 

(x + 1) (x2  - x + 1)2. 	175. x2z2. 	176. -3(x2- 

sin (c- a) sin (c - b) sin (a- b). 	178. (af- 

n!. 	180. bib 2...bn. 	181. (x- xi) (x - x2) 
(n - 1)!. 	183. - 2(n- 2)!. 	184. 1. 

na"-1  

be + cd)2. 

• • .(x- xn). 

+ (n - I) 

x" - 1 

1) (x2-4). 

h]. 

' 

2 	[2a + (n - 1) h]. 

n (n+1) 

186. 	2 	[2a 

- . . . + ( - 1 )" an]• 
nx" 

(-1) 	2 	[a o  - ai+ az  

ao xn+ a 	+ i  x"- 	. . . + a„ 189.  x- I (x- 1)2  

190. (n+1)! x". 191. (x-a,) (x- a2). • .(x-  an). 
(x+ a)n+(x- 

192. [x+ (n-1) a] (x - a)"-1. 193. 	2 
194. (-1)" (n+ 1) alga. • •an• 

195. ai  az 	(1+ 74-1  + 1  +...+  (71, ) . 

196. h (x+h)n. 

198. 

199. 

201. 

(- 

(-1) 

11 
k=1 

2" -1  ai a2 . 

n (n-1) 

1 
• • an 

a1 

nn-1(n+1) 

4.. 	1 	± 
a2 

200. 

+ 	1 \ 
an  

(n+ 0'1+1  2 

( 1 - a x , k). 

2 	. 

202. 2n-2  

nn 

(n+ 1). 

I 1 	1  	1 \ 

\ a1 	a2 	 an 

197.  (_i )" -1 _ xn- 2 .  
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203. (-1)" (clob0+ aibi+ ...+ anbn) 
204. a (a+ b) (a+2b) ... [a+ (n+ 1) b]. 
205. xn+ (-1)" -1 yn. 206. 0 if n> 2. 207. 0 if n> 2. 

208. Let n=2. Using the hint, we have 

I ai+ 	ai+x2  
a2+ xi  1+ a2+ xa 

	

1 0 	1 ai+ x, 	ai+ xi  0 
	

+ 	a1+ x2 

	

0 1 	0 a2+ x, 	a2+ xi  1 	a8+ 	a,+ x, 

=1 + [(ai+ xi) + (a2+ x2)]+ (a,— ai) (x1 — x2) 

If in this fashion we represent an nth-order determinant in the form of a 
sum of 2" determinants, we find that one of the summands is equal to unity, 

n (n—  1) 

	

n summands are equal to ai+ xi, where i=1, 2, ..., n and 	2 	
summands 

are equal to (ai— a k) (xk —xi), where i> k. 
The other summands are zero. Thus, we have the answer: 

I+ E (ai+ xi) + E (a; ak)(xk— xi). 
i=1 	i> k 

This result can be transformed to 

(1 +ai+ an+ ...+an) (1 +xl-Fx2+ ...+xn)—n (aix1+a2x2+ ...+ anxn). 

n +  1 xn+ —1 
209. 0 if p> 2. 211. 1—x 	(1—.702  

, 	a, 	a, 
212. Solution. It is easy to see that ....2=xix2(1 

	

	= 
X2 

). Suppose that x1   

An.-1=xix2. • ..xn _ i  (1 + 	 + — +...+ 	 
an  _ 	

. 
xi  X2 

Then An=xix9 ...xn  (1+ —
al 
 A- —

a, 
+ +an-1 ) 

X1, 	x2 	xn _ 1  

. 	ai  
+ an  xi  x2. .xn _i= x,. xn  (i + = +a, +...+ 	• 

xi  X2 	Xn 

213. aox1x2...xn+aiyix2...xn+a2Yvax3...xn+•••+anYILY2.• •Yn• 

1 	1 	1 
214. — an  . an  ( —ai 

+ —
an 

+ . . . + —an ) 

215. n! (anxn + aixn + . . .+ an). 

216. aia,...an_ 1— aia,...an_ 2+ 	Onal+ (— 1)n+ I. 

217. Solution. Expand the determinant by elements of the first column; 
this yields An = (cc +P.) An-1— c(P0n-2- It is easy to verify that 



an —1_ pn —1 

a - p CCP 
co -I- 1_ pn +1 

- 13 
	• 
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Da-as 	
— pa p3 	p4 	 co -1 _ pn -1 

A2 = 	Aa = 	 . Suppose that An-2= 	 - (3 ' 	-13 	 p 
co pn 
	. Then oc - p 

co_ pn 

Alternative solution. 
Represent An  as a sum d,,+8,,, where 

a 
1 

aP 
a+ p 

0 	... 
ari 	. 

0 
. 	0 

0 
0 

d„= 0 1 a+13 	... 0 0 

0 0 0 	... 1 a+ P 
(3 0 0 	... 0 0 
1 ix+p a (3 	. . . 	0 0 

n= 0 1 a+ P 	... 0 0 

0 0 0 	... 1 cc + p 

Take a out of the first row of do  and then subtract the fiocr2s.t rifetdwfnr_omi=cen 1  the se- 
cond. This yields dn=adn_i. It is readily seen that da= 
then d„=acn. 

Expanding an  by elements of the first row, we see that 

an= PAn- 

From the foregoing it follows that An  = an+ rRAn _ i. We can readily check 
,s_ t33 	 (Do 

that A2= 	 • Suppose that An  _1= 	 . Then 
a- p 	 a- (3  

co—fin 	co+1_pri+1 
Lin= an +13 	 

04 — p 	a- p 
sin (n + 1) 0  

218. n+ 1. 219. 	sin 0 . 220. cos ne. 

221. JO- Cn
t _1  xn —2 + cn2 2  xn — 4 ... Compare with Problem 53. 

n—i 

222. xly„ 	(Xi +iYi xiYi 

\ 
223. a2. 	

1 
an (I+ — 	1 +...+  1  a2, 	an  

n (n-1) 

224. (- 1) 2  

1 	1 	 1  
225. x (a,- x). .(a,,- x) x  + 	x  + 	+ an _ x ) . 

1 

	

1 	1 	1 
ai aa . .an  (1+ 	+ — 4- 	+ 

a1 	 as 	an  
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226. (x1-a1) (x2- a2) .(xn- an) (1+ x1
- a, + . . . + 

n 	 n 

227. ri (xi_ a b i) (1 + I 	 bi) 
j=1 	 i =I 

228. (-1)"m" (1- 	_x±m  . 

229. xi=x2=...=xn _1=0; xn= E 
i=i 

230. (a2  - b2)". 

	

1 	1 	 1  
231. a (a + b) .[a + (n - 1) b] ( a  + 

a+b 	• a+(n-1)b) ' 

232. xn-1 	(x -2ai) (x + x 	\ 
- 2ai ) 

1=1 	 i=1 

n 	 n 

233. xn-1 [1 (x-2ai)(x+ E x -2a ) ' 
=1 	 i =1 

234. Nth- bib,b3+ ...+(- On b1b2...bn. 

235. (-1)"-1 (bia2a....an +bibaaa...an+ 

236. (-1)n-1xn-  2. 	237. (- I)" [(x- 1 )" — X"]. 

n 

238. aoxn 	J] 	(bi- ai). 	240. 1. 	241. 1. 	242. 	1. 
i=1 

CA++In C;;,+±in -1 	Ci4. nn+1n-k+1 	. 	244. (- 1) 	2 
m (m+1)  

CkiVI CklVi_ ... C;24-1 
243.  

245. (x - 1)n . 246. (n-1)! (n-2)!...1! (x- On  . 247. an. 

248. Using the hint, we have 

= (x — z) An  ± (x - y)n - 

An = (x-y) An _1-Fy(x-z)"-1. 

From the resulting system of equations, we find 

z (x  -y)"  - y (x-z)" 
An- 

z- y 

n (n +I)  

249. (-1) 	2 	ab (bn —1 	-1)  

a- b 	
• 

an  

al 

C4i 
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xf (Y)-  Yf (x)  
250. x -Y 

where f (x)= fl (ak —  x). 
k=1 

f 
 (a)  -b  b 

— f (b)  
251. where f (x)= 	(ck-x). 

 
k=1 

252. (oe- on- 2  [Au+ (n-2) a(3- (n-1) al)]. 

n (n-1) 

253. (- I) 2  

n (n-1) 

254. (-1) 	2 	(nh)" 	
J 
	255. (1-xn)n-1. 

256. If all columns are added to the first column, then we can take a +b+ 
+c+d outside the sign of the determinant; all elements of the remaining 
determinant will be integral expressions in a. 

This proves that the determinant is divisible by a+ b+ c+ d. If we add-
the second column to the first and subtract the third and fourth, we find that 
the determinant is divisible by a+ b-c- d. Reasoning in this way, we will 
show that the determinant is divisible by a- b+ c-d and a- b- c+ d. From 
the foregoing it follows that the determinant is equal to (a + b + c + d) (a + b 

c - d) (a- b + c- d) (a- b- c + d). To determine A, note that the coeffi 
cient of a' must be equal to 1, and so A= 1. 

257. (a+b+c+d+e+f+g+h) (a+b+c+d-e-f-g-h)x 

x(a+b-c-d+e+f-g-h) (a+b-c-d-e-f+g+h) (a-b+c 

-d+e-f+g-h) (a-b+c-d-e+f-g+h) (a-b-c+d+e-f 

-g+h) (a-b-c+ d-e+f+g-h). 

258. (x+ al+ a2+ ...+ a.) (x- al) (x —  a2). • .(x - an). 

n (n-1) 

259.2 2  

I-I cos 
pi-ppk  

2 	 sin 
cpi—pk  

2 	' 
n2i>k>1 	 n_?-i>k?.---1 

261. 11 2! .. .n! 262. 	ri 	(ai — ak)• 

n+1.-k>i,.1 

263. (-1)" 11 2!...nl. 

264. (-1r—  11 	(ai ak) 	ai f w'(iai)) 
1=1 1=1 

n"-  (n+  I)  
2 

sin 
1-41<k,-.5n 

Pi+Plc  
2 

1<i<k‹n 

sin 
9k-91  

2 	' 

n (n-1) 

260.2 2  



sin 
(1)k  

2 
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where f (x)=(x-ai) (x-  a2)...(x--  an). 

265. J] 	(xi_xio• 

n (n-1) 	n 	
fl sin 	

-Tk  
cos 	 266. 2 2 	 2 	 2 

n-i>k>1 	 n.?-i>k>1 

267. fl 	xo • 
n>i>k>1 

n  (n-1)  

268. 9 _ 	2 	an C102 • • • ao n-i 	sin 
cpi+cpk 	 k 	 

sin 

	

2 	 2 
n>i>k>1 

269. 1! 21... (n- 1)! 	
n 	(xi Xk). 

n 
Xi 

271. 11 3! 51...(2n-1)! 272. 1-1 	 
xi -1 

i= I 
(xi-Xk). 

273. 	 (bkai-akbi). 274. 	n 	sin (xi- ak). 
1<i<k‹n 

275.  (ai- ak) (a, ak - 1). 

1-‘i<k‹n-F1 

276. 2(n - 1)2 	n 	. 	pi-Fcpk  
sin 2 

n-I>i>k>0 

277. 2n (n+1) sin (xo  sin al 

...sin an 	n 	sin 

278. [xi  x2 .. . x,, - (x1- 1).. •(xn- 1)1 

n sin 

(xi-Xk)• 

ai-ak  
2 

\ 
279. x1x2 . • • x0 	4-  • " xl 	x2

(xi-„k). 

281. an — s 11 	(xi-xd  where crp  forms a sum of all possible pro- 

ducts of the numbers x1, x2, ..., xn  taken p at a time. 

(Xi—Xk). 

280. (xi+ xa  + . . . +xn) 
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282. [2x1xa . 	(x1-1) (x2 —  1)—()Cn —  1)] 	11 (xi-Xk). 

n>i>k>1 
283. x2 (x2- 04. 	284.  2x8 y 

n (n—I) 

y)°. 

285.  11 21 31...(n-1)1 x 	2  (y —x)n. 

k (k—i) 

286.  11 21 31. . .(k — 1)1 x 	2  (y — x)k (y2  — .x)k 

• • • (Y n - k X)k 	11 	cy,— yj). 

287. (y—x)k ("). 

288. (b) 9, (c) 5, (e) 128, (f) (alas—bi b2) (ci ca — d2), 

(g) (x3 — x2)2  (x3  —x1)2  (x2 —x1)2, 

(h) (A2— a2) 	(On 	[oc + (n — 1) [3], 

(k) (x4—x3) [(x3—x2) (x4 —x2)-2 (Xs— xi) (x4 — x1)), 

(m) 27(a+ 2)3  (a-1)6  [3 (a + 2)2 — 4x9 [3 (a— 1)2  —4x93. 

Remark. This problem is a particular case of Problem 537. 

289. 

(c) 

(a) 

7 
—1 
—4 
—4 

—5 
— 8 

5 
5 

—4 
—4 

—2 
4 

—3 
—3 
—5 

0 

, 

3 
3 
4 
3 

(b) 
2 

11 
3 

8 
—6 

8 

17 
5 

—3 

290. (a) 24, (b) 18, 
(c) (a+b+c+d) (a+b—c—d) (a—b+c—d) (a—b—c+d). 

291. (a) 256, (b) 78400, (c) (aa+b2 +c2 +d2)4. 

292. D 

293. (a) C,I, a... Cl," 	n 	(al — a k) (b 	bi),  

n>i>k>0 

(b) 
ni>k›1 

294. 0 if 	2. 295. ri 

	

i=1 	n?-i>k›1 

296. —(a'+ b2+0+,12+12+ m2 +,2±pa)4.  

297. 4 sin4  cp. 298. 4 sin4  cp. 

7. 1215 
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n 

299. Denote the desired determinant by A. Squaring yields IA I=n 2  

On the other hand, A= 	1 1
(Ek_ es).  

7r 	TC 
We assume ei=cos +i sin 	. Then z= el and 

A = 	 (ck_o= 	elic+s { 	Es) 

n (n-1) 
2 =  e, k+s • t 	n 2 sin 

(k — s) rc 
Furthermore, sin 	>0 for all k, s. Hencen  

n 

n=I A 1= 

Therefore 

n 2 sin 
(k — s) TC 

n 
2 sin (k 

—
n s

)= n   

is n (n7 1) 	 n n (n—I) 	n (n-1)' 

A= n 2 i  2 	 etk-l-s=n  2 i  2 e, 2 

is n (n-1) 
+(n 1)* 	

n 	(n-1)  (n+2)  
2 =n 2 	2 i 	 = n 2 i 

n-1 

300. fl (ao±ai ek + az  6/2, 	ary _1 4-1) where ck = cos 
k =0 

+ i sin 

301. x4 — y4+z4 — u4 + 4xy2z+4xzu2 — 4x2yu-4yz2u-2x2z2  +2y2u2. 

303. 2n-1  if n is odd, 0 if n is even. 

[(n+ 1) 	 —  l]n — n" an (n+1) 
304. ( — 1)n 	

(1 — an)a 

305. (— 1)n-1 (n —  1) n (a, + az ek + 	+an er j.) 

n —1 

where 
k=0 

2krc 	21c7c 
ek= COS 	+i sin 	— 

306. cp o  (t)cp, (t). . 	(t) where 

2kir 	2krc 
e k = cos 	+ i sin -- 

n 	n 

Pk (1)= 	
ektr  

(k — s) 
n 

2kis 
n 

2krc 
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According to the result of Problem 102, the answer can be represented as 
n- 1  

un_(.,c— on] 
k =I 

307. (-2)n-1  (n- 2p) if (n, p)= I, 0 if (n, Al. 

308. 2n-2  (cosn -
n 

- 1 

[sinn  (n+22) 
	sin' 

n20  ] 
309. 2"- 2  Sinn 2  

310. (-1)n 2n-2  sinn - 2 14 [cosh (a+ 11) -cosn (a+ (n -
22)h )] 

311. (-1)n-' 
(n+1)( 	nn-

2 [(n+ 2)n - nn]. 12

2n+1) 
 

n-i 
(2k+1) -rr 

313. fi (a1+a2 Ek+ a3  4+ ... +a. Er') where ck = cos 
k=0 

. (2k  +  1)7r 
+/sin n 

315. 	(al  + a2 Pi + a3 	+on  p7-1) where pi, Pz, 	p,, are nth 
1=1 

roots of (L. 
318. The solution of Problem 223. Adding 1 to all elements of the deter- 

minant 

a1  
0 

0 

0 
a2  

0 	... 

. 	 0 
0 

an  

, we get the determinant A. 

n 	n 

We have A ai a2  ...an+ E E Aik, 

k=1 i =1 
n 	n 

E 	 (       	 )E Aik= a2. .an 7+ — +•••+7.1  72 	an 
k=1 i =1 

The solution of Problem 250. Denote by A the determinant to be evaluated. 
We have 

A = (a,- x) (a 2- x). . . (a n  - + x E Aik, 

A = (a,- y) (a2 - • • •(an-Y)+Y E Aik 

where E Aik is the sum of the cofactors of all elements of A. 

A is readily determined from the system of equations. 

7* 
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323. 	(a — a k) n (bi_bk) 

where f (x)= (x + bi)...(x+ bn). 

325. 
[c +1/ c2  — 4ab]n + —[c —V c2  — 4ab]n  

c2 -4ab 

326. 
[p + p2  — 4q]n + 	 [p —1/ p2  — 4q]n  

2n 

327. xn + chxn + a3xn + + a., where ak  is the sum of all kth-order 
minors of the determinant 

an a12 ... 
a21 a22 • • • an obtained from it by deleting n— k rows with indices 

a2, •••, a,„_k and columns with the same indices. 

   

    

ant ant • • • ann 

328. (n + 1)" 1. 329. (x—n)n+ 1. 

330. (x2-12) (x2-32)...[x2 — (2m— 1)2] if n= 2m, 

x (x2-22) (x2-42)...(x2-4m2) if n= 2m+1. 

331. (x + na — n) [x + (n —2) a — n+ 1] Ex + (n —4) a— n+ 21. .(x— na). 

n  (n-1) 	 [1! 21. . (n — 1)!]2  

332. (-1) 	2 	[(n —1)!]n, 	333*n! (n+1)!...(2n-1)! ' 

A  (a1.  a2, 	, an) A (b1, b2, • • • , bn)  

de determinant. 

CHAPTER 3 

SYSTEMS OF LINEAR EQUATIONS 

335. x1=3, x2 =x3=1. 
336. x1=1, x2 =2, x3= —2. 
337. x1=2, x2 = —2, x3=3. 
338. x1=3, x2=4, x3=5. 
339. x1= x2= — 1, x3=0, x4 =1. 
340. x1= 1,  x2=2, x3= —1, x4= —2. 
341. x1= —2, x2 =2, x3=-3, x4=3. 
342. x1=1,  x2=2, x3=1, x4= —1. 
343. x1=2, x2=x3=x4=0. 
344. x1=x2=x2=x4= O. 
345. x2 =1, x 3= —1, x3=0, x4=2, 

334. (1, 2, ..., n) where A is the Vandermon- 



(-1)n  an _i 
360. xi- 

361. Cmk  Cnk  • 

where xn+ai xn-1+ ... +an  

= (x -1) (x- 2). .. (x - n). 
n1 
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346. x1 	x2  xs  xs  x5  O. 
347. x1=x2=x3=x4=0. 
348. x1=1, x2= -1, xs=1, xs= -1, xs=1. 
349. x1-x2-x3-x4-x5-0. 
350. x1=1, x2= -1, xs=1, xs= -1, x6=1. 
351. x1=0, x2=2, x5= -2, x4=0, x6 =3. 
352. x1=2, x2=0, x3= -2, x4= -2, x5=1. 
353. The determinant of the system is equal to zero, since the system has a 

nonzero solution. 
354. The determinant of the system is equal to -(a2 +/.2 -1- c2 +d2)2. 

355. x,- 
(cc -13) [(n -1)cx+P] 	• 

356. xi = f (Pi) 
 where 

 f (x)=(x-b1)(x-b2). • •(x-bn), 
<P' (Pi) 	(P (x)=(x-  P1) (X-  P2). (x-13.). 

357. xi = (t 
 f (t) 

cq) f, (cci)  where f (x)=(x-a1)- c•c5).. .(x- an). 

n 

358. xs= E 	f,  (cci) 
ui 
 cps, i where f (x)=(x- al) . . .(x - an); 

t_i 

(Ps, i=E 0,0„....atn _ s; the sum is taken over all combinations t1, t2, . 

	

of 1, 2, ..., 	1, i+ 1,. . 	n. 

359. xs= E 
i=i 

pi,s=E ati Oita • • • °Cln_ ; 

here, the sum is taken over all combinations t1, t2, • • (n-i of 1, 2, ..., s-1, 
s+1, 	n. 

a E ak- aiUn -1) a + (3.1 
k=1 

(Pt, s where f (x)=(x - cci) (x an) • • •(-x-  ctn); 

365. (a) It does not change or it increases by unity; (b) it does not change 
or it increases by unity or by two. 

366. 2. 367. 3. 368. 2. 369. 2. 370. 3. 371. 3. 372. 4. 373. 3. 374. 2. 
375. 3. 376. 5. 377. 6. 378. 5. 379. 3. 380. 4. 
383. The forms are independent. 384. 23/1-ya-y3=0. 
385. ys+3Ya-Ys=0, 2Y3.-Y2-y4=0. 
386. The forms are independent. 
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387. 3,1+1,2 —y2 —y4 =0. 
388. Y1— Y2+Y2=0, 5y1-4y2 +y4=0. 
389. The forms are independent. 
390. The forms are independent. 
391. y1-FY2 — Y3 —Y4=0. 392. 2Y1— Y2 —y3=0. 
393. 3y2 — Y2 —Ys=0, Yi — Y2 — y4=0. 

394. The forms are independent. 395. yi—ya —y3 —y4 =0• 
396. 3y1-2Y2 — Ya+Y4=0, Yi — Y2+2y3 — y5-0• 
397. A=10, 3y1+2Y2-5.Y2—y4=0. 
398. x3=2x2 —x1, x4=1. 399. A=5. 
400. The system has no solutions. 401. x2=1, x2=2, x3= —2. 

I lx2 	x, 
402. x2=1, x2 =2, x3=1. 403. xi  = 	7 	 , x2= — T 
404. The system has no solutions. 

405.  

406.  
407.  

4 
x2 =0, x2 =2, x3= —

5 
' 	3 

x4 = — -- 
3 	' 

x1=-8, x2 =3+x4, x3=6+2x4. 
x1=2, x2=x2 =x4=1. 	408. x1=x2=x3=x4 =0. 

3x2 -13x, 	19x,—  20x4  
409. x1 = 	, x2 — 17 	 17 

7 	 5 
410. x1= -6- x2 — x3, x2= x2 + x2, x4= 

X5. 
 

411. x1= —16+x2+x4 +5x2, x2=23-2x3-2x4-6x6. 

412. x 	
—4x4 +7x5 	— 4x, + 5x, 	4x4 -5x5  

1=  
8 	, X2 = 

	

8 	
, x2 — 	 

8 
413. x1=x2 -=x2=0, 

1+x, 	1+ 3x3  + 3x,— 5x5  
414. xi= 	, XI= 

3 	 3 
2+x2 	1+ 3x,  — 3x4 — 5x, 

415. x1 = 	, x2— 3 	 6 	• 
416. The system has no solutions. 
417. The system has no solutions. 

418. x1= 
x, 
 , x2 = —1— 

x, 
 , x,=0, x4 = —1— 

x5 
 

419. xi 	
1+5x4  

X2 = 	
- 7X4 1 + 5X4  

6 	 6 	' 
X2 = 	

6 	• 
420. The system has no solutions. 

b2+c2 —a2 	a2 +c2 -62 	a2 + b2 —c2  421. x= 	 
2bc 	y — 	2ac 	' z— 	2ab 

A+1 	1 	(A+ 1)2  
422. If (A— 1) (A+ 2)0 0, x= 

A+2 , Y=  +2 ' z=  A4-2 

If A=1, the system has solutions dependent on two parameters. 
If A= —2, the system has no solutions. 
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A2 + 2A+ 2 
423. If (A — 1) (X + 3) 0 0, x — 

+3 
v+A-1 	2A + 1 	A3 +3A2 +2A+1 

Y= 	' 
z= 	t— 

A+ 3 	+ 3 	 3 

If X=1, the system has solutions dependent on three parameters. 
If A= —3, the system has no solutions. 
424. If a, b, c are all distinct, 

x=abc, y=—(ab+ac+bc), z=a+b+c. 

If among a, b, c two are equal, the solutions depend on one parameter. 
If a= b= c, the solutions depend on two parameters. 
425. If a, b, c are all distinct, 

(b—d)(c—d) 	(a — d)(c  — d) (a — d) (b —  d) 
x— 	 y — 	 z= 

(b — a) (c — a) , 
	(a — b) (c — b) 	(a — c) (b — c) ' 

If a= b, a 0 c, d= a or d=c, the solutions depend on one parameter. 
If b=c, a 0 b, d= a or d=b, the solutions depend on one parameter. 
if a=c, a= b, d= a or d=b, the solutions depend on one parameter. 
If a= b = c= d, the solutions depend on two parameters. 
In all other cases, the system has no solutions. 

	

2b —1 1 	_ 2ab  — 4b + 1  
426. If b (a — 1)0 0 , x— 

b (a-1) ' Y  = b ' z—  b (a-1) 	• 
1 

If a=1, b= —
2 , the solutions depend on one parameter. 

In all other cases, the system has no solutions. 

427. If b (a —1) (a+2)00, x—z— 

	

	— 
(a —1) (a + 2) ' y b (a 

b 
— 1) (a + 2) • 

If a= —2, b= —2, the solutions depend on one parameter. 
If a=1, b =1, the solutions depend on two parameters. 
In all other cases the system has no solutions. 

ma+ m- 
428. If (a— 1) (a+2)= 0, x= 

	

	 
(a+2)( 

n—p 
a-1) ' 

	

na+n—m—p 	pa+p—m—n 
Y = (a-I-2)(a— 1) ' 

z= 	 
(a+2) (a-1) " 

If a= —2 and m+n+ p = 0, the solutions depend on one parameter. 
If a=1 and m=n= p, the solutions depend on two parameters. 
In all other cases the system has no solutions. 

429. If a (a — b)0 0 , x= 	 Y — 
a2  (6-1) 	b (a2  — 1)  

	
a-1 

b — a 	a (a — b) ' z  — a (b — a) ' 

If a= b= 1, the solutions depend on two parameters. 
In all other cases the system has no solutions. 
430. A= A2(X-1). For A=0, A=1, the system is inconsistent. 
431. A= —2A. If A00, x=1—X, 	z=0. If A=0, x=1, z=0, y is ar- 

bitrary. 
432. A= (k — 1)2  (k+ I). If k = 1, the solution depends on one parameter. 

If k= —1, the system is inconsistent. 
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433. A =a(b —1) (b + 1). 

If a=0, b=5, y= — 1 
	4 
, z= , x is  arbitrary. 

If a=0, b # 1 and b 5, the system is inconsistent. 
If b=1, z=0, y=1—ax, x is arbitrary. 
If b= — I, the system is inconsistent. 
434. (a) A= —m(m+2). For m=0 and m= —2 the system is inconsistent. 
(b) A=m(m2-1). if m=0, m=1, the system is inconsistent. If m = —1, 

the solution depends on one parameter. 
(c) A= )(A-1) (A+1). If X-=1, A= —1, the system is inconsistent. If A=0 

the solution depends on one parameter. 
435. (a) 0=3(c+ 1) (c— 1)2. If c= —1, the system is inconsistent. 
If c= I, the solution depends on two parameters. 
(b) A= (A-1) (A-2) (A-3). If A=2, A=3, the system is inconsistent. 

If A=1, the solution depends on one parameter. 
(c) A =d(d-1) (d+ 2). If d= 1, d= —2, the system is inconsistent. If d=0, 

the solution depends on one parameter. 
(d) A=(a— 02  (a+ 1). If a= —1, the system is inconsistent. If a=1, the 

solution depends on two parameters. 

436. 

437. 

x 	y 	1 
xl 	yi 	1 
xo 	Ya 	1 

If and only if 

=0. 

xi. 	h. 	1 
Xs 	y2 	1 

X3 	y3 	I 

438. If and only if 
=0. 

al 	b1  
ao 	122 	C2 

a3 	b3 	c3 

= 0. 

439. If and only if 4+4 xo Yo 

-Fy!x1 	Yi =0. 
x2 +Ya 	xs 	Y2 
4+4 X3 y3 

440. (x-1)2+ (y— 1)2 = 1. 441. y2 — y =0. 

442. y =x2-1. 

443. y xn )0-1  ... x2  x 	1 

Yo 4 	 xo  1 =0 

2 

	

yn .X7i  xn-1. 	Xn Xn 1 

444. If and only if 	x1  Y1 z1  1 
X2 Ya Z2 I 

x3 y3 Z3 1 

xa  ya Z4 1 

445. xt+ys+e—x—y—z=0. 

=0. 
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446. If and only if the rank of the matrix 

(Xl  yi 1 

X2 Y2 1 

is less than three. 

447. If and only if the rank of the matrix 

( a1  b1  c1  
a2  b2  C2 

an  bn  cn 

is less than four; on one straight line if and only if the rank of the matrix is 
less than three. 

449. All planes pass through one point only when the rank of the matrix 

Al  B1  C1  D1  

A

A2 B2 C2 D2 

 B„ C„ D„ 

is less than four; through one straight line only when the rank of this matrix 
is less than three. 

450. all  an  • • • al, n-1 a1n 

a21 an • • • a2, n-i 

ant ant . . . an, n-i ann 

( 453. No. 454. For example, 1 — 2 1 0 0 
1 —2 0 1 0 • 
5 —6 0 0 1 

455. Yes. 
456. Solutien. Let 

C( 	 A11 A1, • • • Air ( 11 °C1.2 	'X  in 

A= 	rxsu. 0622 	ocan 	, B= 	A91 An • • • Aar 	, 

Xn Yn 1 

is less than three. 
448. In one plane if and only if the rank of the matrix 

(

X1  yi Z1  1 

X2 Y2 Z$ 1 

xn Yn zn 1 

= 0. 

an are 	ccrn 	 art an • • • An' 
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I s =I  
BA — 

( 

  

A11 as, 	E Al, as„ 

5=1 

Ars asi 	 A s  asn 

s=1 

It is immediately obvious that the rows of the matrix BA are solutions of 
the system. Besides, since I B 1 00, A=B-1(BA), i. e., the solutions written 
down by the matrix A are linear combinations of the solutions written dcwn 
by the matrix BA. 

457. Solution. Let 

( 	

II 112 • • • Yin all  an • • • a1,, I 

A = 	am. c(22 • • • (X2n 	, C= 	Y21 Y22 • • • Y an 

	

Since C is a fundamental system of solutions, a 	Y 	Y 	-1- 

	

- 	- 	12 21 • • • • • 	ir r 
and so on, that is, A=BC, where 

An Ala • • • A 
B — 	

A1, 

Art 	Ars • • • Arr. 

On the other hand, A is also a fundamental system of solutions, and the-
refore I B100. 

459. For example, 

x1=4-1-c2+5c2, x2 = —2c1-2c2-6c3, x3=c1, x4 = c2, x2 = c2  

(see the answer to Problem 454). 

460. xi= 1 1 c, xa= c, xs= —7 c. 

461. No. 408. x2=x2=x3=x4=0. 

No. 409. x1=3c2+13c2, x2=19c1+20c2, x3=17c1, x4 = — 17cs. 
No. 410. x1=c1+7c2, x2 = —4+ 5c2, x3= —c1, x4=2c2, xs=6cs. 
No. 412. x1=c1+7c2, x2=c1+5c2, x3=—c1-5c2, x4=-2c1; xs=8c2. 
No. 413. x1=0, x2 =0, x3=0, x4 = c, xs=c. 

462. x1= — 16 + ci+ c2 + 5ca, 
x2 =23 — 24— 2c2-6c3, 

x3=c1; x4=c2; xs=c3• 
463. No. 406. x1= —8, x2 =3 + c, x3=6+2c, x4= c. 

No. 414. x1=c3, x2=2+4+c2-5c3, 	x4=c2, xs= —1 +3c3. 
No. 415. x1=1 +2c2, x2 =1 +4—c2 +5c2, x3=2c1, x4=2c2, xs=1+6c2. 

ari ant • • • ccrn 	 In 	Ira • • • Yrn 
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CHAPTER 4 

MATRICES 

(-9 13 \ 

	

464. (a) 	
5 —1 

( 3 —1) , 	(b) k 15 	4 i ' 

( 6 	2 —1 	0 0 0 ) 	1 9 15 

	

(c) 	6 	1 	1 	, (d) 	0 0 0 	, (e) 	—5 	5 	9 	, 
8 —1 	4 	0 0 0 	12 26 32 

a+b+c a' +b2+c2  b2+2ac 

	

(f) 	a+b+c b2+2ac 	a2+62+c2  
( 

3 	a+b+c a+b+c 
( 7 4 4 	( 15 20) 	 —2 

	

465. (a) 	9 4 3 	, 	(b) 	 , 	(c) 
3 3 4 	 ( 20 35 	 3  

	

\4 	8/ 

( 0  1 	 cos ncp —sin ncp \ 

	

(d) 	, 	(e) \ sin ncp 	cos ncp j 

( 1 

466. 	
n) V 	co 	 I cos cp since 

= 	1+ 	• 	k- sin cp cos cp — cc —
n 

1 

where tan cp =—c̀  . Hence, 
n 

n 	=( 1  as( cos n cp sin n cp 

—sinncp cos ncpj • 

The limit of the first factor is equal to 1. lira n cp =a urn 	— a The- 
n—> co 	cp—o tan y 

refore 
IX )n 

n 	( cos« sin a 
lim 

cc
1 	

—sin a cos a 
n 

467. (a) (A +B)2= A2+ AB+BA+B2= A1+2AB+B2. 
(b) (A+B)(A—B)=A2 —AB+BA—B2=A2 —B2. 
(c) The proof is by induction. 

( —10 — 4 —7 	 0 0 0 

	

468. (a) 	6 	14 	4 ) , 	(b) 	0 0 0 	. 
— 7 	5 —4 	 0 0 0 

1 

n 
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(a)  t x 	2y 
469. 	 = (x —y)E+ y A , 

k —y x — 2y )  

x y 
(b) ( 
	\ 

0 x / 
=(x—y)E+yA , 

x 	y 	0 

(c) 	u 	v 	0 ) . 
3t— 3x— u t —3y— v t 

( 5 1 	3 
i 0 0 \ 

470. (a) 	8 0 	3 	, 	(b) \ o 0 i —2 1 —2 

471. It isverified-by direct computation. 
472. The polynomials F (x)= ao+ aix+ . . .+ awe' I, such that F (A) =0, 

exist because the equality F (A)= a0E+ aiA+ . . .+ i 2 ,,,Ain =0 is equivalent to a 
system of n2  homogeneous linear equations in m+ 1 unknowns ao, al, .. ., am, 
which system probably has nontrivial solutions for ni› n2. Let F (x) be some 
polynomial for which F (A) =0 and let f (x) be a polynomial of lowest degree 
among the polynomials having this property. Then F (x)= f (x) q (x)+ r (x), 
where r (x) is a polynomial of degree less than that of f (x). We have r (A)= 
= F (A) — f (A) q (A)= 0 , hence, r (x)=0, otherwise there would be a contra-
diction with the choice of f (x). Thus, F (x)= f (x) q (x). 

473. Let 

( a11 a12 • • • a1,,  

A= . 	 , B= 	 . 
am. an, • • • arm 	kn. • • • bnn 

Then the sum 'of the diagonal elements of the matrix AB is equal to 
n 	n 

E E aikbki• The sum of the diagonal elements of the matrix BA is exactly 

1=1 k=1 
the same. Hence, the sum of the diagonal elements of the matrix AB—BA 
is equal to zero, and the equality AB—BA=E is impossible. 

Remark. The result is not valid for matrices with elements of a field of 
characteristicp 00. Indeed, in a field of characteristicp, for matrices of order p, 

/ 0 1 0 ... 	0 \ / 0 0 0 ... 	0 \ 

/ 0 0 1 ... 0\ I  0 0 ... 	LO 	\ 
A= 	 

\ 	0 0 0 ... 	I 	/ 
, 	B= 0 2 0 ... 	0 

\ 0 0 ... 	0 l  \0 0 0 ... p —1 0 i 

we have AB—BA= E. 

474. (E— A) (E+ A+ A2+ ...+ Ak—i)=E_Ak =E.  

(a 	b 
475. bc= — a2  . 

c —a j ' 
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476. If A2=0, then A2=0 also. Indeed, if A2=0, then 1 A 1=0. Hence 
(see 471), 'A2= (a+ d)A, 0= A3  = (a+ d)A2=(a+ d)' A, whence +d=0 and 
A2= 0. 

477. ±E, ( a 	b ) 	a2=1—bc . 
c —a 

478. If A=0, then Xis any matrix. If 1 A 100, then X=0. Finally, if Al =0, 
but A 0 0, then the rows of matrix A are proportional. Let a : (3 be the ratio of 
corresponding elements of the first and second rows of the matrix A. Then 

X= 
ti—flx 

for arbitrary x, y. 
k — 133' ay 

a b 
479. Let A=( c d ) 

(1) If A00, but a+ d= 0, ad—bc= 0, then there are no solutions; 
(2) if a+d00, (a— d)2+4bc=0, (a—d), b, c are not equal to zero simul-

taneously, then there are two solutions: 

1 	3a+d 	2b\ 
X=± , 	

	

— 2 V 2(a+ d) 	2c a+3d 

(3) if a+ d00, ad—bc=0, then there are two solutions: 

X=± 
	1 	a b \ 

Va+d c dl' 
(4) if ad—bc0 0, (a— d)2+ 4bc0 0, then there are four solutions: 

A2+a—d 
1 ( 	2 

where 2= + 1 I a+ d+ 2 1/ ad —bc ; 
(5) if a— d=b= c= 0, then there are infinitely many solutions: X= + - V a.E 

and X= 
( X 

z 

480. 	(a) 

y 

—x_ 

( —2 

, where x, y, 

— 2

) 1 	' 

z are connected 

1 

by the relation x2  +yz= a. 

d —b 
—c 	a 	' 

(b) 	ad— be 

1 —3 11 —38 \   
1 —2 7 

/ 

0 1 - 2 7 
(c) ( 0 1 — 2 ) , 	 (d) 

1 0 0 0 0 1 — 2 /  

\0 0 0 1 

1 —4 —3 7 1 
1 1 

\ —11  (e) 1 ( —5 —3 , (f) 1  1  —1  
—1 6 4 l \i  —1 1 —1 / 

—1 —1 1/ 

b  X2 —a+d 
2 



, 	2 

(g) 
 (

— 3 

31 

—23 

1  
(h) n — 1 

1 
(i)  

(j)  
1  

n + 1 
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— 1 0 0 \ 

2 0 0 

—19 3 —4 /  

14 —2 3 

2—n 1 1 1 

1 	1 2—n 1 	1 	\ 

1 1 2—n 	... 	1 

\ 	1 1 1 ... 2—nl 

1 	1 	1 

—2 	— 4 	e-2/1+2 

e —n-1-1 	,-2n+2 	... 	, —(n-1)2 

/ 1 • n 1 • (n— 1) 1 • (n-2) 	... 1 	• 	1 

I 	1. (n— 1) 2. (n— 1) 2. (n-2) 	... 2.1 	\ 

1 • (n-2) 2. (n-2) 3. (n —2) 	... 3 • 1 

\ 1 • 1 2 • 1 3. 1 n • I / 

2—n2  2+n2 	2 	2 

\ 	

bi en 	b2 cn  • • • Nen+ d --cnI 

	

-bi 	—b2  .. • —hn 	1 

where d= a— bici — b 2c a — .. .— bnen, 
f _ fo x n x f_ fi xn . . . xn — 1 f _ f n  _1  xn 

(

1 	_ foxn —  1 f_fi,  xtt — 1  .. . xn —  2 f_ fn ixn—i 

(m) 
f 	 ... 	 x 

—fn-1 	 1 

where fo= ao, fi= aox+ 	•••, .f„_ aoxn —1  + ...+an_i, f= aox" + aixn + 
...+ an, 

Al  0 . . . 0 	 AI 	Al  Aa • • • Al an

(n) 	0 	as  • • • 0 	_ 1  ( A2X1 	a2 . . . a2  An  

0 	0 . . . an 	anal  An A2 • • • an 

	  ) 

(k) 	
1 	2 	2—n2  2+n2 	2 

2n3  
2+n2  2 	2 	2 —n2  

7 
hi  ci - -F. d 	b2  ci • • • 6,, ci 	— c1 \ 

	

1 	b1 c2  b2 Ca ± d • • • bn C2 	— c2 1 
(1) 	d 

xn 

xn — i 
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tk=1 +Xi+Az+ - . +An ; 
(13-1+XB-' UV B-1  

(o) 
-A vB-i 

-AB-1  U 

A 

-3 	2 	0 

1 

	

, 	A- 

	

) 	
a- VET-1U 

481. 	(a) 	(20 - 2
8  
3  
)' 

(b) - 4 5 -2 	, 
- 5 3 0 

/1 	- I -1 0 ... 0 0 0 0 \  

1 	1 -1 -1 ... 0 0 0 0 

(c)  0 	1 1 -1 ... 0 0 0 0 

0 	0 0 0 ... 0 1 1 -1 

\0 	0 0 0 ... 0 0 1 2/ 

(d) / 

\ 

(f) 

24 	13 

—34 	-18 

b 
1+a  
-2a 	1-26 

(e)  

, 

n-1 
1 

1 

1 

1 

1 

1 1 

X= E - 

( 

(g) X does not exist. 

482. It is sufficient to multiply the equation AB=BA on the right and on 
the left by A -1. 

483.  

484. If A3=-E, then I A 1 3=1, and, by virtue of its real nature, I A 1=1. 

Set A=
( ac bd). 

Then, equating A -1  and A2, we readily find that A=E or 

a+ d= -1, ad- bc=1. 

(a 	b) 
485. A= + E or A= 	, a2+bc= +1.

c-a 

( a b 	 1 	1 
= a E+ b I, where /= 

\ -6 a 	 k —1
0 
 o 

\ 
486.  

Then P= - E and, hence, the correspondence aE+ bI-> a+ bi is an isomorphism. 

a+bi c+di) 
487. Set 	 = aE+ 	+ dK , 

-c+ di a-bi 

i 	0\ 	/ 0 1 	0 i \ 
where 

7=(0 -4/ ' 41.= \ -1 0),  K=(i 0 f. Then 
p=  J2=K2= -E, IJ= - JI=K, JK= - KJ=I, Kl= -IK=J. Whence it fol- 
lows that the product of two matrices of the form a+ + T + dK is a matrix 
of the same type. The same holds true for a sum and a difference so that the 



1 

1 .. 	0 
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a+bi c+di 
set of matrices at hand is a ring. Furthermore, (A 1= 

— c+ di a —bi 
=a2+ b2+ c2+c/20 0 as soon as A00. Hence, every nonzero matrix has an 
inverse, and from the equality A1A2=0 (or A2A2=0) for A100, it follows 
that A2=0. The ring of matrices under consideration is a realization of what 
is called the algebra of quaternions. 

488. (aiE+ b1I+ c11+diK) (a2E+ b21+ c21+d210=(aiaa— bib a —  cica-
- ‘442)E+(aib2+ bia2+ 4(4— dic2)1+ (aic2—bid2+ cia2+02)J+(aid2+ 
+ bic2 — cibg  dia2)K. Taking determinants, we get (a1+191+ cl+ 0 (a: + b:+ 

+ 4 =(ala2— bib 2— cac2— did2)2+(aib2+ bia2+ cid2 — dica)2+ (alc2— 
—bid2+ c1a2+ 02)2+ (aid2  +bica  — c1b2+ d,a2)2. 

489. Interchanging two rows of a matrix is accomplished by premultipli-
cation of the matrix 

Operation b is accomplished by premultiplication of the matrix 

1 	 i1 

1 	... a 

or 

1  

1 

a ... 	1 

1/ 
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Operation c is accomplished by premultiplication of the matrix 

/1 

1 

a 

1 

The operations a, b, c on columns !are accomplished by postmultiplication 
of the same matrices. 

490. Any matrix A can be reduced to diagonal form R by elementary 
transformations a, b, c on the rows and columns. Therefore,' for the given 
matrix A there is a matrix of the form R such that R= 	Urn AV1V2... Vk, 
where U1, ..., U., V1, 	Vk are matrices of elementary transformations. 
They are all nonsingular and have inverses. 

Consequently, A=PRQ, where P and Q are nonsingular matrices. 
491. By virtue of the results of Problems 489, 490, it will suffice to prove 

the theorem for diagonal matrices and for matrices corresponding to the ope-
ration a, because matrices corresponding to the operation b have the requi-
red form. It is easy to see that the operation a reduces to the operations b and c. 
Indeed, to interchange two rows, we can add the first to the second, and then 
from the first subtract the second, then add the first to the second and, finally, 
multiply the first by —1. This is equivalent to the matrix identity E—eii —ekk+ 
+eik+eki=(E-2ekk) (E+eik) (E—eki) (E+eik). The theorem is, obvious 
for diagonal matrices: 

a1e11+a2e22+ +anen. 
= (E+ (02 — 1) en) (E+ — 1) e22) 	(E+ (a.— 1) en,) 

492. Let A=P1R1Q1, B=P2R2Q2, where Pi, Ql, •P2, Q2 are nonsingular 
matrices and R1  and R2 are matrices having, respectively, r1  and r2  units on 
the principal diagonal and zero elsewhere. Then AB=P1R1Q1P2R2Q2  and 
the rank of AB is equal to the rank of RICR2, where C= Q2P2  is a nonsingular 
matrix. The matrix R1CR2  is obtained from the matrix C by replacing all 
elements of the last rt—r1  rows and n— r2  columns by zeros. Since striking 
out one row or one column reduces the rank of a matrix by no more than 
unity, the rank of R1CR2  is not less than n—(n—r1)—(n—r2) =r1+r2 —n. 

493. It follows directly from the proportionality of all rows of a matrix 
of rank 1. 

494. On the basis of the results of Problem 492, the rank of the desired 
matrix A is equal to 1 or 0. Hence 

Al V•1 

A=( A2 

A3 ill 

Direct multiplication yields 

Al [42 

A2 [1.8 

A3 112 

Al [-L3 

12 1-1•3 

A3 (13 

) • 

0 = A2  = (A1P-1 + X2!12 + 34 DA 

whence it follows that A1[1.1+ 12[1•2+A3113=0• 
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495. Let A yield a solution to the problem different from the trivial A= ±E. 
Then one of the matrices A— E or A+ E has rank 1. Let 

Al t• 	Al (as Al !la 

A+ E=( A2 [Ll A2 tL2 A2 113 ) =B. 

A3 1-41 A3 1/2 A3 123 

Then A2= E —2B + B2  = E + (Aik-ti+ 2[1, 2+ ASP. 3 2) B, whence it follows that 
for A2=E it is necessary and sufficient that the condition A111-1+ X2112+ A31-1. 3= 2 
be fulfilled. The second case is considered in similar fashion. 

496. Let there be adjoined to the matrix (A, B), where 

Ca

ll  • • • aik 
A= 	 , B- 

arn,. • • • amk 	 b mi • • • b ms 

\ 
the column C= 

• 
	, the adjoining of which to the matrix B does not 

cm l  
increase its rank. Then the system of linear equations 

bii  Yi+ • • • +bis Y s= al. 

+ • • • + bmsYs =Cm  

is consistent, but then also consistent is the system 

nazi+ . . • + aikzk + bnYi+ • • • +bisYs=ci, 

amt x1+ • • • -Famk Xk±bmiYi+ • • • +bmsYs= Cm. 

Consequently, the rank of the matrix (A, B) is equal to the rank of the mat-
rix (A, B, C). 

Now suppose that the columns of the matrix B are adjoined to the mat-
rix A gradually, one at a time. The rank can then increase by unity by virtue 
of what has just been proved only when the rank of B increases. Hence, the 
rank of (A, B) the rank of A + the rank of B. 

497. Let the rank of (E+A)=r1, the rank of (E— A)= r2. Since (E+ A)+ 
+(E— A)= 2E, r1+r2..n. On the other hand, (E+ A) (E— A)= 0, therefore 
0 ?:ri+r2 —n. Hence, r1d-r8=n. 

498. The rank of the matrix (E+ A, E— A) is equal to n. From this matrix 
choose a nonsingular square matrix P of order n and let its first r columns 
belong to the matrix E+A, and let the other n—r columns belong to E— A. 
Then, by virtue of the fact that (E+ A) (E— A) =0 we have 

(E+ A) P 	
••• 	0 	• 0  ) 

(Int • • • qm• 0  • • • 0 

(E— A) P (
0  • • • 0  91, r+1 • • • gin 

0 • • • 0 	qn,r-Fi • • • qnn 
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Combining these equations, we get 

2P= 	  
( 911 • • • 9ir 91, r+i • • • Stn 

gni • • • qnr qn, r +1 • • • qnn 

Subtracting them, we obtain 

2A P = 
( 

911 • • • qv' 	r +1 • • • — q1n 

qni • • • gm- — qn, r 	• • • —9nn 

= 2P 

 

—1 

   

— 1 / 

Whence follows immediately what we sought to prove. 

499. If AA-1=E and both matrices are integral, then 1 A IxIA '1=1, 
whence it follows that I A I = ±1 because I A I and I A 1 -1  are integers. The 
condition I Al= +1 is obviously also sufficient for the matrix A -1  to be in-
tegral. 

500. Let A be an integral nonsingular matrix. There will be nonzero ele-
ments in its first column. By multiplying certain rows of the matrix A by — I, 
we can make all elements of the first column nonnegative. Choose the smal-
lest positive one and subtract its corresponding row from some other row 
containing a positive element in the first column. We again get a matrix with 
nonnegative elements in the first column, but one of them will be less than in 
the original matrix. Continue the process as long as possible. In a finite num-
ber of steps, we arrive at a matrix in which all elements of the first column, 
except a positive one, are zero. Then, by interchanging two rows, carry 
the nonzero element of the first column into the first row. Next, leaving the 
first row fixed, use the same operations to obtain a positive element on the 
diagonal in the second column, all elements below it being zero. Next turn to 
the third column, etc. The matrix will finally become triangular. Then, by 
adding each row an appropriate number of times to the above-lying rows (or 
subtracting each row from them), we reach a situation in which the elements 
above the principal diagonal satisfy our requirements. 

The foregoing operations are equivalent to premultiplication by certain 
unimodular matrices, whence immediately follows the desired result. 

501. Let A =PiRi=P2R2, where the matrices P1R1  and P2R2  satisfy the 
requirements of Problem 500. Then from the equation P21P1-=R2RT1  it fol-
lows that the integral unimodular matrix C=Pil P1  is also of triangular form. 



212 	 PART III. ANSWERS AND SOLUTIONS 

Let 

 

/ an a12 • • • ain 

a22 	• • a2n 

. 	. 

• • / 
ann 

  

b11 b12 ... bin 

b2, 	b2,, 

 

R1= R2 = 

 

     

    

b.  an 

C12 • • • Cl,, 

C22 • • • C2n 

C= 

bit--12  
Furthermore, b 1 	a -1-  a 	a +C 2=-11-12 • -12- 22=- 12 • -12-22, whence C12 —  

•••, 22 
But 0 -<..b12 < b22=a22, 0 -•-<-.a1.2< a22, hence, 1 C12 1‹ 1, and therefore C12=0. 

Thus, comparing successively (by columns) the other elements in the matrix 
equation CR1=R2, we come to the conclusion that all cik=0 for k> i, that is, 
C=E. Consequently, RI= R21 Pi=P2. Thus, in each class there will be one 
and only one matrix of the form R. 

The number of matrices R•with given diagonal elements d1, d2, 	d.o  is 
evidently equal to d24...dnn-1  and so the number of matrices R with a given 
determinant k is equal to F,,(k)=E d2d:...d."-1, where the summation sign 
E is extended over all positive integers d1, d2, 	d,, satisfying the condi- 
tion did2...d.=k. If k= ab, (a, b)=1, then each factor di  in the equation k= 
=d2d2...d,, is uniquely factored into two factors oci, so that (xi  oc2...ocn=a, 
131  132-13n= b. Hence, 

Fn (k)= 	 d2  
d,.dz 	do  =k 

= 	I 	.22: ... 4-1 Pa P.: 	14-1  
an -= a 

P. (32 • • . 13n= b 

= 	E 	cx2 	1  • 	E 	p2 	[4-1= F.(a) • Fn  (b). 
czi ac ... Gen = a 	 PI P2 • • • Pn=b 

From this we conclude that if k=pr' 	psi • is a canonical factorization 
of k into simple factors, then F,,(k)=F.(pr') 

It remains to compute Fn  (p"1). To do this, break up the sum for the com-
putation of Fn  (p"') into two parts, in the first of which dn= 1 and in the se-
cond of which do  is divisible by p, dn=pd'.. This yields the formula F.(pn= 

. 	 . 

. . 

can 

Then from the equation /22 = CR1  we first of all conclude that b11=c11a11, 
...,b,,.= c„„a.„, whence it follows that all CH  are positive. But CnC22••• Cnn = 

= 1 a 1= ±1, hence cu.= c22= ...=c„,,= 1 and aii=bli. 
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=F„_1  (Pm)+Pn-IF„ (Pm 	from which we readily establish, via mathe- 
matical induction, that 

F,,(p")= 	
tn-1- („1_0(prrl+2_ 1) 	(pm+n-i_i) 

(P -1) (P2 -1) 	(P"-1  - 

502. Choose the smallest (in absolute value) nonzero element of the mat-
rix and carry it into the upper left corner by interchanging rows and columns. 
Then add the first row and the first column to all other rows and columns or 
subtract them as many times as is needed for all elements of the first row and 
the first column to be less than the corner element in absolute value. Then 
repeat the process. It will terminate after a finite number of steps because 
after each step the element which arrives in the upper left-hand corner is less 
in absolute value than the preceding one was. However, the process can only 
terminate in the fact that all elements of the first row and the first column (ex-
cept the corner one) will become 0. In the same fashion, transform the matrix 
formed by the 2nd... nth rows and columns. The matrix will finally be reduced 
to diagonal form. By virtue of the result of Problem 489, all the above-descri-
bed transformations are equivalent to postmultiplication and premultiplication 
of unimodular matrices. 

503. Premultiplication of the matrix A'n is equivalent to adding the se-
cond row multiplied by m to the first. Premultiplication of BI" is equivalent 
to adding the first row multiplied by m to the second row. 

a b 

d 

 ) 
Let U= ( 
	

be a given integral matrix with determinant 1. Divide a 
c  

by c: a= mc+ al, 0' al  < I c I, then divide c by ch: c= inlaid- c2, 0 -.‘. c2  < at, 
( al  b1 

etc., until the division is exact. Then A-mU= Ul= c d ), B-mUi= 

= U2=1/ al 
b1 )

, etc. We finally arrive at the matrix Uk+ 1  of the form 
\Cry d2 

( 0 bka bk 

dk+i) 
or 

Ck dk

+1 ) (
0

k 	 . Then, by virtue of the positivity of all ak, 

ck  and the unimodularity of Uk+i, we have ak= dk+ 1=1 in the first case, and 

	

1 bk ) 	b . 
ck= -bk+1=1 in the second. Thus, Uk+i= 	= A k  in the first case, ( 

0 1 
0 - 1 ) 

and Uk-Fi=( , 	=A -1B A
d 
 k-1  in the second. The proof of the the- 

t 	dk 
orem is complete. 

504. A matrix with determinant -1 is transformed into a matrix with 
determinant 1 by multiplication by C. Each such matrix is a product of the 
powers of A and B. But B= CAC. 

505. Let I A 1=1, A2= E, A E. Then (Problem 498) 

(1 

A =P 	-1 	) P-1  

-1 
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for some nonsingular matrix P. Define matrix P so that it is integral with the 
/ 2 
 

2 
smallest possible determinant. Since A+ E=P 	0 	P —', the matrix A+ 

0 
+E is of rank 1 and, hence, 

/ 

Al (Li Al tta Ail-L3 

A + E= A2 111. A2 112 A2 I-1•3 

% A3 41 A3 tit AS 1L3 

Here, XiiLi+ A2(12+ A3(i3= 2 (Problem 495). Since the matrix A+ E is integral, 
the numbers Ai, A2, As  and the numbers 41, 1-12, 113 may be taken to be integers. 

Forming a system of equations for the components of the matrix P, it is 
easy to verify that for P we can take the matrix 

	

, Al 	0 	— a 

	

P— 

/ 
A2 	1 u(11 

— 11a v a 
where 8 is the greatest common divisor of p.2, p.3  and u, v are integers such 
that ut.t2 + vp.3= a. 

The determinant of the matrix P is equal to 2. 
On the basis of the result of Problem 500, P= QR, where Q is unimodular 

and R is one of the seven possible triangular matrices of determinant 2. 
Consequently, Q —1A Q is equal to one of the seven matrices 

R( 

 1  
— I )R-1. 

— 1 
Of these matrices, there are only three distinct ones, and two of them 
pass into one another by a transformation via the unimodular matrix. That 
leaves the two indicated in the hypothesis of the problem. 

506.  

507.  

(a) 

45. 

( 
9 

10  
3 
3 	, (b) (10 

8 
) , (c) 

2 
1 

3 

4 
2 

6 

6 
3 

9 

, 	(d) 	13. 

508. As a result we get Euler's identity: 
(al+ b1+ 4) (4+61+ 4)=(aa,+ bb 1+ cci)2  

+ (a1  b2  — a2  b1)2  (a1  c2 a2 Cl)2  (b1 c2 — b2 c1)2. 
509. The minor made up of the elements of rows with indices i1, i2, ..., im  

and of columns with indices k1, k2, ..., km  is the determinant of the product 
of the matrix made up of rows 13, i2, 	im  of the first factor by a matrix com- 
posed of the columns k1, k2, ..., km  of the second factor. It is therefore equal 
to the sum of all possible minors of mth order made up of the rows of 
the first matrix with indices i1, i2, 	im  multiplied by minors made up of 
the columns of the second matrix with indices k1, k2, • • .1 km. 

510. The diagonal minor of the matrix AA is equal to the sum of the 
squares of all minors of the matrix A of the same order made up of the elements 
of the columns having the same indices as the columns of the matrix AA, 
which columns contain the given minor. It is therefore nonnegative. 

511. If all principal minors of order k of the matrix AA are 0, then, by 
virtue of the result of Problem 510, all minors of order k of the matrix A are 
equal to 0. Hence, the rank of the matrix A, and also the rank of the mat-
rix AA, is less than k. 
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512. The sum of all diagonal minors of order k of the matrix AA is equal to 
the sum of the squares of all minors of order k of the matrix A. Also equal to 
this number is the sum of all diagonal minors of order k of the matrix AA. 

513. It is obtained by applying the theorem on the determinant of 
a, a2 	an 

a pro- 

duct 
	• • 	) 

duct of two matrices to the product of the matrix 	 into 
b, " 2  . . • bn 

its transpose. 
514. It is obtained by applying the theorem on the determinant of a 

product to 

a', b', 
I a, a2  ... a„\(4 b,2  

	

b, 	b 2  . . • bnl 	- - • • 

an b'n  

515. It follows directly from the identity of Problem 513. The equal 
( aia, ... a, ) 

sign is only possible if the rank of the matrix 	 is less than 
b1b.2  . • • 1'2 

two, that is, if the numbers a1, a2, • • •, an  and bi, b2, ..., bn  are proportional. 
516. It follows directly from the identity of Problem 514. The equal sign 

is only possible if the numbers a1, a2, ..., a„ and b1, b2, ..., b,, are proportional. 
517. Let matrix B have m columns, and matrix C, k columns. By the Lap-

lace theorem, I A I = E BiCi, where Bi  are all possible determinants of order m 
constructed from the matrix B, and C2  are their cofactors, which are equal (to 
within sign) to the determinants of order k constructed from the matrix C. 
By virtue of the Bunyakovsky inequality (Problem 515), I A 1 8‘.,E B? E C. 

But, E BF = I BB I, E Ci
2 
 =1 CC I - 

518. Let 

( bil. • • • bvn  ) 	( c11 • • • cik ) 
B— 	 , C—  	; A =(B, C). 

	

bni  • • • bnm 	 Cn1 • • • Cnk 

The inequality being proved is trivial if m+ k> n; for the case m+k=n, it 
is established in Problem 517. There remains the case m+ k<n. First assume 

that Eb11  c12 0 for arbitrary j, s. Then 

i= 

_C4.8 0 
AA= and, consequently, I AA I= IBBI • I CC I. 

In the general case, it suffices to solve the problem on the assumption 
that the rank of the matrix A is equal to m +k, for otherwise the inequality is 
trivial. 

Complete the construction of the matrix A to the square matrix (A, D) so 
that the rank of the matrix D is equal to n— m—k, and the sums of the pro- 
ducts of the elements of any column of D by elements of any column of A 
are 0. For example, this can be done as follows. First complete construction 
of A to the nonsingular square matrix e' = (A, D'), which is evidently pos-
sible, and then replace all elements of the matrix D' by their cofactors in 
1 e' I. The rank. Of the thus constructed matrix D will be equal to the number 

0 CC 
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of its columns n— m— k, for it is a part of the matrix made up of the cofac-
tors of the matrix e", which differs from the nonsingular matrix (t')-'1  in the 
sole factor I e' I. 

Denote (A, D) by P, (C, D) by Q. Then, by virtue of the result of Problem 
517, I PP 11 	1 • 1 QQ 1. But I PPI= IAAI•I DD1 and I 0Q1=1 dc" I 
• I DD I. Whence it follows that since I DD 1> 0 , 

	

I AA I 	BB1. ICC 1 . 

519. This follows directly from the result of Problem 518 as applied to 
the matrix A. 

520. The determinant of A* A is the sum of the squares of the moduli of 
all minors of order m of the matrix A, where m is the number of columns of A. 

521. This solution is similar to the solution of Problems 517, 518. For a 
square matrix, the question is resolved by applying the Laplace theorem and 
the Bunyakovsky inequality. It is advisable to complete the rectangular mat-
rix to a square matrix so that the sum of the products of the elements of any 
column of the matrix A by the conjugates of the elements of any column of 
the complementary matrix is equal to 0. 

522. Applying the result of Problem 521 several times to the matrix A and 
taking, for B, a matrix consisting of one column, we get 

n 

	

I A*A 1=11 A112 r.-CE I aiiI 2  • E 	 E ain 
i =1 	i =1 	 i =1 

whence it follows that 
n 

	

11 A 	M". 

523. Complete the given determinant A to a determinant Al  of order n+ I 

by adjoining on the left a column all elements of which are equal to 
2  
_, and a 

row of zeros on top. Then A= _2 
 A

1. Subtract the first column from all co-

lumns of the determinant Al. We get a determinant, all elements of which do 

not exceed M  Using the result of Problem 522 yields what we set out to 
2 

prove. 
n 

524. The bound n 2  Mn is attained, for example, for the modulus of the 
determinant 

where e = cos 27c  + . sin  22n . 

1 	1 	. . . 	1 

1 e 	en-1 

1 En-1 	c(n- 

525. Construct a matrix of order n=2'n as follows. First construct the 

matrix ( 	
— 1 1 

1 	. Then replace each element equal tq 1 by the matrix 
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( 	) 
and each element equal to — I by the matrix — 1 

(1 —1 

) 

—1 
1 1 

. We obtain a fourth-order matrix, 

, 1 	1 	1 

	

1 —1 	1 —1 

—1 —1 

	

—1 	1 

Operating on this matrix in the same way, we obtain an eighth-order matrix, 
etc. 

It is readily seen that for the matrices thus constructed the sums of the 
products of the corresponding elements of two distinct columns are zero. 
Consequently, 

AA= 

 (

n 0 ... 0 

0 n . , . 0),  

0 0 	n 

2 
I AA J = n4  , 	A iHn n  

The following equation holds for the matrix MA: 
n 

II MA II=Mn 2  

526. We prove that all the elements of a matrix, the absolute value of the 
determinant of which has a maximal value, are equal to ± 1. Indeed, if —1 < 
< ask  <1, A>0 and Ask  > 0, then the determinant will be increased by substi-
tuting 1 for ask, but if A 	and A sk<0 , the determinant will increase due to 
—1 replacing ask. If A <0, then the absolute value of the determinant will 
increase when aik  is replaced by unity with sign opposite that of Ask. Finally, 
if Aik=0, then the absolute value of the determinant will not change upon aik  
being replaced by 1 or —1. We can say, without loss of generality, that all 
the elements of the first row and the first column of a maximal determinant 
are equal to I ; this can be achieved by multiplying the rows and columns by —1. 
Now subtract the first row of the maximal determinant from all other rows. 
The determinant then reduces to one of order n-1, all elements of which', are 
0 or —2. This latter determinant is equal to 2n-1N, where Nis some integer. 

527. 4 for n=3, 48 for n=5. 
528. For a singular matrix A the result is trivial. Let A be a nonsingular 

matrix and let A be its transpose, A its determinant and A' its adjoint. 
— 1 

/ 	+1 
—1 

from the rule for constructing an inverse-  matrix. Therefore, I A' I =An-1  
and (AT =An-1. C(4)-1 C.=  An-1 A-1A =  An-2 A.  

529. Let the minor of the matrix A', which is the adjoint of the nonsingu-
lar matrix A, be made up of rows with indices is< is  < < im  and columns 
with indices Ics  < lc, < 	Let ini.fs.<4,4. 2 < < in  be indices of the rows 

Then A' =AC/1-1C,! where C= ; this follows directly 
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not in the minor, let k„,±1< 	...<Icn  be indices of columns not in the 
minor. Multiply the minor at hand by the determinant A of the matrix A: 

Ai, k, 	• • • Ai, k m  I 

A. 
Aim k, • • • Aim  kin  

Ai, k, 	. Ain,k, 

Ai,k m 	Aimk„, 
= ( - 1 ) 

+km  A  

  

Ai, k, 	. . • Aim  k, 	Ai m + ,k, 	. • . Ai„k, 

Ai,km . Ain, km  Aim}, km  . . . Ain  km  

1 

• • 	• ai, km 	 • • • ai, kn  

• • 	• aim kn, 	• • • aim  kn  

• • 	• ain  km 	 • • • ain  kn  

• A 

. • . aim +1 k m  +, • • • ai m +1 k n  

ain  k, 	• • • ain km+, 	• • • ain  k„ 

	

_Am 
	aim+, km+, • • • ain,+ , k n  

	

ain km+ „ 	• • • ain  kn 

whence follows what we sought to prove. 
530, 531. This follows directly from the theorem on the determinant of a 

product of two rectangular matrices. 
532. It is necessary to establish alphabetical ordering of the combina- 

nation 11<12< <jn, if the first nonzero difference in the sequence it — j1, 
tions, i.e., consider the combination 11< i2 < < in, as preceding the combi- 

12-12 ..., is negath e. Then each minor of the triangular matrix, the in-
dices of the columns of which form a combination preceding the combi-
nation of the indices of the rows, is equal to 0. 

533. By virtue of the results of Problems 531, 491 it suffices to prove 
the theorem for tr;angular matrices. By virtue of the result of Problem 
532, we have for the triangular matrix A, 

ai, 	ai, 	• • • aim  im = A 	• 

aim  k, 

ain  k, 

A 

ai, k, 
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534. Properties (a) and (b) follow directly from the definition. To estab-
lish Property (c), it is convenient to denote the elements of the Kronecker 
product, using for suffixes not the indices of the pairs but the pairs them-
selves. Let 

C= (A' • A") x (B' • B"), A' x B' = G, A" x = H. 

Then 

Cit  lc,, i2  k, 
in 

=E 	• EGh
, k bkkz E aii

b'kk a;'4 11k = E gi, k,, ik hik, iz  kz 

i =1 	 k =1 	 i,k 	 1,k 

whence C=G • H, which completes the proof. 
535. The determinant of the matrix A X B does not depend on the way 

the pairs are numbered, because a change in the numbering results in iden-
tical interchanges of rows and columns. Furthermore, 

A x B= (A x E m) • (E,,x B). 

Given an appropriate numbering of the pairs, the matrix A x Em  is of 
, A 
I A 

the form 	 , the matrix A being repeated m times. Conse- 

A' 
quently, the determinant of A xEm  is equal to I A Im . In the same way (but 
with the pairs numbered differently), we see that the determinant of En  x B is 
equal to 1./31n. Hence, 1 A x B1=1A 1' I B1'. 

536. An element of a row with index a and of a column with index p of 
the matrix Cik is 

c(i_i)m+a,(k—Omi-p= 

Inn 	
m 	s bs, (k —1) + 

s =1 

E a(i _1) m+«,  (j— in v b(j —3.)m+v,(k —0 n2+ (3. 

v=1 

But the inner sum in the last expression is an element of the matrix Aii Bik 
taken from a row with index a and a column with index B. Thus;  

n 

Cik = 	ij Bjk• 

j=1 

537. For n=1 the theorem is trivial. Assume that the theorem is proved 
for matrices of "order" n-1 and prove it for matrices of "order" n. 

First consider the case when An  is a nonsingular matrix: 

A11 

C—( A21 

Ant 

Al2 

A22 

Ana 

• • 

• • 

• Ain 

• A2n ). 

• Ann 
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Multiply matrix C on the right by matrix D, where 

/ E- 	42 	 Ain 

D= 

E 

Then C' =CD will be of the form 

All 

C'= A,1 

Aryl 

0 	. . . 0 

A'22 	AZn 

A ',22 • • • Ann 

where A;k =Aik-A0A-11  
All submatrices of C, D and C' commute with one another. It is easy to 

see that when this condition is fulfilled the theorem on the determinant of a 
product of two matrices is also true for formal determinants. 

The matrix D has a formal determinant E, the actual determinant of D is 
equal to 1. 

de22 • • • 41 

Hence, I CI=1 C' 1=1 An 1 • 
Ana . 	A;,,, 

and for the formal determinant of B we will have B= An  . B', where B' is the 
formal determinant of the matrix 

By the induction hypothesis, 

11;2 	. Asn 
1B' 

. . . Ann  
and, consequently, I B1=1A111 I B' 1= I C I, which completes the proof. 

In order to get rid of the restriction I A11 100, the following can be done. 
Introduce the matrix 

and denote its formal determinant by B (A). 
Since I An+ XE„, I= Vn+ .. .00, I C 	= I B (A) I . Both these de- 

terminants are polynomials in A. Comparing their constant terms, we 
obtain I CI=1 BI. This completes the proof. 

C (A)= A21 

A11  )

All -FA Em  An . . . 2111 

A,, • . . A_,, 

Ana • • • Ann 
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CHAPTER 5 

POLYNOMIALS AND RATIONAL FUNCTIONS 

OF ONE VARIABLE 

538. (a) 2x2 -7x5 +6x4-3x3 —x2-2x+1, 
(b) x3 —x4-4x3+3x+1. 

539. (a) The quotient is 2x2 +3x+11, the remainder, 25x-5. 
3x-7 	 —26x-2 

	

(b) The quotient is 	 , the remainder, 

	

9 	 9 
540. p=—q2-1, m=q. 
541. (1) q=p-1, m=0; (2) q=1, m=±-1/2—p. 

542. (-1 
(x— 1)(x 

2 
— 2) .. . (x  n)  

	

1 • 	• 3 . . . n 
543. (a) (x-1) (x8 —x2+3x-3)+5, 

(b) (x+3) (2x4-6x3+13x2 -39x+109)-327, 
(c) (x+1+i) [4x2 —(3 +41)x + (— 1+ 7 i)]+ 8-6i, 
(d) (x— 1+2i) [x2 -21x— 5-2i]— 9 + 8i. 

544. (a) 136, (b) —1-44i. 

545. (a) (x+ 1)4-2(x+1)3-3(x+02 +4(x+1)+1, 
(b) (x — 1)5  + 5(x — 1) 4  + 10(x - 03+10(x-1)2+5(x-1)+1, 

(x- 2)4- 18(x-2)+38, 

(d) (x + — 2i(x + — (1 +i) (x + 02 — 5(x+i)+7+5i, 
(e) (x + 1 — 204 — + 1 — 208+ 2(x 4- 1 — 2i) + 1. 

1 	6 	11 	7  

	

546. (a) 	+ 	+ 	2 4  (X 2)2 	(X 2)3 	(x 	) 	(x 2)5 

	

1 	4 	4 	2  

	

(b)  x+1 	(x+1)2 	(x+1)3 	(x+1)5  
547. (a) x4+11x3+45x2+81x+55, 

(b) x4 — 4x3+ 6x2 + 2x+ 8. 

548. (a) f (2)=18, f (2)=48, f" (2)=124, f - (2)=216, fiv (z)= 240, 

f v  (2)=120; 

(b) f (1 +2i)= — 12 —2i, f' (1 +21)= —16 +81, f" (1 +2i)= —8+ 
+30i, f" (1 + 2i)= 24 +301, f TV  (1 + 2i) = 24. 

549. (a) 3, (b) 4. 

550. a= —5. 
551. A = 3, B= — 4 . 

552. A = n, B = — (n+ 1). 
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555. For f (x) to be divisible by (x-1)k  +2, it is necessary and sufficient 
hat f (1) = no+ al+ + a„ = 0 and f' (x) be divisible by (x-1)k ; for this it is 
in turn necessary and sufficient, given the condition f (1)=0, that fi(x)--nf (x)- 
-xf ' (x) be divisible by (x- 1)k. Regarding f1 (x) formally as a poly-
nomial of degree n, we repeat the same reasoning k times. 

556. a is a root of multiplicity k + 3, where k is the multiplicity of a as a 
root of f ' (x). 

557. 312562 +108(25=0, a00. 
558. b=9a2, 1728a' + c2 = O. 
559. The derivative xn-m [nxm + (n- m)a] does not have multiple 

roots other than 0. 
560. Setting the greatest common divisor of m and n equal to d, m=dm1,  

n= dni, we get the condition in the form 

( - l)nx (ni  -nti)n= -11h nrini an= = 	?T. 

562. A nonzero root of multiplicity k - 1 of the polynomial 

at  xlh+ a2  xP.+ . . . + ak xPk 

satisfies the equations 

xPi + a2 xP-1- . . . + ak x P  k =0, 

Pt at  xPl+p2  a2  xlh+ 	+pk ak x P k  =0, 

P1 at  xPl +14 a2  xPz + 	+p2k  ak xP  k =0, 

pk-2 
a1 	2 

x +pk —2 02 .xri . 	pk -20k x P k =13 

whence it follows that the numbers ai x°=, a2  x1", 	ak  xPk are proportional 
to the cofactors of the elements of the last row of the Vandermonde determinant 

1 	1 1 	... 

A = Pi 	Ps Ps 	• • • Pk 

pif -1 pri  P§-1 	• • • Plirl  
It is easy to verify that 

A 
Di = 11 (pi—ps)=V (Pi). 

so i 

From this it follows that the numbers a i  xPi  are inversely proportional to 
(P' (Pi), i.e. 

a1  xP' (PO = a2 xPa p (PO= . . = ak x P k  cP' (Pk). 

All the foregoing reasoning is invertible. 
563. If f (x) is divisible by f' (x), then the quotient is a polynomial of degree 

1 
one with leading coefficient -n  , where n is the degree of f (x). Therefore, 

nf (x)=(x-xo) f' (x). Differentiating, we get (n- 1) f' (x)= (x- xo) f" (x), 
and so on, whence 

f (x)=
(x n!xo)n  f (x)= a„(x- 	. 

The converse is obvious. 



CH. 5. POLYNOMIALS AND FUNCTIONS OF ONE VARIABLE 
	

223 

xn 
—
x 

564. A multiple root of the polynomial f (x)= I + + . . . + —
n1 

must 
1 

also be a root of its derivative 
1 	xn 

f' (x)= 1 + T  +...+ (n 
 xn

— — f (x) — —nl • 

Hence, if f (x0)= f' (x0)=0, then xo  =0, but 0 is not a root of f (x). 

565. If f (x)= (x — x0) 4 (x), where f1 (x) is a fractional rational function 
which does not vanish for x=x0, then direct differentiation yields 

f (x0) =1.  (x o)_ • • • =f  (k-1) (x0)=0, f (k) o) O. 

Conversely, if f (x0) = f' (x0) = • • • = 

= (x— x0) kJ: (x), f1  (x0)00  because if it were true that f (x)= (x — xo)m q (x), 
q (x0) 00 for m k, then the sequence of successive derivatives vanishing for 

x„ would be shorter or longer. 
566. The function 

t.1)  (x) 	 f'  (xo) 	 f (n) 	(x) 
 (x — x o g (x)= 	=f (x)— f (xo) 	(x — x0)— . . . 	 r 

W (x) 	 1 	 n1 

satisfies the condition 
g (x o)= g' (x 0) = . . . = g(n) (x 0) = O. 

Consequently, 4,  (x)=(x— xo)n+ 1  F (x), where F (x) is a polynomial. This 
completes the proof. 

567. If A. (x) fa (x0)—f2  (x) A (x.) is not identically zero, then we can take 

it that 11  (xo) 00. Consider the fractional rational function f (9 fa (x o) 

A (x) A (xo) 
It is not identically zero and has xo  as a root. The multiplicity of this root is 
higher by unity than the multiplicity of xo  as a root of the derivative equal to 
fi (x) f‘ (x) — (x) f '1(x)  

whence immediately follows the truth of the asser- 
M. (x)P 

tion being proved. 
568. Let xo  be a root of multiplicity k for If (x)]2  — f (x) f' (x). Then f o) 

0 0 because otherwise xo  would be a common root off (x) and f' (x). From the 
preceding problem, xo  will be a root of multiplicity k +1 of the polynomial 
f (x) f' (x0)— f (x0) f' (x), the degree of which does not exceed n. Hence, k+ 1 
‹n, 

569. The polynomial f (x) f' (x0)— f (x0) f' (x) must have xo  as a root of 
multiplicity n, that is, it must be equal to A (x— xo)", where A is a constant. 
An expansion in powers of x—xo, after the substitution x—x0=z, yields 

(a0 + z + a2 + . . . +an Mai — (al  + 2aa  z + 3a3  z2 + 	+ nan 	.20= Azn 

and 
ao= f (x0) (). 

? 	 ay:  
Whence a2  = 

2a, , a2 — 	a 31 ' • • • ' an  =a/J-1  n! • 

Substituting—
ao 

=a, we get 

(x —x0) 0(2  (x —
2  x

0)2 	(x—x0r1 
f (x)= [1 + 

1 1 • 	+ 	+ n! 	j 

f (k (xo)= 0 and f (k) (x0)0 0, then f (x)= 
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570. For example, S= 21 (20  is not suitable) . 

5  ( 
24 571. For example, = 25 	not suitable) . 

572. F or example, M=6. 
573. For example, 

33 

/ 	 / 

(a) x =pi, 0 < p < 	(b) x=p, 0<p<1/ 3. 

574. For example, (a) x =1— p, 0 <p < ; 
4 

(b) x= 1 + p (cos (2k 	
—  

—4 1)7r  + i sin 

	

(2k 
4

1) n 	p < 1r8 ; 

(c) x=1 + pi, p< 

575. Expansion of the polynomial f (z) in powers of z — i= h yields 

f (z)= (2—i) [I +(l—i)h3 
4 
 5  
+2i 

 h4+ 1 5
+31 

 1751. 

Setting h=a (1 — i), we get 

2 f (z)= (2 — i) [ 	
)

1 - 4a3 + 4a3 4 +2i 
a 
 4 +2i 

 a 5  
5 

whence 

I f (z) 	5 (11 — 4a3I+ 4a3 jif 1/ 5)<V5 

for 0 <a <-
2 

• 

576. Representing the polynomial in the form 

f (z)= f (z o) {1 +r (cos +i sin p) — z 0)k [1 + (z — zo) 4  (z)] } 

—cp 
set z — zo= p (cos ID+ i sin ID), take ID= 2mrc 

	
and take p so small that 

(z— zo) (z) I < 1. Then 

I f (z) I= I f (zo) 11 1 + rpk + rplc (z —  z0) 4' (z) I> f (zo). 

577. The proof is like that for a polynomial, with use made of Taylor's 
formula for a fractional rational function (Problem 566) which should be ter-
minated after the first term with nonzero coefficient, not counting f (x0). 

578. Denote by M the greatest lower bound of I f (z) I as z varies in the 
region under consideration. 

By dividing the region into parts, we prove the existence of a point zo, in 
any neighbourhood of which the greatest lower bound of I f (z) I is equal to M. 
If necessary, cancel from the fraction the highest possible power of z — 

cp  (z)  
After the cancellation, let f (z)= 

 4.1 (z) . Then i  (zo) 0, for otherwise, in a 
sufficiently small neighbourhood of zo, I  f (z) I would be arbitrarily great and 
the lower bound of I f (z) I could not be equal to M in a sufficiently small 
neighbourhood of zo. Consequently, f (z) is continuous for z= zo  also by virtue 
of the continuity of I f (zo) I= M, which completes the proof. 
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579. The lemma on the increase of the modulus is lacking. 
580. Under the hypothesis, 

f (a) 0, f'  (a) = 	=f(k-i) (a)=O, pk) (a) (,) 

and by Taylor's formula, 
pk) (a) 

f (z)=P61) -F - 	k  
Set 

(z—a)k [1 + cp (z)], cp (a)=0. 

1 	f (k) (a) 

f (a) 	kl
" r (cos p+ i sin cp), z — a = p (cos 0+i sin 0). 

Take p so small that I p  (z)  I < 1, rpk < 1. Then 

(z)1= I f (a)I • 1 1 +rpk [cos (cp i-k0)+ i sin (cp + k0)] +rpk AI, where IA <1. 

For 0= 
(2m-1)Tc-9, 

 m=1, 2, ..., k,I f (z)I <I f (a) I. 

2m7—cp   For 0= 	, m=1,  2, 	k , f (z) > f (a) 

Thus, as 0 varies from 	k  to 	k  +2n, the function I f (z) I— I  f(a) I 

changes sign 2k times. Since I f (z) I — I f (a) I, as a function of 0 is continuous, 
I f (z) I — I f (a) I vanishes 2k times, thus completing the proof. 

581. As in Problem 580, show that Re (1 (z)) — Re (1(a))and Im (1 (z))— 

—Im (1 (a)) for z= p (cos 0+i sin 0) changes sign 2k times as O varies through 
1 	, 

2n, provided only that p is sufficiently small. Setting IT f (a)= r (cos cp+ 

+i sin p), we obtain, by Taylor's formula, f (z)— f (a)= rpk [cos (9 + k0)+ 
+i sin (cp + k0)] [1 +cp (z)], cp (a)=0. Choosing p so that I cp  (z) I <1, we ob-
tain the following, setting 9 (z)=p1(z)+  ic p (z): 

Ref (z))— Re( f (a))= rpk [cos (cp +k0) (1 +91  (z))— sin (9 + k0) cp2 (z)], 

Im(f (z)) —Im (f (a))= rek  [sin (9+k0) (1 +cpi  (z))+ cos (cp + ke) cp2  (z)]. 

Putting cp +k0=mn, m=0, 1, 2, ..., 2k, we get 

Re (f (z))—Re (f (a)) = rpk (-1)171  (I +E,,,) 

where cm  is the corresponding value of 91  (z), I cm  I < 1. 
Whence it follows that Re (1 (z)) — Re (1(a)) changes sign 2m times as z 

traverses the circle I z— a I= p. A similar result is obtained for Im (1 (z)) —  

—Im (f(a)) by putting 9 + k0= +m1t, m=0, 1, ..., 2k. 

582. (a) (x-1) (x-2) (x-3); 

(b) (x-1 i) (x-1 +i) (x+ 1 — i) (x+ 1 +i); 

8. 1215 
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-1/ V2+1 	1/  V-2-1  ) (
x+ I 1/  V2+1  (c) (x+ I 	 -1 2 	 2 	 2 

+/ -1/°  
2-1  (x+14"  24.1  +i 1/1/  22-1  

x(x+1+1/ 1 2+1  
I  )1 . 

2 	 2 

(d) (x-V3--V 2) (x -1/3+1/ 2)(x+1/ 3-V 2)(x+1/ 3+V 2). 

583. (a) 2n- [1 (x _cos 
k=1 

(2k-1) IT  \ 
2n 	J 

n 	(0+  (2k-1) n
2n  

(b) 2 n x+ 	(2k-1) 	(x- tans 
n I ' (c)  

k=1 	sin 	2n 	 k= 

584. (a) (x2+ 2x+ 2) (x2- 2x + 2); 
(b) (x2+3) (x2 + 3x + 3) (xs- 3x + 3); 

(c) (x2 +2x+ 1+V2 -2 (x+ 1) -V  1/ 22+1 ) 

x (x2 + 2x + 1+1/2+ 2 (x + 1) 

(8k+4n1) n 	 / 
n-1 2n 

(d) fl  (x2-2 V 2xcos 

(2k-1)n 
4m 

1/  V 22+ I  ) 

k=0 

(e) (x2-x Va+ 2 + 1) (x2 + x V a+2+ 1); 
n-I 

(f) 1-1 ( 	 -I- 1) • xa - 2x cos (3k 	+ 1) 27t  3n 
k=0 

585. (a) (x - 1)2(x -2)(x - 3)(x - 1 - i)= x5- (8 + Ox4+ (24 +70x2  
-(34+ 170x2+ (23 + I7i)x-(6 +6i); 

(b) (x+1)3  (x-3) (x-4)= x5-4x4-6x2 + 16x2 + 29x + 12 ; 
(c) (x-i)2  (x+ 1 + i)=x2+ (1 - Ox2+ (I -2i)x-1-i.  

586. 1 	xk (X). 
k=i 

587. (a) (x - 1)2(x -2)(x - 3)(x2  -2x + 2)=x6- 9,0+ 33x4  -65,0 
+74x8-46x+ 12; 

(b) (x2-4x+ 13)2 =x6 - 12x5 + 87x4- 376x8 +1131x2-2028x+ 2197 ; 
(c) (x2+1)2  (x2+2x+2)=x6+2x5+4x4+4x2+5x2+2x+2. 
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588. (a) (x-1)2  (x +2); (b) (x + 1)2  (x2 +1); (c) (x-1)8. 
589. x-4-1, where d is the greatest common divisor of m and n. 

590. xd + ad  if the numbers 71, and 7/  are odd; 1 if at least one of them is 
even; d denotes the greatest common divisor of m and n. 

591. (a) (x —1)2  (x + I), (b) (x-1)3  (x+ 1), 
(c) 	1 (d is the greatest common divisor of m and n). 

(x0) 
592. Denote A0= 

u (x0) and factor f (x) into linear factors : f (x)= v  
=(x — A0) (x — ...(x — Ak _ D. Then Xi Xo  for j00. Furthermore, 

f  uv  ((xx))  \ 	r  
) 	v 	

(u (x)—xo  v (x)) 	(u(x)-4_,v (9). 

By virtue of the hypothesis and also of the fact that u (x0) — Xi v (x0= v (x0) 
(X0 —  Ai) 00, the polynomial u (x)— v (x) has xo  as root of multiplicity k> 1. 
Hence, u' (x)—A0  v' (x) has x0  as a root of multiplicity k —1. Furthermore, 

f 	(x)  \ 	1  
(x)ik (x) 	[v• 	

(x) 	(x)) . . . (u' (x)-xk _, (x)) • 

All u' (x)— v' (x), .100, do not, obviously, vanish for x =x0. Consequently, 
u' (x)  

has v' (x) J 	xo  as a root of multiplicity k — 1, which is what we set out to 

prove. 
593. If w is a root of the polynomial x2  + x +1, then 0=1. Hence, warn+ 

+wsn+14.0p+2=1 +,±wa=0.  
594. The root X of the polynomial x8 —x+ 1 satisfies the equation A3= —1. 

Hence, 

X3m—Vmfi+X3P+ 2 =(-1)m—(-1)"X+(-1)P A2  

=(-1)m— (-1)P ±A [( -1)P— ( —  

This expression can equal zero provided only that (— 	=(-1)P---(— I)", 
that is, if m, n, p are simultaneously even or simultaneously odd. 
1 595. x4+x2 + 1= (x2+x +1) (x2 —x + 1). These factors are relatively prime, 
x2 + x + 1 is always a divisor of xam +x34+ 3+x3P+ a (Problem 593). It remains 
to find out when divisibility by x2 —x+ 1 occurs. Substitution of the root X of 
this polynomial yields 

(— 	on a+(— 1)p A2=(-1)m—(-1)P±X R-1)n+(-1)Pj. 

This will yield 0 provided only that (-1)m= (-1)"= —(— On, that is, if the 
numbers m, p and n+ 1 are simultaneously even or odd. 

596. If m is not divisible by 3. 
597. All roots of the polynomial Xk-1±Xk-14- ...-F I are kth roots of 1. 

ka -1-k-1 
Hence, 	_i_kaz+1+ 	k 	=1+ +...+ 	—0, whence fol- 
lows the divisibility, since all roots of Xk-1+ ...± 1 are prime. 

598. Substitution of the root w of the polynomial x2-1-x+ I into f (x)= 
= (I + —xm —1 yields (1 + 	— )02 -1. But 1 + w= — wa= X, which is a 
primitive sixth root of unity. Furthermore, w= V, whence f (w)=Am 	— 1. 

8* 
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For 

m = 6n f (w)= -1 00 , 

m=6n+1 f (w)=A-A2-1=0, 

m=6n+2 f (w)=Aa +A- 1 , 

m=6n+3 f (w)= -3 00, 

m=6n+4 f(w)= -A+A3-1 00, 

m=6n+5 f (w)- -X2+)■ - 1 =0. 

Divisibility of f (x) by x2+x+ 1 occurs when m= 6n + 1 and m = 6n + 5. 
599. For m=6n+2 and m=6n+4. 
600. f (w)= m(1+ w)m - mwm- 1= m[A'n-  - X3(ni-1)], r(ii)=0 only for 

m=6n+ 1. 
601. For m=6n+4. 
602. No, because the first and second derivatives do not vanish at the same 

time. 
603. For x= k, 

f (k)=1 
k 
 + 

k (k -1) 	
+(-1)k 

k (k -1)  . . . 1 
-(1 1)k=0. 

1 	1 • 2 	
...  

1 • 2 ... k 

Consequently, the polynomial is divisible by (x-1) (x -2). . .(x - n). A com-
parison of the leading coefficients yields 

f (x)=
r(_  

n1 	
)n 
 (x 1) (x - 2) ... (x-n). 

604. For m relatively prime to n. 
605. If f (xn) is divisible by x-1, then f (1) =0, and, hence, f (x) is divi-

sible by x-1, whence it follows that f (xn) is divisible by xn- I. 
606. If F (x)=f (xn) is divisible by (x- a)k , then F' (x)= f ' (xn)nxn-1  is 

divisible by (x-a)k -1, whence it follows that f ' (xn) is divisible by (x- a)k -1. 
In the same way, f " (xn) is divisible by (x-a)k 	...,f (k-')(xn) is divisible by 
x- a. From the foregoing we conclude that f (an)=f' (an)= 	- 1) (an) = 0 

and, hence, f (x) is divisible by (x-an)k, f (xn) is divisible by (xn - an)k. 
607. If F (x)= (x8)+ xf2  (x3) is divisible by x2+x+ I, then F(w)=f1  (1)+ 

+ wf2(1) =0 (w is a root of x2+x+ 1) and F (w9= (1)+ w2f2 (1)=0, whence 
fi (1)=0, f2 (1)=0. 

608. The polynomial f (x) has no real roots of odd multiplicity, for other-
wise it would change sign. Hence, f (x)= (x)l 2  f2 (x), where f2  (x) is a poly-
nomial without real roots. Separate the complex roots of the polynomial f2  
into two groups, putting conjugate roots in different groups. The 'products 
of the linear factors corresponding to the roots of each group form polyno-
mials with conjugate coefficients (Pi  (x)+ 2  (x) and qh (x)- 2  (x). Hence, 

fa (x)= qi? (x)+M (x) and f (X) = 	q)ir + (A 'P2)2. 

609. (a) -x1, - x2, ..., 	
1 	1 

(b) — , — . • • , 1 
X1 X2 	 xn 

(c) xi-a, x2-a, ..., xn-a, (d) bx1, bx2, 	bxn. 

610. One of the roots must be equal to - 2. The desired [relation is 

8r= 4pq - p2. 
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1 	1 	1 
611. x1= 6 , xa= 2 , x3= 	• 

F612. a3-4ab+8c=0. 
S 13. The relationship among the roots is preserved for arbitrary a. Taking 

a 
=- 4' we get y4+a'y3+b'ya+c'y+d'=0, a'=0, a's -4a'b'+8c'=0, for 

the transformed equation, whence, c'=0. 
614. clad= c2. 

615. Division by x2  yields x2+ -
d 

+a (x+ —)+ b=0. 
x2 	ax 

Making the substitution x+— 
ax 

 =z, we get x2 + =x2+ 	
a2  x2 

- z2  - 

n  c 
-z -a , whence, for z, we get the quadratic equation z2+az+b-2 -a =0. 

Having found z, it is easy to find x (generalised reciprocal equations). 

616. (a) x=1 ±1/3, 1± i 	(b) x= + 2i, -2+ i; 

-1+1/ 5 -1+0/1i  	-3+157 
2  (c) x= 	, 	 ; (d) x=1+ 1/ 3 

	

' 	2 

617. A= +6. 
618. (1) b= c=0, (any a),(2) a=-1, b=-1, c=1. 
619. (1) a=b=c=0; (2) a=1, b= -2, c=0; (3) a=1, b= -1, c= -1; 

2-X2  

	

(4) b=A, a= 	c= 	A , where As - + 2 = O. 

620. X= -3. 
621. q3+pq+q=0. 622. a?-2a2. 

a, 2i- n- 1 
623. xi= 	+ 	 2 

h= 	
-II  12 (n-_  I) 4- 24na2  

n2-1 

624. If the roots formed an arithmetic progression, then, by the formula 
of Problem 623, they would be: 

1 	1 	3 
(a) - , -2  , 	; they indeed satisfy the equation; 

5 	3 	1 	1 
(b) - -2- , - , 	, 	; they do not satisfy the equation. 

625. Let y=Ax+B be the equation of the desired straight line. Then the 
roots of the equation x 4+ax3+bx2+cx+d=Ax+B form an arithmetic pro-
gression. We find them in accordance with Problem 623: 

a 2i-5 
xi= 	+ 	 

4 	2 	
h, 1=1'  2

, 3
, 

4 

where 

   

    

h, i=1, 2, ..., n where 

h  = 1 1 /9a2- 24b  1 1 3a2-8b  
15 	2 V 	5 
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Whence 

A— c=xix4  (x2+x3)+ x2x3  (xi+ x4) 
= 	 h2) _6a2 	h2) a a'  — 4ab 

2 	8 	' 

d—B=x1  x2  x3  x4= 	00  (36b— I lag) (4b + a2). 
161  

Consequently 

(23  A =  — 4a
8
b  +  8c  , B = d 1600  (36b — I la2) (4b+a2)• 

The intersection points will be real and noncoincident if 3a2-8b>0, 
that is, if the second derivative of 2(6x2 +3ax+ b) changes sign as x varies 
along the real axis. °el+ 1 

• 626. x4 — ax2  +1 = 0 where a= 	 
cc2  

627. (x2 — x+ 1)2 — a (x2  — x)2  = 0, a=  (
0,11 — ,+ 1)3 

 (0,2 _ ,02 

628. f' (xi)= (xi—xi) ... 	 xi  + ... (xi  -x„); f” (xi)= 2 [(xi 
—x2) ... (xi  — xi_ 2) (xi —xi  + i) ... (xi  — 	+ 	(xi — x2) ... (xi  — 	2) (xi  
—xi  +2) ... (xi  — x,,)+ 	+ 	(xi — x2) ... (xi 	(xi —x, +2) ... (xi 

n 

f' (xi)=(— 1)n  (i — I)! (n— hn 1  . 

631. (a) x +1, (b) x2 +1, (c) x3+1, (d) xa —2x+ 2, (e) x3 —x+ 1, (f) x+ 3, 

(g) x2  +x+ 1, (h) x2-2x1/ 2-1, (i) x+2, (j) 1, (k) 2x2 +x — 1, (1) x2+x+ 1. 

632. (a) (—x— 1) fi (x)+(x+ 2) fa  (x)= x2  —2, 

(b) (x)+ (x+ 1)12 (x)=x8+ 1, 
(c) (3—x) fi  (x)+ (x2  —4x + 4) fa (x)= x2  + 5, 

(d) (1—x2) /I (x)+ (x3+ 2x2 —x —1) /2  (x)=x3+ 2, 

(e) (—x2+x+ 1) f1 (x)+ (x3  + 2x2 —5x — 4) .f2 (x)=3x+2, 
x— 1 	2x2  — 2  

(f ) — 	 (x) + 3 	 3
x — 
	(x)=x— 1. 

633. (a) M2 (X)= X, 	 (X)= — 3X2  — X+ 1 

(b) M2 (x)= —x —1, 	Ml  (x)= xs + x2 — 3x —2; 

(c) M, (x)—  —x22+ 3  , 	 (x)— 
2 

x4  — 2x2  — 2  

(d) M2  (x) 	
2x2  + 3x 	 2x3+  5x2  — 6 

= 
6 	' 	 (x)= 	6 

—xn_ 4)]=2f' (x4) 	xi 
1 

x, 
— (if xs  xi). 

/-1 
(soi) 

629. It follows directly from Problem 628. 

630. Let xi=x1+ (i— Oh. Then 
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(e) M2  (x)= 3x2 +x- 1, MI. (x)= - 3x3 + 2x2 + x- 2; 

(f) M2 (X) = — X3—  3X2—  4X — 2, 

M1  (x)=x4+6x2 +14x2 +15x+7. 

	

-16x2 + 37x+ 26 
, 	(x)= 

16x3- 53x2- 37x-23 
634. (a) Ma (X) = 

3 	 3 

(b) M2  (x) = 4 -3x, MI  (x)= 1 + 2x + 3x2  ; 

(c) M2  (x)= 35- 84x + 70x2- 2Ox2, 

M1 (x)=1 +4x+10x2+20x3. 

635. (a) MI  (x)= 9x2-26x - 21, 

M2 (X) = 9X3  44X2—  39x-7; 

(b) 	(x)=3x2+ 3,0- 7 x + 2, 

M2 (x) = 3X3—  6X2  ± X + 2. 

636. (a) 4x4- 27x8 + 66x2-65x + 24 ; 

(b) - 5x' +13x6+27x2 -130x4 +75x3+ 266x2- 440x + 197. 

n 
637. N (x)= 1 + T 

 x+ n(n +1)  x2  
• 2 

n(n+1) 	(n+m - 2) 
+ . . . + 	 x'n-1;  

1 • 2 .,. (m-1) 
m 

M (x) = 1 + —
m 

(1 - x) + m
( 1•• 2 	

(1 x)2  

	

1 	
+I )  

m(m+1) 	(m + n -2) 
+ 	+ 	 (1 x)" 

1 • 2 ... (n-1) 

(m+1) (m+ 2) ... (m+n-1) m (m+ 2) ... (m+n-1) 

	

(n - 1)! 	 1 	(n - 2)1 

	

m(m+1) (m+3) 	(m+n-1) 
x2  

1 2 	(n - 3)! 
m(m+1) 	(tn+n -2) xn-1.  

(n - 1)1 
638. 1. 

639. (a) (x + 1)2  (x-2)2, (b) (x + 1)4  (x-4), 

(c) (x-1)3  (x + 3)2 (x -3), (d) (x - 2) (x2- 2x + 2)2, 

(e) (x3- x2- x - 2)2, (f) (x2 +1)2  (x-1)3, 
(g) (x4 +x2 +2x2 +x+1)2. 

640. (a) f (x)= x + I + —2
1
4 x (x-1) (x-2) (x -3); 

(b) f (x)= - x 4  + 4x2  - x2  -7x+ 5 ; 

(c) f (x)= 1 + 	(x-1)- 	(x - 1) (4x- 9) 

x 

+ 	(x- 1) (4x - 9) (x-4), 



Xk  
krc 
n 
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389  
f(2)=1 

945 
=1. 4116 ... (1/=1. 4142 ...); 

(d) f (x) = x8  — 9 x2  + 21x-8. 

641. (a) y= — 
1

(x-2) (x —3) (x-4) 

1 
+ —2 

(x-1) (x-3) (x-4)-2 (x —1) (x — 2) (x-4) 

1 	 4 
+ —

2 
(x— 1) (x-2) (x —3)= — -s  x3+ 10x2— 

65 
 x+15; 

3 

(b) y= 
1

[5—(1-0x—x2 —(1+i)X3]. 
n-1 

1 642. f (x)= n +1 
 2 E (1

—icot 
2  

k=1 
n-1 

Solution. f (x)= 	
(s+i)(xn_i) 
(x_e3)  ne„! —I  

s=0 

n-1 	 n-1 n-1 
1 	(s+i)(1_xl  1 	, = 	 L (s+ 0 xk .--ks n 	1—xe-1  — n L-I 	 1 

s=0 	s 	s=0 k =0 

n-1 	n-1 	 n-1 

= _ 
n 
1 	xk 	

0 1  
	 1 (s+€_ks=_ 

n 
E (s + 1) 

k=0 	s=0 	 s=0 

n-1 	n-1 	 n-1 
1 	 Xk  

-F — E Xk  E (s±o ck  ns= 
n 	 2

1 v 
 1 — ew1  

k k=1 	s=0 	 k=1 
n-1 

= 2 
n +1 	1 

2 
E (1_icotr/11 ) Xk  

k =1 

n 	
n 643. f(x)= 	_ 

Yk (Xn —1)  =1 E Yk ( 1  — xin) 
1 — xci 

k =1 	k) "nk— 	n  =1  

f (0)=-n 	Yk  

k= 1  

644. Set cp (x)=(x—x1) -x0 • ..(x - x„). 
Let f (x) be an arbitrary polynomial of degree not higher than n-1, let 

Yh Ya, • • yn  be its values for x=x1, x2, ..., xn. Then 

f (x0= Yi+ Ya+ • • • +Yn 	V 	Yky(xo)  
(xi) (X0 —  d 

k=1 



646. xn-l= E 

n 

E p' (xi) -0.  
1=1 

x7-1  (x) 

(x 	9' (xi) 
A comparison of the coefficients of 
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Since yl, y2, 	y,, are arbitrary, 

(xo) 	_  
(xk) (xo-xk) 

We consider the polynomial 

F (x)= n [cp (x0) -p (x)l-  (xo- x) cp'_(x). 

Its degree is less than n and it vanishes for x=x1, x2, ..., x,,. Hence, F (x)=0. 
Expand p  (x) in powers of (x- 4): 

cp (x)= E Ck (X— X0)k  

k=0 

We have E (n- ck (x — xak  =O. Consequently, ci=- c2= 
k=1 

645. x s = 14, 
i=i 

yields 

cP (X)=  (X — Xo)n  +Co, Xi= X0+11  — co. 

(x) 
	 A comparison of the coefficients of xn-1  

(x - xi) cp' (xi) 

Xn-1  yields 
n 

xr1  — 

-1. 
cr (xi) 

i=i 
1 x1 	... x7-1  

n 

647. ai= E E Yk ski where A= 1 X2 	. . . Xr  
k=1 

1 ... Xnn-1  

Oki is the cofactor of the element of the kth row and (1+1)th column of the 
determinant A. 

n-1 	 n 	n-1 
1 

f 	ai xi =. 	yic 	4ki xi= 	y k  k 

= 	 k=1 	i=A 	k=1 

where Ak  is the determinant obtained from A by substituting 1, x, ...,xn-1  
for the elements of the kth row, 
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Evaluating the determinants A k  and 0 as Vandermonde determinants 
yields 

Ak 	(x — xi) . . (x —  Xk —1) (-X — 'c +1) • • •  (X 	Xn)  

A — (xk — x1) . . . (xk — Xk—i.)(Xk —  Xk+i) • • • (xi( 
cp (x) 

where p  (x)=(x—x1) (x—x2)...(x—x"). 

Whence f (x) — E (x _Ykxkp)(4(:)(xo, which is what we set out to prove. 

648. f(x)=
1± x + x(x-1)+ ...+ x(x-1) 	(x—n+1) 

1! 	2! 	 n! 

649. f (x)= 1 
+ (a— 1) x + (a — 1)2

1 
 x (x — 1)  

1 	2 

	

. . . 	
(a — 1)4  x (x — 1) . . . (x —n+  1) 

n1 

nl— (1 — x) (2—x) ... (n — x) 
nl x 

cp 	(a) — w (x) 
652. f (x)= 

	

	 where cp (x)=(x — x1) ( )C x2) • • (-)C 	12). p (a) (x — a) 

653. We seek f (x) in the form 

f (x)= A +A1 
x— m 
	+ A2 

(x — m) (x — m — 1) 
o  

1 	 1 • 2 

(x — m) (x — m — 1) ... (x — m — n + 1) 

	

+...  + n 	
nl 

where m, m + 1, . . m+ n are integral values of x for which, by hypothesis, 
f (x) assumes integral values. 

Successively setting x= m, m + 1, . m+ n, we get equations for deter-
mining Ao, A1, 	A„: 

Ao= f (m), 

— 

Ak=f (m + k) —A0 
1 	1 

A1— 
k (k 1) 

 A2-  • • • -kAk-1. 
• 2 

k = 1, 2, ..., n 

from which it follows that all coefficients Ak  are integral. For integral values 
of x, all terms of f (x) become binomial coefficients with integral factors Ak  
and for this reason are integers. Hence, f (x) assumes integral values for in-
tegral values of x; this completes the proof. 

= (x — xk) cp' (xk ) 

	

n! 	• 

650. f (x)= 1 — 	+ 
2x 2x (2x-2)

+ 	+ 
2x (2x — 2) . . . (2x — 4n 4- 2) 

. . 
1 	1 • 2 	 (2n)! 

651. f (x)= 1 — 
x — 1 	(x —  1) (x — 2)  

21 	3! 

_ +(_ (x —1)(x-2) 	(x — n + 1) 



n 2k (m+ 	1) rc 
x cos 

2n +1 
2krr 

x2 -2x cos k=1 1 2n+1 +  

1 	1  
(e) 

2n +1 	x-1 
[ 

+2 

2km TC
n+ 1 

cos 
2  
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654. The polynomial F (x)= -f (x2) of degree 2n takes on integral values 
for 2n+ 1 values of x= —n, —(n-1), ..., —1, 0, 1, ..., n and, by virtue of the 
preceding problem, assumes integral values for all integral values of x. 

655. (a)  +3)' 

1 
+ 

1 
' 

12 (x-1) 

1 
+ 

3 (x+2)

1 
(b) 	

6 (x-1) 2 (x— 2) 2 (x— 3) 6 (x-4) 	' 

2 	—2+1 	—2—i 
(c) 	+ 	+   . 

x-1 	2 (x—i) 	2 (x+i) ' 

1 	1 	i 	i  
(d)  

4 (x-1) 4 (x+ 1) 4 (x—i) + 4 (x + i) ' 

1(  1 	c 	E2 

+ 	) e = 	
V I 	i 

(e)   3 x-1 +  x—e x— e" 	2 +  2 ' 

(0 	
1 f 1+i 	1—i 	—1+i 	—1—i 

 	• 
16 x-1—i + x-1+1

+ 
 x+1—i+ x+1+i)' 

n-1 

7  ek 	 2kn 	2krc 
(g) ek= COS 	+i sin 

x— ek 
k=0 

n 
i V 	ilk 	 (2k —1) 7T 	(2k— 1) it  

(h) — 	 iik = cos 	+i sin 
n Z.-1  x--k 

, 	
n 	 n 

k=1 

	

ck on- k 	 on- k Cr4:k 

(i) E  n x— k 	
; 	 x—k 

k=0 	 k= — n 

ok  _ sin  2k-1 it  

(k) 	E 	2n  

n 	
2k-1 

 k=1 	X COS 	 
2n 

656. (a) 	
1 	x +2  

3 (x-1) 	3 (x2+x+ 1) ' 

1 	1 	1  
(b)  8 (x-2) 	8 (x+ 2) 	2 (x2 +4) 

1 	x+2 	1 	x-2  
(c)  

8 x2+2x+2 8 x2-2x+2 ' 

1 	1 	2 	\ 
(d)  

18 ( x2+3x+3 x2-3x+3 x2 +3 J 
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(f) 
(- 	l 	

x COS 	
2n + 1 	+ cos 2n+1  

2n + 1 x + 1 +2 E 
k=1 

2kmrc 2k (m + 1) TC  

1 	1 	1-  
(g) 2n 	x-1 	x +1 

n-1 

+2 E 
k=1 

kit  
x cos —

n 
-, 

x2  - 2x cos —x +1 + 1 

(2k-1) mrc 	(2k - 1) (2m+ 1) Tr 
n cos

() -1-. E 	n 	
X cos 	

2n 
h  

n (2k 1) rc  
k=1 	 x2  — 2x cos 	+ 1 

2n 
n 

(_ ok x  
(i) 	1 	+ 2  

(n1)2  x 	(n + k) I (n- k) 1 (x2  + k2) 
k=i 

657. (a) 	
1 	1  

4 (x-1)2 	4 (x+ 1)2  ; 

1 	1 	1 	1  
(b)   

4 (x + 1) 	4 (x - 1) + 4 (x - 1)2 + 4 (x+ 1)2;  

3 	4 	1 	1 	2 	1 
(c) - 

(x -1)8 	(x-1)' + x -1 	(x + 1)2 	x + 1 + x -2 ; 

(x:ick)2  (n 1) 11 x-c (d) n2 	 kEk 

[n-1 

—
1 E 

k=0 	 k=0 

217c 	2lar 
n  

ek = cos ,-- +i sin 	 
n 

n n (n + 1) 	n(n+1) ... (n+m  -2)  
1 	T 	1 . 2 	 1 • 2 . .. (m-1) 

xm- 2 	 X 

m 	m (m+ 1)  
1 	1 	1 .  2  

+ (1 -x)n + (1 -x)n-1  + (1 -x)n-2  

m (m+ 1) . . . (m +  n  -2) 
1 •2 ... (n-1) 

1 -x 

2krc 
x2  + 2x cos 	+ 1 

2n+ 1 

(f) 
1  

(-4a2)" 

n- 

E (2 a)n —  k 

k=0 

n(n+1) 	(n+k-1)  
kI 

1 	1  
x I (a - X)n k + (a+ X)n k

1 
 



n2  + - 

n—i 

k=--1 
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n-1 
1 	E 	n (n+ 1)  . . .

k 
 (n+ k —1)  (g) r (2a -  k 

(4a2)" 	 ! 
k=0 

1 	1   
x

[(a— ix)n-k +  (a + X)"

1  

n 	 n 

(h)  g (X k) 	+ 7 g' (Xic) f ' (xk)—g (xk)f" (xk) 
 

[f' (xk)12  (x—xk)2  L-1 	[f' (xk)P (x—xk) 
k=1 	 k=1 

1 	x-1 	x+1 
658. (a)  

4 (x+1) 	+ 	4(x8+1)  + 2(x2+1). , 

1 	7 	3 	6x+2 	3x+2  
(b) 	+

x+1 x x+ 1 	(x+ 1)2  x2+x+ 1 (x2 +x+ 1)2  ; 

1 	3 	1 	3  
16(x-1)2 -16 (x-1) + 16 (x+ 1)2  + 16 (x+ 1) 

1 	1  

	

4(x8+1) 	4 (x2-1-1)11  
1 r 	1 	1 	2n —1 	2n-1  1 

One L (x-1)2  + (x + 1)2 	x-1 + x+ 1 j 

sin2 -1"c  (1 —2x cos 1--Ln  

2  (x2 — 2x cos —kn  + 1) 
n 

kn  
krc 

1 "-1  n —sina 	— (n— 1  x cos —
n 

+
n9 	

n 	2 
n2 	 for 

k=1 	 X 2 — 2x cos — +, n  

cp'  659. (a) 	
(x) 	(b)  xcp' (x)—ncp (x) 
(x) 	 p (x) 

(c) (X)]2  —p (x) p" (x) , 	 • 
[p (x)]2 

660. (a) 9, (b) 	
(2) 
	+ (1?

(I) 	5 
(1 	17  = 	(c) 17. 

ci2   
1 

661. 0.51x+2.04. 662. y= 77- [0 .55x2  + 2.35x + 6.98]. 

663. Substituting 1.1  into f (x), we obtain, after multiplication by q", 

nopn+non-r q+ 	an_l pqn-1 +an  qn = 

whence 

ao Pn  = (ai  pn  -2+ 	an  _ Ipqn - 2 + an  qn-1),  

an  qn _ (a pn- + pri-2 q+ 	+ 

(c)  

(d)  



(e) 
5 	3 

-71 	
1 	2 	3 

	

, — 	; (f) 1, — 2, 3; (g) 	, — 	, 	; 

(h) no rational roots; (i) —1, —2, —3, +4; 

(j) 1 ; (k) xi= x2= —1 	(1) x1= x2= 1 , 
x3=x4=--  —3; (m) x1=3, x2=x3=x4=x5= —1; (n) x1=x2=x2 =2. 
665. According to Problem 663, p and p—q are odd at the same time. 

Hence, q is even and cannot equal unity. 
666. By Problem 663, p—x1q= +1,  p—x2q= +1, whence (x2 —x1)q= ±2 

or 0. The value 0 is dropped because q>0, x2 Ox1. Putting x2 >x1  for defini-
teness, we get (x2 —x1)q=2. This equation is impossible for x2 —x1>2. Now 
put x2 —x1=1 or 2. The only possible values for p and q, for which equation 

(x2 —x1)q= 2 is possible, are p=x1q+1, q= 	
2 	

, whence the sole possi- 

All coefficients  Ck--   1 • 2 ... k 	
, k,--..p— 1, are divisible by 

p because k! Ck=p (p-1) ... (p— k+1) is divisible by p, and k! is re-
latively prime to p. Thus, after the expansion of X, (x) in powers of x-1, the 
Eisenstein criterion holds for Xp  (x) for p prime. 

./C2 	.X1 

1 	xi-Ex2 
bility for a rational root — =xi+ q  — 2 

 . The proof is complete. 

667. The Eisenstein criterion holds: 

(a) for p=2, (b) for p=3, (c) for p=3 after expanding the polynomial in 

powers of x-1. 

668. Xp  (x)= (x — 1)P-i + /4- (x-1)P-2+ P (iP  .21)  (x —1)P-  + 	+p. 

p (p — 1) ... (p — Ic+1) 
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The right sides of these equations contain integers. The numbers p and q 
are relatively prime. Hence, ao  is divisible by q, and an  is divisible by p. 

Now arrange f(x) in powers of x—m: 

f(x)=a0(x— m)n+ci (x—m)n-i+ . + cn  _1(x —m)+ cn. 
The coefficients c1, c2, 	cn  are integers, since m is an integer, cn=f(m). 

Substituting x= -11, we get 

ao(p —  mq)n+cL (p—mq)n-lq+ . 	 qn + en  qn = 0 

P 
qn

q 

n  
whence we conclude that 	 is an integer. p—m 

Since the fraction 
p—mq p 

m is in lowest 
q 	q 

p— mq and q are relatively prime. Hence, cn  = f(m) 
which is what we set out to prove. 

664. We give a detailed solution of (a). 
Possible values for p: 1, —1, 2, —2, 7, —7, 14, —14. 

the sign to be attached to the numerator). 
f (1)= —4. Hence, p —1 must be a divisor of 4. We 

p=1, —2, 7, —7, 14, —14. It remains to test —1 and 2 
f (-1)00, f (2)=0. The only rational root is x1=2. 

1 
(b) xi= —3; (c) xi= —2, x2=3; (d) x1= — 3, x2=2 '  • 

terms, the numbers 

is divisible by p— mq, 

Only 1 for q (we take 

reject the possibilities 
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669. Apply the Eisenstein criterion for the number p, setting x= y+1 : 

X k (X) = 	= 
(y+ 1)Pk-1 

 (y+ opk-i_l 

The leading coefficient of the polynomial cp is equal to 1. The constant term of 
cp (y), equal to cp (0)=. X pk (1)=p, is divisible by p and is not divisible by p2. 
It remains to prove that the remaining coefficients are divisible by p. To do 
this, we prove by induction that all the coefficients of the polynomial (y+ OP" - 
-1, except the leading coefficient, are divisible by p. This is true for n= 1. 
Suppose it is true for the exponent pn -1, that is, (y+ 1)Pn 1  = y Pn  + 1+ 
+pwn _ i  (y) where w,„1  (y) is a polynomial with integral coefficients. Then 

(Y+1)Pn  = (Y Pn-l+ +Pwn-1.(Y))P=U Pn-1  + +P4) (Y)=Y Pn  1  Pwn(Y); 
4)(y) and w. (y) are polynomials with integral coefficients. Thus, 

k 	 k—P k — 

Y P  +PWk (y) 	k k —1 P —P 	 Wk 	— Y P 	k (y) 
k-1 	 -Y 	+p 	k 

Y P 	+PWk -. 1(Y) 	 Y P 	+PW k —1 (y) 
k 

=Y
P — Pk —1 

-FPX(Y). 
The coefficients of the polynomial x (y) are integral, since x (y) is the 

quotient obtained in the division of polynomials with integral coefficients, 
and the leading coefficient of the divisor is equal to unity. Hence, all coeffi-
cients of the polynomial cp (y), except the leading coefficient, are divisible by 
p. The conditions of the Eisenstein theorem are fulfilled. 

670. Suppose the polynomial is reducible: f (x)=cp (x) (x). 
Then both factors have integral coefficients and their degrees are grea-

ter than 1, since f (x) does not have, by hypothesis, rational roots. Let 

(x)= bo Xk  bi  xk 1+ . + 

(I) (k)=--co xm+cixm-1+ ... +cm  

k 	m 	k+ m = n. Since bkc,,, = an  is divisible by p and is not divisible by 
p1, we can take it that bk  is divisible by p, cm  is not divisible by p. 

Let bi  be the first coefficient of cp (x) from the end that is not divisible by p, 
i>0. Such exists since ao=boco  is not divisible by p. Then a mi_ i= bicm  
+ 1,1+ m_ 1+ ... is not divisible by p, since bicm  is not divisible by p, and bi  
bi+2, ... are divisible by p. This contradicts the hypothesis because m+i>2. 

671. Factoring f (x) into irreducible factors with integral coefficients 
we consider the irreducible factor 9 (x), the constant term of which is divisible 
by p. Such exists since an  is divisible by p. We denote the quotient after the 
division of f(x) by p  (x), by 4  (x). Let 

	

(x) = b 0 ez + bi x"1-'+ 	+bm, 

(1) (x)=coxh+ 	+ . . . + ch 

and bi  be the first (from the end) coefficient of 9 (x) not divisible by p; ch is 
not divisible by p since a.= bmch is not divisible by p2. 

For this reason ah+t  =bich+bi}1ch_ 1+... is not divisible by p, whence 
follows h+i‘.k. Consequently, m>m+h+i-k=n+i-k>n-k. 

672. (a) f(0)=1, f (1)= 	f (-1)= -1. 
If f (x)=cp (x) 4i  (x) and the degree of cp (x):.c. 2, then cp (0) = ± 1, 9 (1)= ± 1, 

cp (- 1)= +1, that is, p  (x) is represented by one of the tables: 



240 	 PART III. ANSWERS AND SOLUTIONS 

(x) 

-1 
0 

1 

1 

—1 

1 

—1 

—I 

1 

—1 

1 

1 

1 

1 

—1 

—1 

1 

—1 

1 

1 

—1 

1 

—1 

—1 
—1 

—1 

The last 5 tables may be omitted since the last 4 define polynomials that 
differ only in sign from the polynomials represented by the first four tables, 
and the fourth defines a polynomial identically equal to unity. The first 
three yield the following possibilities: 

p (x)= — (x2  + x — 1), p  (x)=x2 —x— 1, cp (x)=2x2 — I. 

Tests by means of division yield 
f (x)= (x3+ x — 1) (x2  — x — 1). 
(b) Irreducible, (c) irreducible, (d) (x2 —x— I) (x2-2). 
673. A reducible polynomial of degree three has a linear factor with ratio-

nal coefficients and therefore has a rational root. 
674. The polynomial x4+ axa + bx2+ cx+d has no rational roots and can 

be factored (in case of reducibility) only into quadratic factors with integral 
coefficients: 

x4+ax3-1-bx2+ex+d=(x2+)x+m) (x3+ [Lx+ n). 

The number m must obviously be a divisor of d; inn= d. A comparison of 
the coefficients of x3  and x yields 

X-1-11= a, nX+ my.= c. 
This system is indeterminate only if m=n, c= am, that is, if c2= a2d (see 

Problem 614). 

But if m On, then X 
c— am cm— am2

=    and this completes the proof. n—m d — ma 
675. In case of reducibility, it is necessary that 

x6-Fax 4+bx3+cxs+cbc+e=(x2+Xic+m) (x3+Vx2+X"x+n). 

The coefficients of the factors must be integral. 
A comparison of the coefficients yields mn= e, whence it follows that m 

is a divisor of e. Furthermore, 
=a, 

nX + mX" =d, 
m+XX' +X" =b, 
n+XX"+ mX' =c 

whence 
mX" 	=d— an, 

X (mX" nX')+ maX' nX" = cm — bn 

and, consequently, (d— an) X + m2  X' — nX" = cm— bn. Solving this equation and 
X+ ?■'= a, nX+mX"=d simultaneously, we get 

X— 	  
atria — cm2  — dn+ be 
m3 — n2  + ae —dm 

which completes the proof. 
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676. (a) (.70— 2x + 3) (x2  — x —3), (b) irreducible, 
(c) (x2 — x-4) (x2+ 5x + 3), (d) (x2 — 2x + 2) (x2 + 3x + 3). 
677. Without loss of generality, we can seek conditions under which x4+ 

+ px2  + q can be factored into quadratic factors with rational coefficients, 
because if the polynomial has a rational root x1, then —x1  will also be a 
rational root and the linear factors corresponding to it can be combined. 

Let x4+px2+q= (x2  +Xix + 	(x2  +X2x+ 112). 
Then 

Al+ X2=0, )\11-t2+ X2111=0, 

[Ai+ Ai X2 + tta =p, 	q. 

If X1=0, then A2=0 too. In this case, for the existence of rational [L1  and µz  
it is necessary and sufficient that the discriminant p2-4q be the square of a 
rational number. 

Let x100. Then A2= —Ai, 42=µi  and furthermore 

q = 	2[11  — p = 

Thus, for the reducibility of the polynomial x4+ px2 + q it is necessary 
and sufficient that one of the following two conditions be fulfilled: 

(a) p2 -4q is the square of a rational number; 
(b) q is the square of the rational number 	2µl—p is the square of the 

rational number Al. 
678. If x4+ axa + bx2  + cx+ d= (x2  + p + q1) (x2  + P2x + 90, then, since 

Pi+ P2= a, we can write 

1 
x4  + ax3  + bx2  + cx+ d = (x2  + —

2 
ax+

2 	2 
)2  (Pl—P2  x+ q12 

 412  )2  

where X= qi+ q2. Whence it follows that the auxiliary cubic equation has 
the rational root X= qi+ qz. 

679. Let f (x)=cp (x) (1) (x) and cp (x), 4,  (x) have integral coefficients. Since 
f (ai)= — 1, it must be true that cp (a i)= I, (1) (a1)= — 1 or cp (a)= — 1, 4) (ad =1 
and, hence, 9 (ad + 4)(ai) = 0 i =1, 2, ..., n. 

If cp (x) and 4, (x) are both nonconstants, then the degree of p  (x) + 4,  (x) 
is less than n, whence it follows that p  (x) + 4, (x) is identically zero. Thus, 
we must have f (x)= — [cp (x)]z. This is impossible since the leading coe-
fficient of f (x) is positive. 

680. If f (x)=cp (x) 4, (x), then cp (a)= 4,  (a i)= ± 1 since f (a;) = 1 . Hence, 
if p  and 4) are nonconstants, cp (x) is identically equal to 4,  (x) and 

f(x)=[p (x)12. 
This is only possible for even n. 

Thus, the only possible factorization is 

(x— a2) (x— a2). . . (x— ad+ 1= [cP(x)]a. 
From this we conclude (considering the leading coefficient of p  (x) positive) that 

(x)+ 1 =(x— al) (x— 	 0, 
(x)— 1 =(x—az) (x— az)...(x— ad. 

(In order to have the permission to write these equations, we must change the 
ordering of the numbers al, az, ..., an.) And, finally, 

(x— a1) (x— 	a„_1)—(x— az) (x— az)...(x— ad =2. 
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n 
Put al  > a3> > an_ 1. Substituting x=a2k, k =1, 2, ..., 2- in the latter 

equation, we get 
(a3k — al) (a2k —  a3) • • • (a2k a„_i) = 2 

which is to say that the number 2 must be factorable in 	ways into 

tegral factors arranged in increasing order. This is only possible when 	=2, 

2 = —2 (-1)=1 2, and when —2 =1* These two possibilities lead to the 

two cases of reducibility of the polynomial f (x) that are mentioned in the 
hypothesis of the problem. 

681. If an nth-degree polynomial f (x) is reducible for n = 2m or n = 2m + I, 
then the degree of one of its factors cp (x) does not exceed m. If f (x) assumes 
the values +1 for more than 2m integral values of the variable, then p  (x) 
also assumes the values ± I for the same values of the variable. Among these 
values, there will exist for cp (x) more than m values equal to +1 or — 1. But 
then p  (x)= +1 or —I identically. 

682. The polynomial f (x) has no real roots. Hence, if it is reducible, its 
factors cp (x) and 4)  (x) do not have real roots and therefore do not change 
sign for real values of x. It may be taken that cp (x)>0, 4) (x)>0 for all real 
values of x. Since f (ak)= 1 , it follows that cp (ak)= (1) (ak)= 1, k =1, 2, ..., n. 
If the degree of cp (x) [or 4)  (x)] is less than n, then cp (x) = 1 [or 4)  (x) = 1] identi-
cally. Hence, the degrees of p  (x) and 4)  (x) are equal to n. Then cp (x)= 1 + 
+ cc(x— (ID . . . (x— an), 4)  (x)= 1 +(3 (x— al) (x— a,,), where a and p are some 
integers. But then 

f (x)= (x— ai)2 	(x— an)2 + 1 =1 + (a + (3) (x— a]) ... (x—an)+4 (x- air ... 

(x— an)2. 

A comparison of the coefficients of x" and xn yields a system of equations, 
4=1, «+ (3=0, that has no integral solutions. Consequently, f (x) is irredu-
cible. 

683. Let f (x) assume the value 1 more than three times. Then f (x)— 1 
has at least four integral roots, i. e., 

f (x)- 1 =(x- al) (x— aa) (x — a0 (x —  an) h (x) 
where al, a2, a3, a4  and the coefficients of the polynomial h (x) are integers. 
For integral values of x, the expression (x— a1) (x — a3) (x— a3) (x— a4) is a 
product of distinct integers. Two of them can be equal to +1 and —1, the 
remaining two differ from +1. Hence, their product cannot be equal to a 
prime number, in particular, —2. Thus, f (x)— 1 0 —2 for integral values of x 
and, hence, f (x)0 — 1. 

684. Let f (x)=p (x) (1) (x). One of the factors, cp (x), is of degree 	and 

assumes the values ± 1 for more than —2 integral values of x. Since —2 6, 

it follows that +cp (x) or —cp (x) takes on the value 1 more than three times 
and, by virtue of the result of Problem 683, it cannot take on the value — 1. 

n 
Thus, p  (x) or —cp (x) assumes the value +1 more than 	times, and hence, 

ep (x) or — cp (x) is identically unity. Consequently, f (x) is irreducible. 

n . 
—
2 

in- 



p+p= 2p=2 max 
k —1 

(d) Put p =max I/ 

Vl ak  
TI, 

ak  
a, pk  

a1 

ao 
. Then 1 a k I I al I kp ak 

a1  
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Sharpening the reasoning, we can prove the validity of the result for n 8. 
685. Let 

a [cp (x)]2  + bco (x)+ 1= 4'  (x) w (x). 

One of the factors is of degree n; (1)(x) takes on the values ± 1 for x= a1, 
..., an  and since n>7, all these values of 4 (x) must be of like sign. Hence 

(x)= ± 1 + (x- al) (x- a2) (x- ad= ±1 + cap (x). 

If a 0, then w (x) also has degree n and w (x)= ± 1 + Scp (x). But the equation 

a [cP (x)]2  + bcp  (x)+ 1= ± 1 + cap (x)] E± 1 + [icp (x)] 

is impossible since the polynomial ax2+ bx+1 is irreducible by hypothesis. 

686. (a) f (x)= a, xn (1+ 	+ . . . +
" 

• 

	

ao  x 	ao  x 

ao  
-- 

I f (x) I ?..-1 a, xn 1[1 - 	1-1a, xn 1 I x
I

I 
I x 1

A 
 1 	 x 

11 
 1

A
> 0 

for I x 1>l+A. 

(b) — f (x)= a, (x r 
+ 	ai V 	r-1  a, (x )n -2  

-- 	+ -= 	
an 1 

V' 	 P 	P 	P 	P2 	P 	 pn 

By virtue of (a), for all roots 

Let max 
ak =A. Then for I xl >1 

I x1  
1 +max 

(c) Put p =max 

ak 
ao Pk 

k 

ak 
a, 

, whence 1x1-<...p+ max 

. Then 

ak 

ao  pk-1 
 

ak 
a, 

ak  max 
a„ 

ak  
a0 pk  -1  

Consequently, the moduli of all roots do not exceed 
k 

Hence, the moduli of the roots do not exceed 
k-1 

a1 p+ 1  +max 1/ 
	ak 

ao 	ao  
687 Let f (x)= a, xn+ai  xh-l+ ...+a,,, 

(x)= bo  xn - xn -1- ...- bn, 

0 < 	I ao  I, b1?.-- I at I, ..., b„› I an :. Obviously, 11(x) I cp (I x D. 

Furthermore, cp (x) = 60  xn (1 2 	... 	bn- 
bb  x G

b
o  x2 

	bb 
 x n 



<1 + Vmax 

k-r 

(c) Set p = maxi/ 

whence I x 1<p+ Vmax 

. Then lak •-.1 (41 Pk r  

ak  
ao  pk-r 

ak 

ao Pk 

ak 

ar 
and the moduli of all 

ar  
7

10 
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The expression in the brackets increases from- m to 1 for x varying from 
0 to + 

Hence, cp (x) has a unique positive root and 9 (x)>0 for 	Because 
of this, for I x I > we have I f (x) 	( I x I) > 0, whence it follows that the 
moduli of all roots of f (x) do not exceed 

688. (a) Let A =max 
ak  

. It is obvious that 

	

If (x)1?-- 	
A 	A 

lao x.i (i—  xr 
	lx1"+1 	I xil l n ) 

whence for I x I >1, 

	 A  
f (x)1>lao zni (1 

1 x 	xl-0) 
I aoxn-r+i. I 	 ( ao  x n-r+1  = 	[I X1r-1  (41-1)— Al> 

	

Ix 1-1 	 lxI-1 
r 

For I x I >1+ 1//1 we have I f(x) I >O. 

(b) ± f (x) = a 0  ( .)n  + ..- ( .)n-r  + ... + A • pn 	 \ P / 	P r  \ P / 	 pn 

By virtue of (a), for all roots of f (x) we have 

	

r 	 r 

[(I x I-1)r  - A]. 

roots of the polynomial do not exceed 
r 	 r 

+ p = 

k-r 

+ max 1/I ak 

1 	ar 

ar 
ao  

689. For negative roots of the polynomial the assertion is obvious. For 
the sake of definiteness, set ao  > 0 and denote cp (x)= aoxn  - bixn -1_ 62x"-2 - 
- .-b", where bk  =0 for ak  >0, bk = - ak  for ak  <O. Then, for positive x, it 
is obvious that 

f (x) ›cp (x). 

Furthermore, 9 (x) has a unique nonnegative root (see Problem 687) and 
cp (x)>0 for x> Hence, for x> f (x) cp (x)>0. 

690. This follows directly from 688, 689, 686 (c). 
692. Expanding f (x) in powers of x - a, we get, for x a, 

f  ' (a) 	f  (a) 	 f (n) (a) 
 (X — 	> 0. f (x) = f (a)+ 	(x - a) + 	(x-a)2  + 	+ 

1 	 1 • 2 	 n! 

693. We obtain the upper bound of the roots by using the results of 
Problems 690, 692. To determine the lower bound, substitute -x for x: 

(a) 0<x;<3, (b) 0 <xi< 1, (c) -11 <xj<11, (d) -6<xj<2. 
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694. (a) f=x3- 3x - 1, f1=x2- 1, f,=2x+1, f= +1. 
Three real roots in the intervals (-2, -1), (-1, 0), (I, 2). 
(b) f=x8+x2- 2x- I, f1=3.x2 +2x- 2, 	2x + 1, f a= +1. Three real 

roots in the intervals (-2, -1), (-1, 0), (1, 2). 
(c) f=x2-7x+7, fi=3.x2-7, f3=2x- 3, f 3= +1. Three real roots in the 

intervals (-4, -3), (1, 3  ) ' 
	

3  2) 
-2-  

(d) f=x3-x+ 5, A= 3x2 - 1, f2= 2x - 15, f a= -1. One real root in the 
interval (-2, -1). 

(e) f=x3+3x -5, fi=x2 +1. One real root in the interval (I, 2). 
695. (a) f=x4-12x2- 16x -4, f1=x2- 6x -4, fa =3x2 +6x +2, f3= 

=x+1, f4=1. Four real roots in the intervals (-3, -2), (-2, -1), (-1, 0), 
(4, 5). 

(b) f=x4-x- 1, f1=4x8-1, f2=3x +4, f a= + 1 . Two real roots in the 
intervals (-1, 0) and (1, 2). 

(c) f=2x4-8.x8+8.x2-1, f1=x3-3x2  +2x, h= 2x2  - 4x + 1,1 f a=x- I, 
14=1. Four real roots in the intervals (-1, 0), (0, 1), (1, 2), (2, 3). 

(d) f=x4+x2-I, f1=2x2+x, 12= -x2 +2, .1 9= --Xs _A= -1. Two real 
roots in the intervals (-1, 0) and (0, 1). 

(e) f=x4+4x3-12x+9, f1=x2 +3x2-3, f2=x2+3x -4, f a= -4x+3, 
L= 1 . There are no real roots. 

696. (a) f=x 4- 2x3-4x2 +5x + 5. f1=4.x2- 6x2 - 8x + 5, f2 = 22x2- 22x-
-45, f8=2x- 1, /4=1. Four real roots in the intervals (I, 2), (2, 3), (-1, 0), 
(-2, -1). 

(b) f=x4-2x4  +x2-2x +1, A= 2x2-3x2+x-1, fa=x2  +5x- 3, fa= 
= -9x+5, f4= -1. Two real roots in the intervals (0, 1), (1, 2). 

(c)f=x4-2x2-3x2 + 2x +1, fi=2x8- 3x2 - 3x + 1,f2= 9x2 - 3x - 5, f3=9x+ 
+1,14= +1. Four real roots in the intervals (-2, -1), (-1, 0), (0, I), (2, 3). 

(d) f-=x 4- X3+X2-X- 	f1=4x3-  3x2 +2x -1, fa = - 5x2 + 10x + 17, 
f 3= -8x-5, f4= - I. Two real roots in the intervals (1, 2), (-1, 0). 

(e) f=x 4- 4x3- 4x2+ 4x + 1, fi=xs  - 3x2- 2x + 1, = 5x2  - x - 2, f 3= 18x + 
+1,14= +1. Four real roots in the intervals (-2, -1), (-1, 0), (0, 1), (4, 5). 

697.(a) f= x4- 2x3- 7x2  + 8x + 1, A= 2x2- 3x2  - 7x +4, f, = I 7x2  - 17x - 8, 
f9=2x-1,14=1. Four real roots in the intervals (-3, -2), (-1, 0), (1, 2), 
(3, 4). 

(b) f=x 4-4x2+x+1, fi=4x4- 8x +1, 	= 8x2- 3x-4, h= 87x-28, 
.f4= + 1. Four real roots in the intervals (-3, -2), (-1, 0), (0, 1),  (1, 2), 

(c) f=x4-x3-x2-x+1, fi=4x3- 3x2- 2x-1, f2 =11x2  +14x -15, fa= 
= -8x + 7, f4 = -1. Two real roots in the intervals (0, 1) and (I, 2). 

(d) f=x4- 4x3+ 8x2- 12x + 8, fi=x8- 3x2+4x - 3, fa= -x2+ 5x- 5, 
fa= -9x +13,14= - 1 . Two real roots x1=2, 1 < x2 < 2. 

(e) f=x4-x3- 2x + 1, fi=4x3-3x2 - 2, f2 =3x2 + 24x- 14, f3= - 56x + 31. 
f -1. Two real roots in the intervals (0, 1) and (1, 2). 

698. (a) f=x 4- 6X2-  4x + 2, f1=x2  - 3x - 1, f2 = 3x2+3x -2, f 3=4x+ 5, 

14=1. Four real roots in the intervals ( -2, -2 ' - 3  -1), (0, 1), 

(2, 3). 
(b) f=4x4-12x2+ 8x-1, fi= 2;0- 3x +1, 	 + 1, fa = 2x-1, 

f4= 1. Four real roots in the intervals (-3, -2), (0, 	, 	
1  , 1) 

and (1, 2). 
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(c) f=3x 4  +12x3  + 9x' -1, f1=2x3+ 6x2  + 3x , f2=9x2+ 9x + 2, f 3=13x +8, 

f4= 1. Four real roots in the intervals (-4, -3), ( -1, - 	, 	, - 	, 

(0, 1). 
(d) f= x 4 -.7C3-  4X2  + 4x + 1, f2 =4.x8- 3x2- 8x + 4, f2 = 7x2 - 8x -4, f8= 

=4x-5, f4= I. Four real roots in the intervals (1, 4), ( , 2) , (-2, 

- I), (- 1, 0). 
(e) f=9x 4-126x2- 252x-140, fi=x3- 7x-7, f2= 9x2 +27x +20, fa= 

=2x +3, /4 =1. Four real roots in the intervals (4, 5), ( - , -1) , 	, 

--s), (-2, 	5 • 

699. (a) f 2x5  - 10x3+ 10x - 3, fi  =x4- 3x2+1, f2=4x8-8x+3, 13= 
3 

=4.x2 + 3x -4, f4=x, f6=1.  Five real roots in the intervals ( -2, - 	, 

(- 3 (0, 1) (I 1L (1, 2) • 
' 	 \ 	/ ' \ 2 ' 	/ 

(b) f= x6- 3x5  - 3x4+ 11 - 3x2- 3x +1, f1=2x5-5x4-4x3+11x2- 2x-1, 
f2=3x 4 -6,C3 -X2  + 4x - 1, f = 420- 6x2  + I, f4=26x2  - 26x+ 5, f2=2x- 1, 

16 =1. Six real roots in the intervals (-2, -1), (- 0), (0, , 1), 

(1, 2), (2, 3). 
(c) f= x5  + x4-4x3-3x3+ 3x +1, f1=5x4+4x3- 12x2- 6x + 3, f2=4x3+ 

+ 3x2- 6x - 2, f = 3X2  + 2x-2, f4=2x +1, f6=1.  Five real roots in the inter-

vals ( -2, - 2 )' ' - 3  -1) , (-1, 0), (0, 1), (1, 2). 

(d) f= x5  - 5x3- 10x2 + 2, fi= x4- 3x2  - 4x, fa= x3+ 3x2- 1, f = -2X2 + 
+X+ 1, f4= - 3x- 1, f 5= - I. Three real roots in the intervals (-1, 0), (0, 1), 
(2, 3). 

	

700. (a) f= x4+ 4x2- 1, 	x, f2=1. Two real roots in the intervals (-1, 0), 
(0, 1). 

(b) f= x4  - 2x3  + 3x2- 9x +1, f,.= 2x-3, fa=1. Two real roots in the in-
tervals (0, 1) and (2, 3). 

(c) f= x4- 2x3  + 2x2  - 6x +1, f1=2x - 3, fz= l. Two real roots in the in-
tervals (0, 1) and (2, 3). 

(d) f= x5  + 5x4  + 10x2  - 5x - 3, fi= x2 +4x - 1, f2=5x-1,fa=1. Three real 
roots in the intervals (0, 1), (-1, 0), (-6, -5). 

701. The Sturm sequence is formed by the polynomials x3+ px + q,3x2+ p, 
-2px-3q, -4p3-27g8. If -4p3- 27,72 > 0, then p < O. All leading coeffici-
ents of the Sturm polynomials are positive and so all the roots of x3-1-px+q 
are real. If -4p3- 27q2 <0, then, irrespective of the sign of p, the Sturm sequ-
ence has, for - cu, two changes of sign, and for + co, one change of sign. In 
this case, x3+ px+ q has one real root. 

702. The Sturm sequence is formed by the polynomials 
-  nq r-1  

Xn+pX+11, nxn-'+p, -(n-1) px-nq, -p n 
\ (n-1) p 

For odd n, the sign of the last expression coincides with the sign of A= 
= qn-2. If A >0, then necessarily p<0. In this case, the 
polynomial has three real roots. If A <0, then, irrespective of the sign of p, 
the polynomial has one real root. 
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For even n, the sign of the last expression in the Sturm sequence coincides 
with the sign of —pA, where A = (n— On pn nn q'' . The distribution of 
signs in the Sturm sequence is given in the following table for various combi-
nations of the signs of p and A: 

f 	fl 	fa 	f 

I. p> 0, 	4>0 	oo 

+co 

2. p<O, A >0 —co 

+co 

3. p>0, A<0 —co 

+co 

4. p<O, i<0 —co 

+ co 

From this table it follows that for 0>0 the polynomial has two real roots, 
for 0<0 there are no real roots. 

703. The Sturm sequence is formed by the polynomials f=x5-5ax3+ 
+5a5x+2b, fi= x4  — 3ax2  + a2, f 2=ax3-2a2x— b, f.= a(a2  x2 — bx— a3), f 4= 
=a(a5 — b2)x, f5=1. 

If A = a5  — b2  > 0, then a > 0, and all leading coefficients of the Sturm poly-
nomials are positive. In this case, all five roots of the polynomial f are real. 
If A <0, then, depending on the sign of a, the distribution of signs looks like 
this: 

f fl fa f 3 f4 f5 

a>0 —co 

+co 

a < 0 —oo 

+co 

       

      

        

        

Consequently, for A <0, the polynomial f has one real root. 
704. Let fx and fx+  I  be two consecutive polynomials of a "complete" 

Sturm sequence. If their leading coefficients have the same signs, then their 
values, for + co, do not constitute a change of sign, while the values for — co 
yield a change of sign, since the degree of one of the polynomials is even, while 
the degree of the other is odd. Now if the leading coefficients have opposite 
signs, then the values of fx and J, l  for + co yield a change of sign, and for 
— co do not. Therefore, denoting by v1  and v3  the number of variations of 
sign in the Sturm sequence, for — oo and + oo, we have that vi  + v2= On 
the other hand, v1— v2  is equal to the number N of real roots of the polyno- 

n — N 
mial. Consequently, va — 	2  , which is what we set out to prove. 

705. This is proved like the Sturm theorem, with the sole difference 
that we have to see that there is an increase (not a decrease) in the number of 
variations of -sign per unit when passing through a root of the original poly-
nomial. 

+ 
+ 



Furthermore, 
dnn-1 e-x) 

P,,=(-1)" ex 
dxn 

do 00-1 e- 	dn-1 (xn -1 - 

=(- 1)"ex [x 	  
dxn 	

+n  	
p 

dxn-1 	j 

n "_npn_i 
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706. The sequence of polynomials thus constructed is a Sturm sequence 
for the interval xo --.5x< + co and satisfies the conditions of Problem 705 for 
the interval - co <x5xo. Hence, the number of roots off in the interval (xo, co) 
is equal to v (x0)- v (+ co), the number of roots of f in the interval (- co, xo) 
is equal to v (x0)-v (- co), where v is the number of variations of sign of the 
corresponding values of the polynomials. 

The total number of real roots is equal to 

2v (xo)- v (+ oo)- v (- co). 

707. Applying the Euler theorem to 
x2 	 x2 2 	 x2 

e (- e- 
Pn=(-lr 	

dn
e 	 =(-1)ne2  

dxn

2 	

dxn-x1 

2) 

yields 

x' 	
x' 

Pn=(-1)"--1 eT 	dn-i e  2 	
x, 

X  	
dn-2 	2 

dxn - 1 	+(n- 	  

dxn-  2  
whence 

P„=xP„_ 2-(n-1) Pn_ 2. 

On the other hand, differentiating the equation defining P„_1, 
xa 	 x2 x2 	 x2 

dn-' e 2 
+(__ 1)n-1 e-T dn Pn_ 1 =(-1)"-' xe 2 	  

dxn- 	 dxn 
whence 

we get 

- I= xPn-i-Pn. 

Comparing this with the previous formula, we get 

Pn' _ 1 = (n-1) Pn  _2  and so P'n =n Pn-i•  

It follows from the derived formulas that the sequence P„, Pn _ 2, 	, 
Po=1 is a Sturm sequence for the polynomials P„ since Pn_1  differs from P'n  
in the factor n alone, and PA_ I  is, to within a positive factor, the remainder 
(taken with sign reversed) after division of PA}, by PA. 

All the leading coefficients of the polynomials Pn  are equal to + 1. Hence, 
all the roots of P„ are real. 

708. Differentiating the equation defining Pn, we obtain 

do (xn e-x) 	 do (nxn-1  e-x-xn e-x) 
P,;=(-1)" ex 	- - (-1)" ex 	 dx" 	 dx" 

whence 
d. (xn-1  e-x 

P,;=(-1)n nex 
dx" 
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whence 
xP,;=nPn+ P n -1. 

On the other hand, 

	

dn - 	I) xn- 2 e- x _ xn-i 
Pn  =(- nex 

dxn- 
whence Ph = -nP,,' _ 1 + nPn_ i. Multiplying by x and substituting in place 
of xPn and xPh _ 1  their expression in terms of P„, Pn_ 1, P,,_ 2, we get 

Ph = (x- 2n +1) P"_ 1-(n-1)a Pn- 2. 

From these relations it is seen that consecutive polynomials P,, do not 
vanish simultaneously, and if Pn_ i=0, then Pn  and Pn _ 2 have opposite signs. 

n' 
Furthermore, from Pri-1 	1 	

follows that Pn-1  changes 
Pn 

	

n 	
xP 

it 

	

1.). 	• 	 Pn 
sign from minus to plus when going through a positive root of Pn. Thus, the 
sequence Pn, Pn_1, . • P1, Po= 1 is a Sturm sequence for P,, in the interval 
(0, CO). The leading coefficients of all P,, are equal to unity. P,, (0)= (-1)nnl. 
Hence, v (0)- v (+ oo)= n, that is P,, has n positive roots. 

xn 
709. En=E,,_ 1. Also, En= En-i-  (- 	) •nl 

Therefore, the polynomials E,,, En_ 1  and - —x; form a Sturm sequence for 

E„ on the interval (- oo, - e) for arbitrarily small e. The distribution of signs 
is given by the following table: 

_ 	_ on (_ 	l)n-1 

-e I + 	+ 	(- 1)n-1  

Hence, for even n, the polynomial En  has no negative roots, for odd n, the 
polynomial En  has one negative root. Furthermore, for x?:-0, the polynomial 
E,,(x)> O. 

710. Use the Euler formula to transform the identity 

cln+1 (x2  ex  ) dn[(2x-1)ex ] 
 

dxn+2 	dx" 
We get 

	

I I 	 1  
dn+ 2  - e x 	 dn ex 	do-1 ex 

x2 	+2(n+ 1)x 	+(n+1) n 	 dxn + 2 	
dx" 
	 dxn- 2  

dne x 	dnlex  
= (2x- 1) 	+ 2n 	 

	

dx" 	dxn-2  
whence P n= (2nx + 1) Pn-l-n (n-1) Pn_ 2 X2. On the other hand, by differen-
tiating the equation defining Pn_1, we get 

P,,= (2nx + I) Pn_ 1-x2 Pn _1.  

Comparing the results, we see that Ph _ i= n (n- 1) P„_ 2 and, hence, Pn= 
(n t 1)nPq_t. By virtue of the established relations, the sequence of polynoT 
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mials P., P„_1, Fi,_ 2, ..., Po= 1 forms a Sturm sequence for P.. The leading 
coefficients of all P. are positive. Consequently, all the roots of P. are real. 

711. Computing 

do 	 (  1 
 I 
	do 

\ x2+1 	x2  +1  I 
dx" 	= 	dx" 

by two methods, we obtain 

P2-2xP,,,+(x2 +1)P„_ 2=0. 

Differentiation of the equation defining P,s_1  yields P.=2xP„_1— 
x2 + 1 

P;,_1  whence P _ 1 = nP,,_ 2 and, hence, P.' = (n + 1) 
It follows from the derived relations that P., P,,_ /, ..., P0 =1 form a 

Sturm sequence for P.. All the leading coefficients of the sequence are positive 
and so all the roots of P. are real. 

The solution of this problem is straight forward. Namely, 

1 1 	I 	1 	1  + 
x2+1 = 2i k x—r x+i 

whence we find that 

Pn (x) = 	Rx 	+ _ _ +1  
Zl 

krc 

	

It is easy to compute that the roots of P„ are cot n 	+ 1  , k =1, 2, ..., n. 

712. Using the Euler formula to expand the identity 

x2 +1  
d" 	 do-1 	, 	X 

x2  + 1 	 V x2  +  
dxn 	 dxn-1  

we get 
P.— (2n— 1) xP„_ 1+ (n-1 )2  (X2  + 1) P._ 2 =0. 

Differentiating the equation defining P„_ 1, we get 

Pn —  (2n — 1) xPn  _1+ (x2 + 1) P„ _ 1 = 0 

whence 

P.' _ 1 = (n— 1)2  P._ 2 and P;,= n2  Pn —i. 

From the relations found, it follows that P„, P,, _ 1, ..., Po  =1 form a Sturm 
sequence. 

Since the leading coefficients are positive, all the roots of P. are real. 
713. The functions F (x), F' (x) and [ . f' (x))2  form a Sturm sequence for F. 

The leading coefficients of the sequence, 34,124 and 94, are positive. Hence, 
the number of lost changes of sign when x passes from — co to + co is equal 
to two. 

If f has a double root, then F has one triple root and one simple root. If j 
has a triple root, then F has a quadruple root. 

714. If some one of the polynomials in the Sturm sequence has a multiple 
root xo  or a complex root a, then this polynomial can be replaced by a poly-
nomial of lower degree by dividing it by the positive quantity (x — x0)2  or (x — 
—a) (x—a'). Subsequent polynomials can be replaced by remainders (taken 
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with reversed signs) in the Euclidean algorithm for the replaced polynomial 
and the preceding one. Then the number of variations of sign for x= - oo 
will be <n-2, where n is the degree of the polynomial. Hence, the number of 
real roots is surely < n - 2. 

715. Let F (x)= (x2  - 1)12  . F(x) has -1 and +1 as roots of multiplicity n. 
F' (x) has -1 and +1 as roots of multiplicity n- 1 and, by Rolle's theorem, 
one more root in the interval (-1, + 1), F" (x) has -1 and +1 as roots of 
multiplicity n-2 and two roots in the open interval (-1, +1) and so on. 

(x)= Pn  (x) has n roots in the open interval (- 1, 1). 
716. Let xi, 	xk  be distinct roots of f (x) of multiplicity al, a2, • • cck,  

x1< x2 < x2  < 	< xk. The function cp (x)=— 
f ' (x) 
f (x) 

is continuous in the open 

intervals (- 00, x1), (x1,  x2), • • (xk_ 1, xk) and (xk, + co) and ranges from 0 
to - co in the interval 	co, x1), from + co to - co in each of the intervals 
(x1_ 1, xi) and from + CO to 0 in the interval (xk, CO) because 9 (x)-> co as 
xi  and changes sign from - to + when passing through xi. 

Consequently, 9 (x)+A has a root in each of the intervals (xi_1, xi) and, 
besides, for A>0 one root in the interval (- co, x1), and for <0, one root in 
the interval (xk, + CO). 

Thus, cp (x)+• and, hence, f (x) [cp (x) + A]= (x)+ f ' (x) also has k roots 
different from x1, x2,_ • • xk  for A00 or k - 1 roots different from xi, x2, ..., xk  
for A=0. Besides, of (x)+f ' (x) has x1, x2, 	xk  as roots of multiplicity al-1, 
0C2 — 1, .. 	- 1. Thus, the total number of real roots (counting multiplicity) of 
the polynomial of (x)+ f ' (x) is equal to oci  +oc2 + 	+ ak  for WO and 

+ + • • + ak  - 1 for A=0, that is, it is equal to the degree of the polyno-
mial A f(x)+f' (x). 

717. Let g (x)= a0  (x+ Ai) (x +A2) ... (x+A„), F0  (x)= ao f (x), 	(x)= 
=F0 (x) + 	(x)= a0  f (x)+ ao Alf' (x), F2 (X) = (X) + A2 (x)= a0  f (x)+ 
+ao  (Ai  + X2) f (4 - a0A1  X2 f" (x), etc. Then Fn  (x)= F,,_ (x) + An  F,,_ 1(x)= 
= ao f (x)+ 	' (x)+ ... + a„ f (") (x) where ao, 	an  are coefficients of g. 
By virtue of Problem 715, all roots of all polynomials Fo, F1, 	Fn  are real. 

718. The polynomial ao  xn+ai  mxn-l+ 	+m(m-1) ... (m- n + 1) an= 
= [a0  x'n +a2 (xm)' + . . . + an  (xm)n.1 xn-  In and all roots x'n are real. 

719. The polynomial an  xn + nan_i  x"- 1  + n (n - 1) an_ 2 Xn 2+ ... +ao  n! 
has only real roots. Hence, all roots of a0  n! xn + ain (n-1) . . . 2xn-1+ ... 
+nan_ lx+a„ are real. Applying once again the result of Problem 718, we 
find that all roots of the polynomial (io n! xn + ai n • n (n- 1) ... 2xn- 1+ 
+ a 2n1(n - 1) • n (n-1) ... 3x" - 2  + 	+ ann! are real. It remains to divide 
by nl. 

n (n -1)  
720. All roots of the polynomial (1 +x)"= 1 + -

1 
 x+ 1 2 

x2  + . . . •  
+ x' are real. It remains to use the result of Problem 719. 

721. The polynomial f (x)= ran 	xn —2_ 	1 has a real root of 1. 
Furthermore, let F (x)= (x - 1) 1 (x)= nx" 1  - (n + 1) xn + 1. Then F' (x)= 
=n (n+ 1) (x- 1) xn-1. For odd n, the polynomial F(x) has a unique mini-
mum for x=1 and, consequently, has no roots except the double root x=1. 
For even n, the polynomial F(x) increases from - co to 1 for - co <x<O, 
decreases from 1 to 0 for 0 <x <1 and increases from 0 to co for 1 <x < co. 
Therefore, F(x) in this case has a unique root other than the root x=1. 

722. The derivative of the polynomial that interests us is positive for all 
real values of x. Hence, the polynomial has only one real root. 



(a — ak)2  + 62 
0 0 for b 0 0 because all terms under 

A ak  
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723. Let a < b < c; f (— co) < 0; f (a)=Ba (6— a) + C2  (c— a)> ; f (c)= 
= — A2  (c— a)— B2  (c— 6) <0 ; f(+ co) > 0. Consequently, f has real roots in 
the intervals (— 0 o , a); (a, c); (c, + cc). 

724. cp (a+ bi) 

4 	}Pk  (a — a k— bi) 
—B+ 	a+bi—ak —B+  (a— a k)2  + 62  

k=1 	 k=1 
n 

Im (cp (a+ bi)) = — b E 
k=1 

the summation sign are positive. Hence, cp (a+ 6000 for b00. The same 
result may also be obtained from the fact that cp (x) varies from + co to 
— co as x varies from ai  to ai+i, cp (x) ranges from 0 to — co for — co <x< 
p (x) varies from + co to 0 for ;<x< co.  It is assumed here that 

ai<az< ... <an. 
n 

725. f ' (x)  v 	1  
f (x) 	x — xk , where xk  are roots of the polynomial f (x). 

k=1 
Hence 

[f' 	 (X —1  Xlc)B  > 
(x))2  - f (x) f " (x)=Ef (x))2  

k=1 
for all real values of x. 

726. Let x, <x2 < 	<xn  be roots of the polynomial f (x), and let h. < 
<y2 < 	< y,n  be roots of the polynomial p (x). 

When the condition of the problem is fulfilled, m=n, n-1 or n+ 1. With-
out loss of generality, we can take it that x1<y1<x2 <y2 < 	<y„_,<x,, 
or xi< yi<x2 < y2 < 	<yn_,<xn  <yn. We assume 100. Rewrite the equa- 
tion as 

f x  
(x)= 

fix) 
If m= n, then ,.1) (x) varies: 

from 
0 to — co for — co <x <y1, vanishing for x=x1; 

from + co to — co for yk  <x< y k +1, vanishing for x=xk +1; 

ao 
from + co to 

0 for yn <x< + oo. Here, ck, and 60  are the leading coeffi- 

cients of f (x) and cp (x), which we consider to be positive. 
Due to the continuity of 4) (x) in each of the intervals under consideration, 

the equation (x)= — 1,  has n real roots if — 0 	and n-1 real roots 

if — =-T)°. Thus, the number of real roots of the equation f (x)+ tap (x) 

is equal to its degree. 
The case of m= n-1 is regarded in similar fashion. 
727. The roots of f (x) and p  (x) are necessarily all real since f (x) and 

p (x) are obtained from F (x) for A=1, 1.c.=0 and for 1.t.=1, X=0. 
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Suppose the roots of f (x) and cp (x) are not separable. Without loss of ge-
nerality, we can take it that there are no roots of p(x) between two adjacent roots 

x1  and x2  of the polynomial f (x). Then 4'  (x)= 
f (x) 

 is continuous for xl< 
cp () 

-.<_.x.x 2  and vanishes at the endpoints of this interval. By Rolle's theorem, 
there is a point x0  inside (x1, x2) such that (x0)=0. Then 4) (x)— (xo) has 
x0  as a root of multiplicity Ic?,2. On the basis of the result of Problem 581, 
there are, on the circle I z — xo  I = p, if p is sufficiently small, at least four points 
at which Im (q) (z))=Im (4) (xo))=0. 

At least one of these points, z0, is nonreal. The number ti= (zo) is real. 
The polynomial F (x)= —f (x)+ p. p (x) has a nonreal root, a contradiction, 

728. The roots 1.< l2 < • • . < 	of the polynomial f' (x) divide the 
real axis into n intervals: 

(-00, 	 (c- 21 %-1), (Sry-1, m). 

By virtue of Rolle's theorem, in each of these intervals the polynomial f (x) 
has at most one root. Furthermore, the polynomial f ' (x) + V" (x) for any real 
has at most one root in each of the foregoing intervals. Hence, f (x) +V ' (x), 
by virtue of Rolle's theorem, has at most two roots (counting multiplicity) 
in each of the intervals. 

Separate all intervals into two classes. In the first put those which contain 
a root of f (x). In the second, those without any root of f (x). Consider the 

function 4'  (x)= f' 
f ( 

(x
x)  

) 
. In the intervals of Class One, 4, (x) has one simple 

root and therefore changes sign. In the intervals of Class Two, 41  (x) does not 
change sign. In the intervals of Class One, 4)  (x) +A has an odd number of 
roots (counting multiplicity). Hence, from the foregoing, 4, (x)+ X has only 
one simple root and no multiple roots in the interval of Class One. Therefo-
re, 41(x) has no roots in the interval of Class One. Now consider the intervals 
of Class Two. Let &, be a point in some interval of Class Two in which the abso-
lute value of 4)  (x) reaches a minimum, and let A0= 4)  (W. For definiteness, 
we assume that 4, (x) is positive in this interval. Then the function 4)  (x) 
has no roots in the interval of our interest when A<ao  and has at least two 
roots when A> A0. 

By virtue of what has been said, the number of roots of 4'  (x)— X is exact-
ly equal to two for A > X0  and both roots are simple. Furthermore, 4) (4 —  A0 
has &, as a multiple (double) root. 

Thus, 4, (x)-A has no multiple roots in the intervals of Class One and 
has only one multiple root for one value of A in each interval of Class Two. Fur-
thermore, each root of the polynomial f' 2  00-  f (x) f" (x) is a multiple root 
for 4) (x)— (71) since 

f' 2  (x)- f (x) f " (x)  i(P (x)] = 	[f' (x)] 

Thus, the number of real roots of f'2  (x)— f (x) f" (x) is equal to the number 
of intervals of Class Two, which is obviously equal to the number of imagi-
nary roots of f (x). 

729. X (x)+ f2  (x) has all real roots for arbitrary real constants A and p. 
(Problem 726). Hence, by virtue of Rolle's theorem, X f (x)+ µ f (x) has 
all real roots. From this it follows (Problem 727) that the roots of f 1(x) and 
f2] (x) are separable. 
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730. Suppose f (x) has no multiple roots and let 	• • • < 

be the roots of f' (x). Consider the function 4) (x)= f(x) 
f' (x) 

+ 
x+ 
 . It is ob- 

Y 

x->co 
lows that 4, (x),+ co as x---> + 00 and 4) (x)--> - oo as x-* - co . Pesides 4)(x)-> 

- co as x-)-5i from the right and 4, (x),+. as x-›- from the 
left. Thus, 4, (x) varies from - co to + CO in each of the intervals (- co, 

...3  (3,_13  CO) remaining continuous inside these intervals. 
Consequently, 4) (x), and its numerator y f (x) + (x + A) f' (x) as well, has 

at least n distinct roots for y> 0 or y < - n. But the number of roots of yf (x) + 
+(x+ A) f' (x) does not exceed n, because yf (x)+ (x+ A) f' (x) is a polynomial 
of degree n. If f (x) has multiple roots and x1, x2, ... xk  are distinct roots of 
f (x), then f' (x) has k-1 roots 23 • • k-1 different from x1, x2, • • •, xk. 
Reasoning in like fashion, we are satisfied of the existence of k roots of 4, (x). 
All of them, except - A if - A is among the roots of f (x), will be different from 
the roots of f (x). 

Besides these roots, y f (x) + (x + A) f'(x) will have as roots x1, x2, ..., xk  
with the sum of multiplicities n-k [if -A is not a soot of f(x)] or n-k+ 1 
[if -A is a root of f(x)]. 

The total number of real roots of y f (x)+ (A + x) f' (x) counting multip-
licities is again equal to n. 

731. Let cp (x)= bk  (x+ y1) (x + y2) 	(x +yd. Every yi is either greater 
than zero or less than —n. 

It is _obvious that the coefficients of the polynomial 

Fi (x)=yt  f (x)+ xf ' (x) 

are ai (yi+i). The coefficients of the polynomial 

F2 (X)=y2 (x)+x F; (x) 

are ai  (yt + i) (y2 + i) and so on, the coefficients of the polynomial 

Fk (X) = y k  Fk— (X) + XF1,_ 1  (x) 

are ai  (y1+ i) (y3+ 	(yk +i), i= 1, 2, ..., n. 

On the basis of the result of Problem 730, all roots of all polynomials Ft, 
F2, ...3  Fk are real. But 

aoco (0) + atcp (I) x+ . . . + a „cp (n) xn = b k  F1, (x). 
732. Suppose f (x)= (x) (x +A) where A is a real number and f1  (x) is a 

polynomial of degree n-1, all the roots of which are real. Suppose that for 
polynomials of degree n-1 the theorem is valid; on this assumption, prove it 
for polynomials of degree n. 

	

Let ft  (x)=- b0+ btx+ 	+b,,_, xn-1, 

	

f(x)----ao+aix+ 	+a,,xn. 

a, ----AN, 

a1  =Abi+ 

a2  =Ab2+b1,  

an  _,=Thn  _ 	1)2 -2, 

an = 	b, 

x) n ( 	1 	1 
y 	

. 
vious that lim x 

= —+ >0 y >0 or if y < - n. Whence it fol- 

Then 
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and 

an+al yx+ a2 y (y-1) x1+ ... +an y (y-1) 

(y- n+ 1) x" =A [bo +bl yx+bo y (y- 1) x2  

+... + b„- a (Y-1) ... (y- n + 2) xn-l+xY [bo 
+ (y- 1) x+b,(y-1) (y-2)  x2 + ... + 	(y-1) (y-2) 

(y- n + 1)xn-9=kp (x) + x[ycp (x)- x (x)] 

where cp (x) is used to denote the polynomial 

bo+biyx+b2Y (Y-1) x2+ 	+b„_iy (y-1) ...(y-n+2) 
By hypothesis, all roots of the polynomial cp (x) are real. It remains to prove 

the following lemma. 
Lemma. If cp (x) is a polynomial of degree n- I having only real roots, 

then all roots of the polynomial (I) (x)= Xrp +yxcp-x2cr are real for y> n-1 and 
for arbitrary real X. 

Proof. Without loss of generality, we can take it that 0 is not a root of 
cp (x) for if cp=xlccpi, p1 (0)00, then 

(x)=xk (Xcpi+ (y- k) xcpi-x2cp',)= Xk  4)1  

and yi=y k exceeds the degree of cp1. 
Let x1, x2, ..., xn, be distinct roots of cp. The polynomial (1) has among its 

roots x1, x2, 	x with sum of multiplicities n-1 - m. Now consider 

w (x)= X+ yx X2  9' (x)  
cp (x) 

It is obvious that 

w (x)  
urn 	=y-(n-1)> 0. 

X-0.00 

Hence, w (x)-- co as x -> - co and w (x)-+ co as x--->+ co. Besides, w (x)-> 
->+ co as x->xi  from the left and w (x)-o- co as x-xi  from the right. For 
this reason w (x) has roots in each of the intervals 

(- oo, x1), (x1, x2), ..., 	x,„), (x„,, + co). 

The total number of real roots of cIJ (x), counting multiplicity, is equal to 
n- 1 - m + m+ 1 =n, that is, it is equal to the degree of 4'  (x), which is what 
we set out to prove. 

733. If all the roots of the polynomial ao + 	+ ... + anx" are real, then 
all the roots of the polynomial aoxn+ a,xn -1  + ... + an  are real. Furthermore, 
all the roots of the polynomials 

aon (n- 	(y,- n+ 1) x"+ al  Yl (yi- 1) 
n + 2) xn- 1+ 	+ an_ l y + a,, 

and 

ao 	1) ... (y1  - n+ 1)+al  n (Y1-1) 

... (y1- n + 2) x + 	+ a,,_ i y x"-1  + anxn 
al  =[a0+ 

n-n + 
1 x+ . . . + 	  xn-1  

(n - a + 1 ) (Y 1-  a + 2) • • • (Y0.-1) 
a„  
	 xnj yi (ri+ 1) • . • (y,-n+ I) 

(-1,1-n+ 1) (yi- n+ 2) ... Yl 
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are real for y1> n-1. Setting yi- tz + 1=a >0, we find that all the roots of the 
polynomial 

a2  
a0 + — x+ 	x2 + ... +   xn 

a 	a(a+1) 	a.(a+1) 	(a+n-1) 

are real. Using the result of Problem 732 a second time, we get the desired 
result. 

734. 1. Suppose all the roots of f (x) are positive. Then the polynomial 
an+ aiwx+ + anwnz xn cannot have negative roots. Suppose the theorem 
holds true for polynomials of degree n-1. Denote 

W=b0+b1 wx+ba  w4 x2 + + 

Let 0 <x1<xa < 	<xn_ i  where x1, x2, ..., xn_, are roots of p (x) and let 
xi  > w- 2.  

xi_i 
Further suppose that f (x)=(a —.X) (bp+ biX+ ... +b._1xn -1). The coef- 

ficients of the polynomial f (x) are 

a0  = Xb 0 , 

a1  =Abi- 1)0 , 

a2  = Aba b1, 

an _i=Abn -1- bn -2, 

an  =-bn _1. 
Consequently, 

P(x)=c10-1-aiwx+aaw4  x2+ ... + an  wO xn=A (bo - F b i wx 

+ ... + bn _ l w(n-1)° xn-1)-x (b0  w + bi w4  x+ . . . +bn _ i we xn-1) 

= Ay (x) - xwcp (xw2). 

The roots of the polynomials p (x) and x cp (xw2) are separated by virtue 
of the induction hypothesis. Thus, all the roots of the polynomial A p (x)+ 
+xw cp (xw2) that interests us are real. It remains to verify that the law of 
their distribution is the same as for the polynomial p (x). 

Denote by zi, z2, ..., zi, the roots of 4  (x). It is easy to see that 

0 <zi<xi<xi  w-2<z2 <x2 <x2  w-2<zo  < ... <zn_i<xn_ i<xn_ i  w-2<zn. 

Whence it follows that 
zi 
 >

xi _ iw-  2
= w -2, which completes the proof. 

zi_ i 	xi-1 

2. Consider cp. (x)= I 	 ( 	
Iv 	

• 
X2  log 	1  )m  

m  
For m sufficiently large, the roots of the polynomial Pm-  (x), equal to 

± 	m , do not lie in the interval (0, n). Consequently (Problem 731), V 

log —
1 	

ry 
 
w 

all the roots of the polynomial an  op. (0)+ ai  yn, (1) x + ... + an  y n, (n) xi' are 
real. But lim Pm  (x)=wx'. Hence, by virtue of the continuity of the roots 

m->co 
as functions of the coefficients, all the roots of an+ ai  wx+ ... + an  wo xn 
are real. 

w(n- 
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735. Denote by x1, x2, 	x,, the roots of the polynomial f (x)-=- ao + aix+ 
+ anxn. Without loss of generality, they may be considered positive. Fur-

thermore, let 

cP (x)= ao cos cp + al  cos (cp+ 0) x + 	+a, cos (p + nO) xn, 

LP (4= ao  sin cp+al  sin (cp + 0) x + 	+ an  sin (cp + nO) xn. 

Then 

p (x)+ (x)= (ccs + i sin cp) 
	

11 (ax — x,), 

(i) (x) — i4 (x) = (cos p — i sin cp) an  ,=. 
(a' x — x,) 

where 
a -= cos 0+ i sin 0, a'= cos 0— i sin 0. 

Consequently, 

(x)=
p (x)+ 	cp (x) 	cos + i  sin p 	ax—xi  

413. 	 11 cp (x)—i4) (x) 	cos cp —i sin p 	x — xi 
i= 

Let x= (DP be a root of the polynomial cp (x). Here, P=I x I; p=cos 
+ i sin A. Then I (x) I =1 and, hence, 

n 

Pap—x1 1 
= I  

Pa' p — xi  , 
i = I 

12 
	

(Pap — xi) (Pa' P' — xi) 

(Pa.' (l —  xi)  (Pap' — xi) 

=1+ 
pxi (a— a') ((3' —p) =1 + ' 4oxi  sin (i) sin 

pa' (3— xi 2 	 i pa' p —xi  2 

We disregard the uninteresting case of sin 0=0. 

If sin A00, then all 	
Pap—xi 

 2 are simultaneously greater than unity 
pa' p —xi  

or simultaneously less than unity and their product cannot be equal to 1. 
Hence, sin A=0, which means x is real. 

736. Let x1, x2, ..., x„ be the roots of the polynomial 

f (x)=ao+ ibo+ (ai  + ibi)x + 	+ (a,,+ ib,,)xn=cp (x)+ i (x). 

The imaginary parts of these roots are positive. Let us consider the polyno- 
mial f(x)=p (x)— (x). Its roots will obviously be 	4 	x,,' , which 
are conjugate to x1, x 2, ..., xn. Then 

n 

(x)_ 
 (x)+ i4) (x)  — 	X—Xi an + ib„ 

(I)  
(x)—i4) (x) 	1 	x — 	a„— ib„ 

i=i 

but 

(-,a(3— xi 
pa' p—x, 

9. 1215 
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If xo  is a root of op (x), then 

But 

I CD (X0)1 = 

i=i 

X 0  —Xi 
	 —1.  
X0 — X; 

xo  — xi 1 2 	(X0 — Xi) (XP •X;) 1 	(Xi — 	(X0 XP) 

X0 — X; 	(X0 — X;) 	— Xi) 	 I X0 — Xi 12  

4 Im (xo) Im (xi)  

I X0 — 	12 

xo — xi  

>1 for all i. (The same thing can be obtained geometrically with 
xo  — x 

ease and without computations.) Thus, the equation I (1) (x0) I =1 is only pos-
sible for a real xo  and therefore all roots of cp (x) are real. 

Next, consider the polynomial 

(a— pi) [cp (x)+ i4) (x)] = cap (x)+ p4 (x)+i [0,4) (x)— pcp (x)]. 

Its roots do not differ from the roots of the original polynomial and, hence, 
its real part ay (x)-+ t) (x) only has real roots for arbitrary real a and 
p. But in this case, the roots cp (x) and 1) (x) can be separated (Problem 727). 

737. Let x1, x2, x„ be the roots of cp (x); yl, y2, yn  the roots of c,I) (x). 
Without loss of generality, we can assume that the leading coefficients of cp 
and 4) are positive and 

> y1>x2 > y2 > • • • > 	> > Yn 

(yn  may be absent). 

Decompose (x)  into partial fractions 
(x) 

	

(x)  — A + E  Ak  Ak— 	„ • cp (x) 

	

	x—xk 	(xk) 
k=1 

It is easy to see that all Ak  >O. Set x=a+ bi and find the imaginary part of 

	

(cp (x)+ (x)) 	(x) 

cp (x) 	cp (x) 	' 

Im 
4:, (x) 	= (x) i) 

1+1m (E 
k=1 

Ak  

a+bi—xk 

= — 1 — b E 
k=1 

Ak 
(a — x k)2  + 6' 

Whence, if Im (x0) > 0, then 

=1 

i  

xo  —xi  
<1 for all i; if Im (x0)<0, then 1  Xo  — 
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If b>0, then Im
cp ( 

(x) i I <0 and, hence, (p (x)+ (x)00. Thus, 
x) 

in the case at hand, all the roots of cp (x)+ (x) lie in the lower half-plane. 
The other cases of location of roots are considered in similar fashion. 

738.  
n 

f'  (x) _ \-, 	1 
f (x) 	L  x — X k ' X k 

are roots of f (X). 

k =1 

Let x= a— bi, b > 0. Then 

n 

f ' (a  — bi)\ _ v b+Im (xk)  >0.  

f (a —bi) 	L-1 	I )c — xkl 2  
k=1 

Consequently, 
f' (a— bi)0 O. 

739. Let the half-plane be represented by the inequality 

r cos (0 — cp) > p, where x= r (cos (p + i sin cp). 

Put x= (x' + pi) (sin 0— i cos 0). Then 

x'= — pi+ x (sin 0 + i cos 0)= r sin (0 —cp)+ i [r cos (0 — cp)— p]. 

Whence it follows that if x lies in the given half-plane, then x' lies in the half-
plane Im (x')>0, and conversely. The roots of the polynomial f [(x' +pi) 
(sin 0— i cos 0)] are thus located in the upper half-plane. On the basis of Prob-
lem 738, the roots of its derivative, equal to [sin 0— i cos 0] f' [(x' +pi) (sin 0— 
— i cos 0)], also lie in the upper half-plane. 

Thus, the roots of the polynomial f' (x) lie in the given half-plane. 
740. This follows immediately from the result of Problem 739. 
741. The equation splits into two : 

f' (x) 	1 	f' (x) 1 
+ =0 and 	 =0. 

f (x) 	ki 	f (x) 	ki 

Decomposition into partial fractions yields 

_ 	+ 1=0 x_ xk ki 
k=1 

xk  are the roots of f (x), which, by hypothesis, are real. Let x= a+ bi. Then 

Im E 	1  ) 
X — X k 

=I b I 

 

1 	
n 

(a— x k)2  + <  b I 
k=1 

 

k =1 

1 
For the roots of each of the equations it must be true that -k  < b  , whence 

I bl<kn. 

Im 

9* 
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742. All the roots of f' (x) are obviously real. Denote them by Sl, 2i 

• • , 	Next, denote by yl, Y2, • • 	the roots of the polynomial f (x)-b, 
by x1, x2, ..., xn  the roots of the polynomial f (x) -a. Then 

Yi< 3.<Y2<2< • •• 

xl < 1  <x2 < 	<xn _ i< c-3.<xn. 

From these inequalities it follows that intervals bounded by the points 
xi, yi  do not overlap since they lie in the nonoverlapping intervals 

(- 00, W, 	 + CO. 

The polynomial f (x) takes on the values a and b at the endpoints of each of 
these intervals and passes through all intermediate values inside the inter-
val. Consequently, f (x) - A vanishes n times on the real axis, which comple-
tes the proof. 

743. If the real parts of the roots of the polynomial f (x)=xn+aixn-l+ 
+ 	+ an  have like signs, then the imaginary parts of the roots of the poly- 
nomial 

in  f (—ix)—xn+iapcn — l—a2xn -2  - ia3x" -3+ 

also have like signs, and conversely. 
For this, by virtue of the result of Problems 736, 737, it is necessary and 

sufficient that the roots of the polynomials xi' - a2xn-2+a4x"-4- ... and 
a1xn-1-a2xn -3  ± aocn -5- ... be real and separable. 

744. It is necessary that a>0 and that the roots of the polynomials x3- 
bx and ax2  - c be real and separable. For this, the necessary and sufficient 

condition is 0 < <b or c > 0, ab- c > 0. 
a 

Thus, for negativity of the real parts of all roots of the equation 

x3 -Fax2 H-bx+c=0 

it is necessary and sufficient that the inequalities a>0, c>0, ab - c>0 be 
fulfilled. 

745. a >0, c>0, d>0, abc- c2-a2d>0. 

746. Set 
x-  1 -1-y

. It is easy to see that if x I< I, then the real part I -y 
of y is negative, and conversely. 

Consequently, for all roots x1, x2, x 3  of the equation f (x)=0 to be less 
than 1 in absolute value, it is necessary and sufficient that all the roots of 

1 +y 
the equation f (-

1y
)=0 have negative real parts. This equation is of 

the form 

y3  (1 -a+b-c)+y2  (3 -a-b+3c)+y (3+a-b -3c)+(1 +a+b+c)=0. 

Besides, it is easy to see the necessity of the condition 

1 - a+ b - c=(1 + xi) (1 +x2) (1 +x3)>0. 
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On the basis of the results of Problem 744, we get the necessary and suffici-
ent conditions: 

1—a+b—c>0, 1+a+b+ c>0, 3 —a—b+3c>0, 1 —b-Fac— c2>0. 

747. f (x) (1— x)= an + (a,,_ 1 — an) x 

+(a,,_ 2 - an_ i) x2+ ... +(ao — ai)x"— aoxn+ '• 

Let x I -= p >1. Then 

f (x) (I —x) I aopn+ 	I an+ (an _ 	a,,) x 

+ 	+(ao — al) xn I ao Pn + 1—  P" (an+ an-3. —  an 

	

+ 	+ ao—ai)= ao (Pn  + 1  — p9> O. 

Consequently, f (x) 0 0 for 1 x I> 1. 
748. —0.6618. 749. 2. 094551. 
750. (a) 3.3876, —0.5136, —2.8741; (b) 2.8931; (c) 3.9489, 0.2172, 

—1.1660; (d) 3.1149, 0.7459, —0.8608. 
751. The problem reduces to computing the root of the equation x3-3x+ 

+1=0 contained in the interval (0, 1). 
Answer: x=0.347 (to within 0.001). 
752. 2.4908. 
753. (a) 1.7320, (b) —0.7321, (c) 0.6180, (d) 0.2679, 
(e) —3. 1623, (f) 1.2361, (g) —2.3028, (h) 3.6457, (i) 1.6180. 
754. (a) 1.0953, —0.2624, —1.4773, —2.3556; (b) 0.8270, 0.3383, 

—1.2090, —2.9563; 
(c) 1.4689, 0.1168; 
(d) 8.0060, 1.2855, 0.1960, —1.4875; 
(e) 1.5357, —0.1537; 
(f) 3.3322, 1.0947, —0.6002, —1.8268; 
(g) 0.4910, —1.4910, 
(h) 2.1462, —0.6821, —1.3178, —4.1463. 

CHAPTER 6 

SYMMETRIC FUNCTIONS 

755. The following is a detailed solution of Example (f): 

F(x1, x2, x3) = (xi+ xi) (xi+ xg) (x2+ x3) 

The leading term of the polynomial F is xi • 4. 
Write out the exponents in the leading terms of the polynomials that 

will remain after a successive elimination of the leading terms due to 
subtracting appropriate combinations of the elementary symmetric poly-
nomials. The exponents are: 

(4, 2, 0), (4, 1, 1), (3, 3, 0), (3, 2, 1) and (2, 2, 2). 
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Hence, F=f,2f+Af i2f 3+Bf23+C f, f 3+ Df32  where A, B, C, D are nume- 
rical coefficients. We determine them, specifying particular values for x,, 
X1, x3. 

X2 X2 x3 f1 fa f 3 F 

1 1 0 2 1 0 2 

2 —1 —1 0 —3 2 50 

1 —2 —2 —3 0 4 200 

1 —1 —1 —1 —1 1 8 

We have the following system of equations for determining A, B, C, D: 

2=4+B, 

50= —27B+4D, 

200= —108 A + 16 D, 

8=1 —A—B+C-FD 

whence B= —2, D= —1, A= —2, C=4. 
Thus, 

(x1+4) (4+ 4) (4+ .4)=fM— 24f 2/1+ 4f1 f2 f —f32. 

The answers for the other examples are: 

(a) P.  —3fif2; (b) fife-3f3; (C) f — 4.fi2f2+8.fif 3 ; 

(d) 2fif 3 3f1 f1+6N2f3+3.af 3 

(e) fif2 — f3; (g) 2f —9.A.f2+ 27/3 ; 

(h) ft 	 + 18fif2 f3-2742. 

756. (a) fif2 f 3 —fPf4 —A; (b) Af4  +fi — 4f2f4;  

(c) f 3 4f1f2 + 8f 3 • 

757. (a) fl-2f2; (b) f 3  — 3fi f2 3f3 ; 

(c) fif 3— 4f4; (d) a— 2fif 3+ 2f4; 

(e) f?./.2 —fif3-2f2+4f4; (f) 	4fi2f3+ 2f1+ 4fif 3 4f4; 

(g) f2f3-3.fif4+5f3; (h) fff 3 2f2f 3 —fif4+5.1.3; 

(i) f1f1-2fif —f2 f 3 + 5f1f4 5f5 ; 

) frf2 3f1 —fPf3+5.fa f 3 +.11.1.4-5f3; 

(k) f2-5f;f2+5f1n+5.1?f3-5f2f3-5.11.1.4+5f3; 
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(1)4f11f5 +9f6; (m) 	2f2 f4+ ?fa fa — 2f6 ; 
(n) fa2 f4 —  2f2 f4 	fa + 6A ; 

(0) f2 13 3flf4 3fR+ 4f2 f4 + 7fif2 — 12f6; 
(P) f;- 3f2 fa f 3+ 3112f4+ 3f: —3f2  f4 — 3fi  ± 3f6 ; 

(q) R/3— 	f 3 — fif4 3f1+ 2f2f4+ 	6fo; 

(r) fpn— 2fif 3 2f 3  ± VI fa fa + 	+ 2f2f4 — 6fi fa + 6f6; 
(s) fif2 —  4/12f — flfa + 2f;+ 7fif2 f 3 ±f1f4 —  311—  Ma—Ms+ 6f6; 

(t) ff — 6f1f2+ 9Pf 6frf 3 2f; — 12f1f2 f3-6f12f4  

+3.fl+ 6f2 f4+ 6.fif 6fo. 
758. (a) nf 2  — 8f2; 

(b) 	+ 4fin  2f2-8.1T-3A+...+( — 2)n h. 

759. (a) (n — 1) f-T— 2nfa  ; (b) (n — 1) f 3 (n — 2) f2+ 3  (n —  4) f 3 ; 

(c) (n-1) ft— 4nf?.f2+ 2 (n + 6) f± 4 (n— 3)11 f 3 — 4nf 4; 

3 (n-12 1) 	(n — 2)  
(d) — (3n —1) (n —  2) f2. 

760. )7 — 2fk — a fk + a + 2fk-2fk + 2 2fk — 3 fk + 3+ . . . 

2 
761. (n— I )! E f 2  — 2 (n-2)! [n E q—(2 a i) if2 

i=1 	 i=1 	i=1 

= (n — 1)! S2 S2+4 (n —2)! F2f2 
where 

S2 = E aF; s2= E xF; F2 = 	ai ak; f2= E xixk. 
i=1 	i<k 	 i<k 

f2— 3f 3 	2  (fif2 — f 3 — 2f1) 762. (a) 	
f 3 	

, (b) 
3 fl f2—f 3 

(c) f2 + f 3.f — fa fa + 9.f?  
f 

763. (a) 
fi — 2fa fa + 2f4 (b) 	f 	f 3 — 6f1 f2 fa+ 6f3+ 2f12f4   

f4 	 L./2/.3 —ftfa—f: 

fn 	—1 	 2f„ _ 2 fn 	 fn —1— nfn 

fn 	 fn 764. (a) 	. (b) 	  ; (c) 	
fn 

(d) 
f?g__ — 2f2 _ 1 — fn — 2f. + 4f2 fn —2 fn — 

(e) ; 
(f)  fn —1— fn —1— fn 	f2 fn —1—  (n— 1) fn 

fn 	 fn 
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765. — 4. 766. —35. 767. 16. 

768. (a) —3; (b) —2p3 -3q2 ; (c) —133 (xi—x2  x3
= 

— p); 

(d) 94;  (e) 	 
—2p —3q 

(f) 
 2p2 — 4p — 4pq+3q2  +6q  

	

1+ p — q 	 (1 +p — q)2  

1 a2—  2b / 769. Let x2=4+.4. Then 24=4+4+4= — 2b. Hence, V 2 
V 	 a2— 

2 	
i 2b 

or — 	is among the roots of the given equation. For this, it is 

necessary and sufficient that the following condition be fulfilled: 

a4  (a2 -26)=2 (a3  —2ab +2c)2. 

770. a= —..x1—x2 — X3, 

ab — c= — (xi+ x 2) (x1+ x3) (x2+ x 3), 

C= — x1 x2 X3. 

If all roots are real and negative, then 

a>0, b>0, c>0. 

If one root x, is real and x 2  and x3  are complex conjugate roots with nega-
tive real part, then xy ± X3 <0, Xy X3 > 0, (x1 +x2) (Xi + X3) > 0 and, hence, also 
a>0, b>0 and c>0. The necessity of the conditions is proved. 

Now assume that a>0, b>0, c>0. If x, is real and x2  and x3  are complex 
conjugates, then x2  x3  > 0, (xi  + x2) (xi  + x3) > 0 and from c>0, b >0 it follows 
that xl <0, 2Re (x2)=x2 +x3 <0. 

Now if x1, x 2, x3  are real, then from c>0 it follows that one root, x1, is 
negative, and the other two are of the same sign. If x2 >0, x 3 > 0 , it follows 
that 

- X1- Xy > X3> 0, - X1- X3 > Xy > 0 

and then —(xl-Fx2) (xl+x,) (x2 +x3)<0, which contradicts the hypothesis. 
Hence, x2 <0, x3 <0. 

An alternative solution is given in Problem 744. 

771. s= 
1 -, v a (4ab — a' — bc), R— 

	

	 
V a (4ab — as — bc) 

772. a (4ab — a3  —8c)= 4c2. 

25 	 ,679 
773. (a) 	, (b) 

35 
 (c) — 1  

774. (a) 	al— 4a? a,— 	a0 + 18a, a, a2  a,— 274, 4; 

(b) ai  a,— ao; (c) aal 	a2  —9; (d) 	a; a,— al ao. 
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775. It is sufficient to give, the proof for the elementary symmetric poly-
nomials. Let yk  be an elementary symmetric polynomial of x 2, x3, ..., xn  of 
degree k; let fk  be an elementary symmetric polynomial of x1, x2, ..., xn. 
It is obvious that cpk=fk — xi Pk-1, whence it follows that 

(Pk =fk 	fk-1.± 	
- 	(_ 

— 	cpk= ak+ ak_i 	F 

776. xi+ x2=f1—x3, 

(f1 — Xi) (f1 —  xi)(f1— x3)= P— fi+fif2—f2=fifz—f,, 
2x, — x2 — x 3= 3x,—f„,. 

(3x1  —fi) (3x2 —fi) ( 3x3 — A)= 27f 3 9ft fi + 

	

xl+ x1 x2+ =f? —f2 	x3, 

xy — X2 X3 =fl 

777. E afk = kit — k)r fk —1 axi 
=1 

778. Let F (xi, x 2, ..., x 	(I) (f1, f2, • • 4). Then 

n 

E OF all) Oa)  
oxi 

=n ±(n— 1) f, —072- + . . . +f„_i fn 
 

i= 

779. Let co 	F (xi+ a, x2+ a, ..., xn+ a). Then 

(a) = 	
dF (xi+ a, x2+ a, . , xn + a) 

p  	  • axi  
i=1 

Since cp (a) is not dependent on a, then cp' (a) is identically zero, whence it fol- 
n 

 that 	aF 	
aF(xi, x2, ..., x„)  

	= 	Conversely, if    is iden 
axi 

i= 1 	 i =1 

tically zero, then (f,' (a)= 	
aF(x,±a, 	x„+a) =0 

whence it follows 
axi  

1=1 
that cp (a) does not depend on a and 9 (a) =cp (0), that is, 

F (xi+ a, x2+ a, ..., x,,+ a)= F (xi, x 2, 	xn). 

By virtue of the preceding problem, the condition E  aF  =0 is equiva- 
ax, 

t 
lent to the condition 

ae 
n - aft +(n 1) fi  af2  + 	afn  =o. 
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780. Let F(x1, x3, ..., x,) be a homogeneous symmetric polynomial of 
degree two. Then its expression in terms of the elementary symmetric poly-
nomials is of the form (1)=Af,2+Bf2. By virtue of the result of Problem 779, 
it must be true that n • 2Af1+ (n-1) Bf1=0, whence A= (n— 1) a, B= —2na 
and 

F(x1, x2, . . . , x,,)= a [(n — 1) f?-2nf21= E (xi-x02. 
i<k 

781. The expression of a homogeneous symmetric polynomial of degree 
three in terms of the elementary polynomials is of the form Aft+Bf1 f2+ 
+ Cf B. By virtue of the result of Problem 779, it must be true that 3Anff+ 
+ nBf2+ (n— 1) Xi+ (n— 2) Cf2=0 whence 

F(x1, x2, . . • , x 3) = [(n — 1) (n — 2)p - 3n (n — 2) 	+ 3n2  f 3]. 

782. (n— 2) f?f 2 (n —1) fif 3 — 4 (n — 2)f: 

+ ( 1 On — 12) f,..f2 f 3— 4 (n — 1)421'4 — 9nf2 + 8nf2 f4. 
783. We can take 

	

pk=sk (x, -A, x - 	x - LI ) 

	

Each function Pk  has the required property. Furthermore, if F 	x2, ..., xd= 
=F (x1+ a, x2+ a, ..., xn+ a) and F(x1, x2, ..., xd= 4  (fi, f2,•f 5), then 

	

F(x1, x2, • • xn) = (I) 	cp2, 93, • • • (1),,)• 
784. (a) — 4cpg — 2791 (b) 184 
785. (a) 893, 

(b) — 494(4+169194 -2791+144 92 ,494-12892 91+ 2569i• 
786. s2 =f1-2f3 ; 

s3=f?-3fif2+ 3f 3 ; 

s4=fl— 41.12  f2+ + 4f1 f 3— 4f4; 

s5=f1-5f?f3+  5fif + 5f,21.  3— 5f2 f3 5./.1f4+ 5.f5; 

s6= —6.1.1f2+9f 2f1+ 6fi'f 3 2f1— 1  2fif2 f3 

— 6f12f4 + 	6f2 f4 6f1 f5 6f6 • 

787. 2f2=4 — s2; 
6f 3 = — 3,5'1 S2 + 253 ; 

24f4  = st — 6s1 s2  + 8s1  s3  + 352— 654 ; 

I 20 = St — 1 OS? S2  + 204 s3+ 15s1  s2-2052  S3 — 30.si  54 + 2455; 
720f6  =4 —154 53  + 40s1 s3  + 45 51.  s2— 120 si  s2  s3  

—154-904 s4 + 404+ 9053  s4  + 144 51  s3 — 12056- 
788. s5=859. 789. s3=13. 790. s10=621. 
791. si= —1, s2 =s3= ... =sn=0. 
792. This is readily proved by mathematical induction by means of the 

relation 
ask+ bsk _ i+ csk _ 2=0 

where sk=x+4:. 
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793. s6 —s1=5(ff—f2) (f3 — f1f2); s3 —s1=3 ( f 3 	f2). 

794. S5= — 5f2f3; s3=3f3; S2= —2f2. 

795. s,= — 7f2 f5 ; s2= — 2f2 ; s5 =5./3. 

796. e - a=0. 

a  
797. x"— xn-i+ -1- 	

a2 
2 xn-  2 	

a_n! =0 

798. xn+  P' (a)  xn-1  + P2
2 	(! !

a)  Xn- 2  . . . 	
n 

P n (6')  —0, where P1., P2, ...3 Pri 1  
x2 

k 
— xE 

 d e
2 

	

are Hermite polynomials: Pk  (X) = (— 1)k  e 2 	dxk 	a is a root of the 

Hermite polynomial Pn+1  (x). 

Solution. Let the desired equation have the form 

xn+a1 xn-1+a2 x"-2+...+a,,=0 

By virtue of Newton's formulas 

a1 =a, 

2a2  =aa1-1, 

3a3  =aa2— al, 

kak 	a k- 25 

nan  =aan_,— an _ 2, 

= ccan —an_1. 

From these relations it follows that ak  is a polynomial of degree k in oc. 
Set k!ak=Pk  (a). Then, taking P0=1, we get 

P1=a and Pk—CC Pk_ 1±(k— I) Pk_ 1=0, 

—aPn+nPn _ 1=0. 

The first relations show that Pk  is a Hermite polynomial in a (see Problem 
707). The latter yields Pn4.1 (a)=0. 

1 	r, 
799. 2 — (sz

k — s3k)- 

800. E (x+xi)k = v cmk  sk me!, 

= 1 	 m=0 
n 	n 

E E (xi+x,)k= I Cln  Sk-m Sm, 
i=1j=l 	 In=0 

E 	
2 
(E cr sk_msni_2k sk). 

<ji 	 m=0 
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2k 
1 V 

2.1
' 801. E (x,_xir 	2  k= -- 	021 	1 Y"  Sm Szk — m • 

j 	 m=0 

802. Multiply the second column by —s1, the third by s2, ..., the kth by 
(-1)k-1  sk_ i  and add to the first. By Newton's formulas, we get 

f1 	1 	0 	0 

2 	f2 	f, 	1 	. . . 	0 

	

(k — 1) fk -1 fk -2 	• . f1 I 

	

kfk A-2 	 1'11 
0 1 0 	... 0 

0 f, 1 	. . 	 . 0 
—Sk. 

0 fk — fk — 3 • • • 1  

— 1 ) S k fk-2 fk-2 	• 

803. Multiply the second column by —f1, the third by f2, ..., the kth by 
(-1)k-'jk _ 1  and add the results to the first column. Newton's formulas yield 
the desired result. 

804. n! (x" — f ixn-i±f2xn- 2+ 	(_ I )nfn).  

P  

805. 
cp

( 

 (n) 

) 	k  71 

1 n 
where d is the greatest common divisor of m 

71n   
and n. 

806. By virtue of the result of Problems 117, 119, it suffices to consider 
the case n=p1 p2 	pk , where pi, P2 ... pk  are distinct odd primes. In this 
case, s1=s2 =s4= (-1)k; s 	(-1)il-1  if n is divisible by 3, and s3=(— 1)k 
if n is not divisible by 3. eomputations by Newton's formulas yield: 

f2= 	
1 — ( — 1)k 

2 
_ i)k -1_ I 

f3- 	2 	
if n is divisible by 3, 

f3 = 	
— 1)k  — 1  

2 	
if n is not divisible by 3, 

•f4 	2 
	 if n is divisible by 3, 

(_o 

2  

k-i+i 
fi= 	  if n is not divisible by 3. 

807. s1=s2=s3= 	= sn= a. Hence, for 

kfk= afk_,— afk_ 2+ • • • + 1)k —1fi,  

(k— 1) fk_1=afk-2+ • • +(-1)k-2fi, 
whence 

a 
	+1  

kfk= (a — k + 1) fk -1, fk= 	ik-i• 
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Obviously, f1= a; therefore, 

f2=  a(a-1) 	
fk 
 a(a-1) 	(a-k+1)  

1.2 	' ••'' 	 • 2 . . . k 

and so x1, x2, ..., xn  are roots of the equation 

a 	a (
1  a  .2  

- I) 
x" - -

1 
x"-1  + 	xn-2 	. .. ±( _ 1),, a (a-1) . .. (a- n+1) =0,  

n! 

sn+i=a a (1- a) (2-  a) . . . (n - a) 
n! 

808. (x - a) (x - b) [x" + (a + b) x"-1  + . . . + (a" + an-1  b+ . . . -F bn)]= 
= (.7C — a) [x"+1 	a2 xn-i + 	x _ b (an ± an-1 b+ 	+b")] 

_ xn+2_(an+i+an b+ 	±bn+i)x+ab(an+an-l b+...+b" ). 

The power sums 	c2, ..., an  for the new polynomial are obviously equal 
to zero. But ak =sk +ak + . Hence, sk  = -(ak+bk) for 1 

809. sk  = - ak  — bk  for odd k, 
k c 	k \2 

Sk = — 2  —b 2  ) for even 

810. (a) (x+ a) (x2+ax+ b)- c=0; 

(b) x (x- a2 + 3b)2- 

(c) x3+ (3b - a2) x2+ b(3b - a2) x + 	aa c =0 ; 

(d) X2  (X—  a2 +3b)+ (aa b2-4a3c-4b3+ 18abc -27 0=0; 

(e) x3- (a2-2b) x2+ (b2-2ac) x- c2=0; 

(f) x3+ (a3- 3ab + 3c) x2  + (1)3- 3abc + 3c2)x+ c3 = O. 

811. y2+(2a3-9ab +27 c) y+(a2-3b)2=0. 

	

ab -3c 	b 3+ a3  c -6abc +9c2  
812. y2 	y+  	 _ 0. C 2 

813. y6 	 
ab -3c 

y5+  b
3 -5abc + 6c2 

1
4 

c2  

a 2 b2-2b3-2a2  b + 6abc -7 c2 	b3-5abc +6c 2  
	  + 	 y2 	 

c2 	 c2  
ab -3c 

y -I- 1 = 0. 

814. (a) y' - by2  + (ac - 4d) y -(a2d+ c2-4bd)=0 
(Ferrari's resolvent), 

(b) y3- (3a2  - 8b) y2+ (3a4-16a2b +1662 + 16ac - 64d) y- (a' 

-4ab+8c)2=0  
(Euler's resolvent), 

(c) y6 - by5+(ac- d) y4- (a2d+ c2-2bd) y3  + d (ac- d) y2- bd2y 
+d3=0; 

(d) y6 + 3ay6 +(3a2 +2b) y4 + (a3+4ab) y3+ (2a2b + + ac-4d)y2  
+(ab2+ a2c - 4 ad) y +(abc- a2d - c2)= 0. 

(a2b2- 4 a' c - 4b3  + 18abc - 27c2) = 0 ; 



—1 

a 

0 —1 

b 

0 

X1 

1 

1 

x2  x3  

,2 

x4  

E3  

x5  

€4 

0 

0 

1 3-4i 

—5 

Y2 Y3 

1 

 —Sc3  — 5e2  

Y4 	Y5 

1 

Y6 

3+4i 1 

—5e 
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—a+ -Va2 — 46+ 4y, ± Va2 — 46  +  4y2 ± 142-46 +4y2  
815. x= 	

4 	
• 

The signs of the square roots must be taken so that their product is equal to 
—a3+4ab-8c. 

816.  

     

      

±11 4a+1/ b2 —  64as  + -I/4a +E  Vb2 — 64a3 ±  -1/4a+e2V  b2 -64a3  
2 

1 i V 3 
e  = 2 + 2 

The signs of the square roots are taken so that their product is equal to —b. 

817. (y+a)4  (y2+6ay +25a9+ 3125b4y = O. 

Solution. The roots of the desired equation are: 

x2+x2 x3 +X3 X4+X4 X5+X5 Xi) (X4 X3+X3 X5+X5 X2+X2 X4+X4 X1); 

Y2 = (X1 X3 +X3 X2 +X2X5 +X5 X5+X4 Xi) (X4 X2 +X2 X4 +X4 X5 +X5 X5 +X5 X1); 

Y3=  (X6 X2+X2 X4+X4 X3+X3 Xl+Xi X5) (X5 X4+X4 Xi+Xl X5+X2 X3+X3 X5); 

Y4=  (X2 X1+X1 X5 +X3 X5 +X5 X4 +X4 X2) (X2 Xs +X5X4+X4 X1+X1 X5 +X5 X2); 

Y5=  (X5 X3+X3 X2+X2 X4 +X4 X4+X4 X5) (X5 X2+X2 X1+X4 X3+X3 X5+X4 X5); 

Y6= (X2 Xi+XI X4±X4 X3 -FX3  X5+X5 X2) (X2 X4±X4 X5±X5 Xi+Xi X3+X3 X2). 

The sought-for equation is obviously of the form 

y6 + c1ay6+ c2a2y4+ c3a3y3+ c4a4y2+(c6a2+ c6b4) y+(c7a6  + c8ab4)=0, 

where c1, c2, 	c3  are absolute constants. To determine them, put a= —1 
b=0, and a=0, b= — I. We get 

In the first case, the desired equation is of the form 

(y— 1)4  (y2 — 6y +25)=0. 

In the second case, y6 + 3125y= 0, whence we determine all the coefficients, 
except c3. It is easy to verify that c5=0. To do this, we can, say, take a= —5, 
b=4. In this case, x, =x2= 1, and the remaining roots satisfy the equation 
x3 + 2x2 + 3x +4 =0 and all the necessary computations are performed with 
ease. 

3 33 

X= 



CH. 6. SYMMETRIC FUNCTIONS 
	

271 

818. Let f (x)=(x— xi) (x— x2) ... (x— xn), where xi, x2, ..., xn  are inde-
pendent variables. Also, let 

xk 	(x)=f (x) qk (x)+rk (x) and rk (x)=cki+ ck2 x+ . . . ckn xn-1. 

The coefficients cks  are obviously some polynomials in x1, x2, ..., 
Furthermore, 

C11 C12 	• • • Cyn 1 1 

C21 C22 	• • • C2Il Xy 

xn--1 

X2 	• 

xn-1 

• • Xn 

xn-1 Cny en2 	• • • Cnn 1 2 

r1 (x1) 	r1 (xi) 	• • • r1  (Xn) 

r2 (xi) 	r2 (x2) • - • r2 (xn) 

rn (x1) rn (xi) 	• 	rn (xn) 

cP (xi) 	p (xi) 	• • • 	5° (xn) 
xi eP (X1) 	X2 eP (x2) 	• • • Xn CP (Xn) 

xn-1  cp (x cp (x2) . .. X7,-1 (I)  (Xn) 

1 	1 	. 	1 

Xy 	Xy 	• • • Xn 

,c7  — 	.7e4-1 	Xn -1  — I 

=(13  (xi) cP (x2) ... cP (xn) 

whence it follows that 

C12 	.. • Cyn 

C21 C22 	• • • C2n 
= cP (xi) (f) (xi) 	• • cp (xn)=R cp) 

eny Cu2 	• • • Cnn 

The last equation is an identity between the polynomials in the indepen-
dent variables xi, x 2, ...,xn  and therefore remains true for all particular values 
of these variables. 

819. First of all, satisfy yourself that all polynomials ti)k  (x) are of degree 
n-1. Introduce the following notations: 

fk  (x) = an  xk 	
ak _1, 

fk(x)= ak Xn—k  + • • • + an, 

Pk (x) = bo  xk —1+ 
	bk-1, 

(15k  (x)=bk xn—k+ 	+ bn.  

Then 

(x)= Xn— k +1  A (x) +.7k (x), 

cP (X)=Xn—k+1  cPk (x) -F cf,k (X), 

t (X)= f k (x)  [Xn k +1 cPk (x)+ (P k (X)) —cpk (x) [xn —k  +1-fk (X) 

+7 k (X)] = fk (X) ci)k 	fk (X)=(ao bk — b0 ak) xn 1+ • . 



-=-P (xi) (I) (x2) 	• • ep (xn) ' 

fn (xi) 	(X1) fn (x2) p (Xi) • • • fn (xn) (xn) 

If (x2) A. (x2) • • • f1 (xn) 

12 (xi) f2 (Xi) 	f2 (xn) 

=9 (x1) p (x2) • • 	(xn) 

no 	0 
a0  

fn (xi) fn (x2) 	fn (xn) 1 

. . . 	0 	1 	1 	1 	1 

. . . 0 	xl 	X2 
• 

a„_, an_2 • • • a0  

= (Xi) p (x2) • • • p (xn) cp 

x" -1 	 x' —  I  . . . 	n2   

1 	1 

X1 	X2 	• • • Xn 
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Suppose (1)k (X)=Ckl+ Ck2X+ ... H-CknX11-1  and let x1, x2, ..., xn  be the 
roots of the polynomial f (x). Then 

c11 	c12 • • • Cin 1 	1 1 	1 	 1 

C21 C22 • • • C2n 1 . X1 	X2 	 Xn 

Cn1 Cn2 . • • Cnn 

n (X1) `in (Xi) • • • 4 n (Xn) 

fi (X1) p (xi) fi (Xi) (xi) • • • fi (Xn) 	(xn) 

= ; f2 (xi) (xi) f2 (Xi) co (x2) 	(xn) p (xn) 

Xn-1 xn — 1 
1 	2 	" • X  nn —1  

whence it follows that 

C11 	C12 • • • Cin 

Cul 	C22 • • • C2n =0,02 p (x.t) co (x2) • • • cp (Xn)=  R 	50 )• . 	. 	..... 	. 	. 

Cn1 	Cn2 • • • Cnn 

820. The polynomials Xk  have degree not above n-1. This is obvious 
for 1 and for k > n—m it follows from the fact that X k  are Bezout 
polynomials t.Pk _ n+  m  for f (x) and xn —m cp(x). Let xk  (x)= cki + ck2x + . + 

cknxn  — 1 and  
1 	1 

x?-1 	... 	I  

LPL (X1) 	LP1 (X2) • • • 4'1 (Xn) 

Lli0 (X1) 	4) 2 (Xi) 	LI)2 (xn) 

A= 

—1 . xnn-1  

Then 

C11  C12 • • • Cln 	 Xl (X1) Xl (X0) • • Z1 (X0) ! 

C21 Cyy • • • C2n I • A = X8 (xi) Z2 (x2) • • 7,2 (xn) 

\ Cn1 Cn2 • • • Cnn 	I Xn (x1) Xn (X2)  • • Xn (xn) i 

=-- (P (xi) cP (x2) • • • ep (xn) 

x, 	X2 
	 x,, 



CH. 6. SYMMETRIC FUNCTIONS 

xn- m-i xn - in- I 

x7 'n fo (xi) 	fo (x2) 

x 

273 

x7-  m 	(x1) x'21-  rn fm _ i  (x2) ... 	'n fm _ i ( xn) 

1 

=W (Xi) (P (X2) 	cp (x„) A • ao  
a, 	ao  

(11,1_2 am-2 • • 	an 
= 	cp (x1) 	(x,) A 

whence immediately follows the desired result. 
821. (a) -7, (b) 243, (c) 0, (d) -59, (e) 4854, (f) (bu (+2-62  a0)2-(bo a1- 

-b1  ad (b1 a2-b2 a1). 
822. (a) For A=3 and A= -1; 

(b) A=1, x=  -2+1/2  ±  V41/ 2 -2 
2 

-2-1/2 +il/ 41/2 +2 
A= 	 

2 

(c) X= ± 	X= ±1/TD, 

823. (a) y6-4y4 +3y2 - 12y + 12=0, 
(b) 5y0-7y4 +6y3- 2y2-y- 1 =0, 
(c) y3+ 4y2-y- 4 =O. 

824. (a) x4=1, x2 =2, x3=0, x4 = -2, 
Y1=2, Y2=3, Y3= -1, y4 =1. 

(b) x1=0,  x2=3, x3=2, x4 =2, 
Y1=1, Y2=0, Y3=2, Y4=-1. 

(c) X1=X2= 1; x3= -1; x4=2, 

Y1=Y2=  -1; Y3=1; Y4=2. 

(d) x1=0,  x2 =0, x2=1, x4=1, x4,4 =2, 

Y1=1, 
(e) x1=0, 

y2=3, 
x2=0, 

Y3= 2, Y4=3, Y5,6 =  1 ± 	V 2 

x3=2, x4=x6=2, x6 = -4, 

. 

y1=2, Y2= -2, Y2=0, Y4=Y5=2, y6 =2, 
x7 =4, x8= -6, xs= -213, y7=6, y8=4, y2 =4/3. 

10. 1215 
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825. ag ar,iz  — I 

826. Let f (x)= (x— xl) (x— x2) . . (x— x,,); 

(x)= bo Xk 	+bk; cp2  (x)= co  x'n + 	+ cm. 

Then 
/2 

R (f, ip1 .  PO= aT-F k 	pit (xi) cps (xi) 
1=1 

qabn  1 1 pi (xi)] [ o 11 cp. (xi)]=R(f, P.1) .  R(f; PO. 
i=i 

827. Only the case n> 2 is of interest. Denote by d the greatest common 
divisor of in and n; 	... are primitive nth roots of unity; 7)1, 

are primitive roots of unity of degree —n  = n1. Then, 

R(X,,,xn'—l)=fl 	_1)  = n (1— 

	

(n) 	p (n) 
= in (1 —701(P (14) [Xn,  Wi g) (n')  

If in is divisible by n, then R (X,, xm —1)=0. But if m is not divisible by n, 
then niO 1, and, by virtue of Problem 123, X.1 (1)=1 for n10 pa, Xfli (1)=P 
for n1= pa (p is prime). And so 

R (Xn, xm —1)=0 for n1= —dn  =1, 

(n)  
R (Xn, x'n 	

(n0 
—1)=P 	for n1=71  =r ' 

R (X„, xin —1) = 1 in all other cases. 

828. It is obvious that R(Xn, X,„) is a positive integer which is a divisor 
of R 	xm —1) and of R (X,„, xn— 1). Denote by d the greatest common di- 
visor of m and n. If m is not divisible by n, and n is not divisible by m, then 

—
d 

and 
d 
 are different from 1 and are relatively prime. By virtue of the re- 

sult of the preceding problem, R (X,,, x'n — 1) and R ( X xn — 1) are in this 
case relatively prime, and therefore R 	X ,,,)= I . 

It remains to consider the case when one of the numbers m, n is divisible 
by the other. For definiteness, say n divides m. 

If m=n, then R (X m, X,,)=0. If 1-n- is not a power of a prime, then 

R(X,,,,xn-1)= land, hence, R 	X,,) = 1. Finally, suppose that m= npA. Then 

•\ 

R 	X„)-= 	R 	JCS— 1)

v 

 k 81.  
8/n 
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All factors on the right are equal to unity, except those for which —
m 

is a po- 

wer of the number p. 

If n is not divisible by p, then there is only one factor different from unity 
when 8=n and 

4+ (m) 

R(Xm, X,,)= R (Xm, x" - I) =p "(min) =p92(")• 

If n is divisible by p, then there are two factors different from unity: when 

8=n and 8= -
II

. Then 
p 

(n) 	o  (In)  

	

R (Xm,  xn —1) 	w (mln)  w Imp/n) R (X m, Xn)=  R 	xnip _ 	P 

I 	 I (I) (m)  cp (m) 

	

 
=P 	

[ 	 , 
p 	(p —1, 	p 	—1, =p 	= pc-  !n) 

Thus, 

R (X „,, Xn)=0 when m=n, 

R (X m, X n) =ps° (n ) when m=np•, 

R (X m, Xn)=1 otherwise. 

829. (a) 49, (b) -107, (c) -843, (d) 725, (e) 2777. 
830. (a) 3125 (b2-4a5)2, (b) A4  (4A-27)3, 

(c) (b2 -3ab+9a2)2, (d) 4 (A2  — 8A+ 32)3. 

831. (a) 	± 2 ; (b) A1= 3, A2,3  = 3 ( 
2  + 
	 

- 2 

(c) )•1=0, 	Ay= -3, A3=125; 

(d) Ai= -1, A2= -3  A7,1- 
7  
2  ± 9 2  i V 3 . 

832. In the general case, if the discriminant is positive, then the number 
of pairs of conjugate complex roots is even, if the discriminant is negative, 
then it is odd. 

In particular, for a third-degree polynomial, if D >0, then all roots are 
real; if D < 0, then two roots are complex conjugates. 

For a fourth-degree polynomial for D >0, either all roots are real or all 
roots are complex. For D <0 there are two real roots and one pair of conju-
gate complex roots. 

833. f=xn+ a, f'=nx”-  

n (n-1) 

R(f', f)=1." c,"-', D(f)=(-l) 	2 	n" 

10' 



276 	 PART III. ANSWERS AND SOLUTIONS 

834. f=xn+px+ q, f' = nxn-  + p, 

n-2 

R(f', f)= n" rj ( q+ 

n-1 

k= 0 

where e =cos 	 

	

n
27-c

1 
	i sin 

-1 	n
27r
-1 

	

R(f', f)= nni-1 		nn-112n-1 	P 

n-1 

13 	n 
ek

l  

=nn qn-1+(_ 1)n-1  (n _ On- pn,  

(n-I) 	 (n-I) (n-2)  

D(f)=( - 1) 	2 	nn q' 1) 	2 	(n- 

835. Let the greatest common divisor of m and n be d. Introduce the no- 

tations: 
	n 

tations: mi= 	ni= 71, e is a primitive nth root of unity, 71 is a primitive 

nith root of 1, aox'n n aixin + 2  = f (x). Then f ' (x) (m+ n) ao  x'n±  
+MaiXm-1. The roots of the derivative are 	2 	• • = 

ma, 

	

fl1+.k= -1/ 	(n+n)ao ek= m sk, k=0, 1, ..., n-1. 

Furthermore, 
n- 1 

R(f' f)=(m+ nr + ern qn _1 	[ a2+  na, 
m+ n in 

ckm] 

k= 0 

n,-1 

[11  ( 	
na,  

612+  m+ n 
k= 0 

     [ 
	

nn, m'' 
 = (n+ n)'n+n an+n an- ll' 	1Yn1 	 i 	 

o 	2 	 (m+nynl+anl o  

- an g  aT- I [(m+ nyni±"= 	' a2'1 + (- 	el 111'1  anh +nod 
I 

and, hence, 

(m+n) (m+n-1)  

D ( f)= ( - 1) 	2 
	a3-1 a2-I [(m+n)ni+n, 	a21  

+ ( — )mi  +II,. -1 nn1  mm,. 071, + n,y1. 

836. The discriminants are equal. 

837. x1  x2  +X3 x4 -x4 x3 -x2 X4= (X3.-  X4)(X2 -x3), 

X3+ X2 X4 —  X1 X 4 —  x2 XS =  (X1—  X2)(X3 —  x4), 

x1 X4+ X2 x3 — x1 x2— X3 x4= (x1— X3)(X4 —x2). 

Squaring and multiplying these equations, we get the required result. 

=(M -Fn)m-En GT-E-n  
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838. Let f (x)= ao  (x—x1) (x —x2) (x—xd. Then 

D (x) (x—a))= 	— xir (c1 — x 2)2  

	

. (a— xn)a 	(xi—xk)2=D (f (x)) [f (a)]2. 
i<k 

839. Let us denote cp (x)= xn —  1+ xn— 2+ ...+1. Then (x-1) cp(x)=xn— I, 
whence it follows that 

(n-1) (n-2) 

D(cp) [cp (1)]2 =D (xn— 1)=(— 1) 	2 
	„n 

Consequently, 
(n— I) (n-2) 

D (cp)=( — 1) 	2 	nn- 2.  

840. Let co (x)=xn+ axn — l+ can-2+ ... +a. Then co (x) (x— 1)= xn + 
+(a-1) xn — a. Hence, 

n (n-1) 

Thus, 
(na + 1)2  D (cp)=(— 1) 	2  an— R„ On+ 1.2  „n 	ar+1.  

rz (n-1) 
D(p)=(— 	2 
	an-1 	

(n + on+). a + nn 0 _on+3. 

(1 + na)2  

841. Let f (x)= ao  (x—x1) (x—x2) 	(x—xn), 

cP (4= bo 	(x —  .)12) 	(X —  Ym). 

Then 

D (fip)= (ao born +2n-2  11 (xi—xk)2 11 (yi—yk)2 
<k 	 i <k 

n m 

X 	 (xi—ykr=„asn— 	(xi_xk)2bir -2 

i =1 k=1 	 i<k 

x fl 	Y kr [a'ofl b0 fl  fl (xi—yo] =D(f) D (9) [R (f, p)]2 

n m 

1=1 k=1 i <k 

m—i 
842. X „i (XP 	— 1)= XP —1. Consequently, 

M-1 	 777-1 

D (X ,n) D (xP 	—1) [R(xP 	—1, X pm)]z = D (XP —1). 

Substituting the values of the known quantities, we get 

m—i 	1  Pm-1 (P-1) 
D (X „„)=pmP — (m+0 13 	(- 1) 2  

rt 

843. Xn rj (.0-1)  k 8  = (X" — 1) 1) 8 11  C) 

6/n 	 6/n 
n 
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Let e be a root of Xn. Then 

n 

'6; (e)= izen-1  n (0_1)  k 8 1. 

8/n 
8# n 

To simplify computations, let us first find the absolute value of the dis-
criminant of Xn: 

I D (X01= n 	(c) ,=0)(") 	0 _0)  k 
`1

8 1  
8/n 	a. 

8# n 

(
n
n) 	n 

(n)11 [X n (1)] 	k 

8  

Sin 	8 
80 n 

n 
Now, X n  (1) differs from I, provided only that w is a power of a prime 

8 

number. On the other hand, v. ( n  ) is different from 0, provided only that 

S is not divisible by the square of a prime. Thus, in the latter product we 

must retain only those factors corresponding to =P15 P2, • • pk , where 

Pi, p2, 	pk  are distinct prime divisors of the number n. 
Thus, 

D (Xn)l - 
ncp (n) 

 

p■P (n)IP 

Pin 

Since all roots of X„ are complex, the sign of the discriminant is equal 
cp (n) 

to (-1) 2  . Finally, 

co (n)  

D (Xn)=(-1) 2  
„cp (n) 

11 
p/n 

X 
844. E„=n! (1+

1  

E,•,=n! 	1+1 
1 

+ . 

• 

x" 
..+ n! ) 

x"-  
+ 

) • • • 	(n-1)! 

pcp (n)/p — 
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Hence 
En= En- x", 

R (En, En)= 	( -x1)n-( _ 1)n [(- 1)n nUn =(n!)n, 

J=1 
n (n- I) 

D (E,,)=(-  1) 2 	(nOn. 

845. It is easy to establish that 

a (a -1) . . . (a - n) 
(nx+n -a) Fn - x (x+ 1) F;+ 	 =O. 

n! 

Let x1, x2, . , xn  be roots of Fn. Then 

a (a -1) . . . (a - n)  
Fn (xi) = xi (xi  ± 	where c- 

n! 	• 

Hence 

R (F„, F,;) - 	  
flxi  n (xi + 	- a (a -1) 

Cn  

. . . (a - n + 1) 	(a -1) . . . (a - n) 
n! 	 n! 

an-1  (a- 1)"—  2 (a  2)n- 2 	(a  a+ 1)n-2  (a _ n)n-i 
(on-2 

n (n- I) 
2 	an-1  (a- i)n-2  (a - 2)n-2  ... (a - n + 1)n-2  (a- n)n- 

D (En)= (-1) 	 (non-2 

846. Ph= nP,,_ /. Hence 

R (P,,, Ph)-=n"R 	P - n-1,• 
Furthermore 

Pn-  xPn-i+ (n -1) Pn_ 2=0. 

Consequently, Pn  ()= -(n-1) Pn _ 2 (0 if is a root of Pn_ 1, and therefore 

R (Pn, Pn-.1)= (- 1)n- 1  (1- 1)n-1  R (Pt,- 23 Pry-1) 

(n- 	R (Rn_15 Pn_ 2).  

It is now easy to establish that 
n (n- I) 

R (Pm n-1)= (-1) 2 	(n - 1)n-  (n -2)n-2  . . . 22  • 1. 

Finally 
D (Pn)=1 22  • 3' 	(n - 1)n - 

847. D (P,,)=1 • 23. 35 

848. D (Pd=2" - 40. 

849. D (Pd= (a + 

850. D (Pd =1 	23  3' 

851. D (P,,)=22  • 34  . . 

... n2,2-1. 

2n(n-1). 

... en-1. 12 (n-1) 

. on- 2 (n+  

32(n-2) (2 n - 3)2  . 

852. Let f (x)= xn  + aixn 	+ a,,=(x - x2) (x- x2) ... (x- xn). 
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D(f)=II (xi-xk)2. We seek the maximum of D(f) by the rule for finding a 
relative maximum by solving the system of equations 

	

x1+4+ 	+$2=n (n-1) R2, 

axi  
a  (

D (4+ .4+ . . . + 4)=0. 

It is easy to see that 
aD _ Df" (xi)  

	

axi 	f' (xi) 	• 
We thus have 

f" (x) D -2A x f (x i)= 0 for i=1, 2, ..., n. 

Thus, a polynomial f (x) that maximizes the discriminant must satisfy 
the differential equation 

cf (x)- 2Axf '(x)+ Df " (x)= 0 

where c is some constant. Dividing by —
n 

and comparing the coefficients of 

x", we find that the differential equation must have the form 

of (x)-xf ' (x)+ cf" (x)=0 

where c' is a new constant. 
Comparing the coefficients of xn-- 1 and xn-2, we find ch= 0, a3  = 

n (n-1) 
e. Now we can determine e. Indeed, 

2 
n (n-1) R2  = 	x2+ 	+ = 	2a2= n (n-1) c' 

whence c'=R2. 
Continuing to compare the coefficients, we find that f (x) is of the form 

f (x)=xn - n (n -1) R 2 xn- 2 + 
2 	

n (n-1)  (n-2) (n- 3) 	4 n 

	

2 4 	
R4x-_ 

It is easy to see that 

f (x)= Rn P,, (—xR ) 

where P. is a Hermite polynomial. 

	

D (n=  Rn (n-3) . 1 . 22 . 33 	n". 

This is the desired maximum of the discriminant. 
853. 22n (_ 	ao  an [D (f))2. 

in (in — 1) n  

854. mmn (_ 1) 	2 	con— 1 an -I [D (f)]m. 

855. F (x)= fl (cp (x)-xi). 
1=1 

Hence 

D (F)-= 	D (cp (x) -xi) { fi R (cp (x)- xi, cp (x)-xk 
2 

i =1 	 i<k 
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It is furthermore obvious that 

R (p (x) — xi, p (x)— x k)= (xi — x k)m . 
Therefore 

D (F)= 	D (p (x)— xi), 1 1 (xi- xk )2m = [D (f)]m 1 1 D (cc,  (x) — 
=1 	 i <k 	 i=1 

which completes the proof. 

856. (y+1) (y-5) (y-19)=0. 
857. (a) Solution. x3= 3x +4. Let y=1 +x +x2  where x is a root of the 

given equation. Then 

yx =x+x2+x3=x+x2+3x+4=4+4x+x2, 

yx2= 4x + 4x2 + x3= 4x + 4x2 + 3x +4 =4 + 7x+4x2. 

Eliminating x, we get 

1—y 1 1 

4 4 —y 1 = 0, 

4 7 4 —y 

Y3-9y2 +9y-9=0; 

(b) y3-7y3+3y-1=0; 

(c) 3) 4+ 5y3 + 9y2 + 7y— 6 =0 ; 

(d) y4 —I2y3+43y2-49y+20=0. 

858. (a) y3-2 y2 +6y-4 =0, x— 
y2-2y +4 

2 

(b) y4-9Y3-1-31Y3-45y+13=0, x—  y2-3y+2 • 
3 

(c) y4+2y3 — y2 — 2y+1 = 0, there is no inverse transformation. 

859. y3 —y2-2y+1=0. 

The transformed equation coincides with the original one. This means 
that among the roots of the original equation there are roots x1  and x2  con-
nected by the relation x2=2-4. 

860. Let x2 = cp (x1), where p  (x1) is a rational function with rational coef-
ficients. Without loss of generality, we can take it that x2 =axl+bx1  + c. 
The numbers ax+bxi+c, a4+bx2+c, axl+bx3+c are roots of a cubic 
equation with rational coefficients, one of the roots of which coincides with 
the root x2=a24+bx1+c of the given equation. Since the given equation is 
irreducible, the other roots must coincide as well. Thus, either ax3+bx2+c= 
=x3, a4+bx3+c=x1, or axl+bx2+c=x1, axl+bx 3+c=x3. The latter 
equation is impossible since x3  cannot be a root of a quadratic equation with 



aX1 ±  
X2 — y xi+ ' 

ax2  + p 
yx3 + 

ax3 +P 	(aa +PY)x2+(a+8)  

x3 — 
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rational coefficients. Thus, on our assumption the roots of the given equation 
are connected by the relations 

x2= ax?+ bx,+ c, 

x 3= ax2+ bx 2+ c, 

x1=a4+ bx3+ c. 

Consequently 

1/.5 (x2— xi) (x3—x2) (x1— x3) 
= [axl + (b —1) xi+ [a.4 + (b —1) x2+ c] [ax2+(b— 1) x3+ c] 

is a rational number, being a symmetric function of x1, x2, x3  with rational 
coefficients. The necessity of the condition is proved. 

Now suppose that the discriminant D is the square of the rational number 
d. Then 

X2 X3 — 	  
(X1 — X2) (Xl — X3) 	3xT+ 2axi  +b 

On the other hand, 
x 2+x3= —a—x1. 

From this it follows that x2  and x3  are rational functions of x1. This 
proves the sufficiency of the condition. 

861. (a) 
2+1/2- + 1/ 6  

4 
3 	3 

(b) —3+71/ —1/ 4  
23 

4 	 4 
(c) 1+31/2 +21/2 —1/8 

1 (x  _f_ 
862. (a) 	

3 	
, (b) 17a2 — 3x+ 55, (c) 3— 10a +8a2-3a3, 

(d) the denominator vanishes for one of the roots of the equation. 

(pm — bm 2  ± amn — n2) xl+ (amp —np —crn2) 
863. mx2i+nx1+p- mx1+ ma— n 
864. If 

then 

x1= 
1x3 + 8 	+ 8) ix2+ (PY+ 82) 

--8x2-FP 
On the other hand, x1-= 	, whence follows the necessity of the yx2 — °C relation 

a8— PY = (a+ 8)2. 
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865. Let 

clexn+ (he' 1+ . . . + a.= a0  (x - xi) (x -x2) ... (x-xn). 

Then 

	

aoxn- aixn-1+ 	+(- Dna.= ao  (x+ xi) (x+x2) 	(x+xn). 

Multiplying these equations, we get 

a0 (x2- 	(x2-4) ... (x2 - x2,i) 
=(ao  xn+ a2  xn-a+ . )2 -(a, x"-  '+ a3  x"-  + ...)2  

From this we conclude that in order to perform the transformation y = x2, 
it is necessary to substitute y for x2  in the equation 

(ao xn+a2 xn-2+ ...)2-(ai xn-i+a3 xn-3+ ...)2=0. 

866. The desired equation results from a substitution of y for x3  in the 
equation 

(ao xn+a2 xn-3+ ...)3+(ai xn-'+a4 xn-4+ ...)3  
+(as  xn-2+a, xn'+ ...)3-3 (ao x"- a2  xn-3+ ...) 
x(a,xn-'+a4 xn-4+ ...)(a2 xn-24-a5 xn-5+ ...)=0. 

867. There are only a finite number of polynomials e+ aix" + 
with integral coefficients the moduli of whose roots do not exceed 1, because 
the coefficients of such polynomials are obviously restricted : 

ak I
n (n-1) 	(n- k + 1)  

k! 

	

Let f= xn + aixn- 1  + 	+an, an0 0 be one of such polynomials and let 
x1, x2, ..., X. be its roots. Denote fm=(x- xr) (x- x2) (x-x All po-
lynomials fm  have integral coefficients and all their roots do not exceed 1 
in absolute value. Hence, there are only a finite number of distinct roots among 
them. Choose an infinite sequence of integers mo<m1<m2< ... such 
that fnm= f,„-= f,„= .... This signifies that 

mi  
Xi = Xcc, 

mimo X2 = Xcc, , 

x = x'n° n 	
an 
 

where (oil, oc2, ..., an) is some permutation of the indices 1, 2, ..., n. Since there 
are infinitely many exponents mi  and only a finite number of permutations, 
there will be two (and infinitely many) exponents mc  and nk to which cor-
responds one and the same permutation (cci, 0C2, ..., For such expo-
nents we have the equations 
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which show that x1, x2, ..., xn  are roots of unity of degree mil —mil  because 
x1, x2, ..., xn  are nonzero, by virtue of the condition an 00. 

868. Let F(x1, x2, ..., xn) be a polynomial which changes sign under odd 
permutations of the variables. Since F x2, x3, • ••, x„)= — F(xi, x2, • • 
x2)=--0, F(x1, x2, ... xn) is divisible by x1—x2. In similar fashion we prove 
that F (xi, x2, ..., x,;) is divisible by all the differences xi —xk. Hence, F (xi, 

x2, ..., xn) is divisible by A= 11 (xi —xk) equal to the Vandermonde deter-
i >k 

minant. Since the determinant A changes sign under odd permutations of 

the variables, —
A 

is a symmetric polynomial. 

869. Let p  (x1, x2, ..., xn) be a polynomial that does not change under 
even permutations of the variables. Denote by c-P (xi, x2, • .., xn) a polynomial 
obtained from so (x1, x2, ..., x„) by means of some definite odd permutation. 

It is easy to verify that for every odd permutation, (ID goes into :1), ci) goes 
into cp. Hence, qD“P does not change under all permutations, cp—cp changes 
sign under odd permutations. 

Next, 

= F2- FF, 

	

cP=
<15 

2
4-,P 	(15 

 2
cP 

 

where A is the Vandermonde determinant. On the basis of the result of Prob-
lem 868, F2  is a symmetric polynomial; F1  is also a symmetric polynomial 
since it does not change under all permutations of the variables. 

870. (f9—f2) A, where f1f  f2 are elementary symmetric polynomials in 
x1, x2, ..., xn. 

871. u3+a (m+(.i+y) u2 -1-[(a2 +132 +y2)b+(ocfl+ay+3y) (a2  — 6)] u 

(33+-M 
ab — 3c 

c (G3+  

	

2 	
(op + 42+ ,2y ,y2 p 2y  ± py2) 

(C4  (3) (13  	(Y  a)  VA  + 	(a 3  — 3a b + 6c)+ 
2 

whore A is the discriminant of the given equation. 
' 	' 

872. u3 — 
3pp' u 27 qq +V AA 

 =0, where A and A' arc discriminants of 
2 

the given equations. 
873. Let y=ax2+bx+c be the Tschirnhausen transformation connec-

ting the given equations. Then, for some choice of numbering, 

y1+x2Y2+x3Y2=a (4.+4+4)+b (.4+.4+.4)+c (x1+x2+-x3) 
will be a rational number. Hence, one of the equations 

27 qq' ± AA' 

	

u3 — 3pp' u — 	
—

0 
2 

(Problem 872) has a rational root. Whence it follows that 1/ AA' will be a 
rational number. This proves the necessity of the condition. 

Conversely, let the equation 

27 qq ±  V  u3 — 3pp' u 	
2 	

—0 

have a rational root u. 

(*) 
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It is easy to see that the discriminant of equation (*) is equal to 
272   

(ql 	-1/ q' )2  and, consequently, differs from -1/S, by a factor 

equal to the square of a rational number. Hence, the difference u' u" of 
the second and third roots of the equation differ by a rational factor from 
1/A. 

For y„ y2, y3  we have the system of equations: 

Y1+Y2+Y3=O, 

x1 Y1 +X2 Y2 +X3 Y3=-14 

(X2 — X3) Yl+ (X3 — X1) Y2 + (X1 —  X2) Y3=  Li'  —1/"=r1/A 

From this system we find 

-3ux1+ (x2 - x3) rirA 
6p 

But (x2-x3) 1/:6, is expressed rationally in terms of x1. This proves the suf-
ficiency of the conditions. 

874. The variables x1, x2, ..., xn  are expressible linearly in terms of 
711, 712, • • •,17,-1. Hence, every polynomial in x1, x2, ..., x„ may be represented 
as a polynomial in f .22 • • • 

F (x1, x2, . 	, x„)= 	7)T1 712 . . . 

In a circular permutation of the variables xl, x 2, 	, xn, the monomial 
Aft ° 71Ti 712z 	71nn i I acquires the factor e-(0c1+ 22+  • • • + (n 1)c(  n- 9. Hence, 
so that F(x1, x2, ..., xn) should not change in circular permutations of 
the variables, it is necessary and sufficient that oc1+2a2+ + (n-1) an _ 
be divisible by 71. 

875. We can takefl, 717, 712 7IF 2, • • • 	 (n -1)  • 

1 lrS 
876. Let 7h=xi+x2e+x3e2, 12=xi-Fx2 e2 +x3  e where e= 

2 
 +i 	• 

2 
7)2 	/- Then 	-I I/ 3 P2 where pi  and (1)2  are some rational functions of xl, 
)12 

x2, x3  with rational coefficients that do not change under a circular permu-
tation of x1, x2, x3. It is easy to see that every rational function of x1, x2, x3  
that remains fixed under circular permutations of the variables is expressible 
rationally in terms of f1=x1+x2 +x3, qh and 1P2. 

It is sufficient to prove this for )12 7)1 and M. But 

712 711 2=  
(P1+ jcP2 V 3  

71 .! )2 	)12  

712 =  (•- 	• 	=(cP1-1- 42 V 3 )2  (cpi  —icp21/ 3 ). 
1)2 	711. 

877. For n=4, 

11=X1+ iX2 	—1X4 

712 =  X2. X2 + X3 X4, 

713 = 	iX2 —  X3+ iX4 • 

CH. 6. SYMMETRIC FUNCTIONS 

.V1= 

1 

II. 1215 
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Ut 01=7)113, 02+iO3 	
711 712 

= 	, 01—iO3= 713 7i2
• 
 01, 

02, 03 are rational 
7la 	 171 

functions (with rational coefficients) of x1, x2, x3, x4  that do not change under 
circular permutations. It is easy to see that together with f=x1-Fx2 +x3  +x4 
they form a system of elementary functions. Indeed, 

2 	02 - iO3 	-3 	e2 — jo, 

	

'127) 	- 	01 	' 7 '
3"2  

'1 _ - 01  (02 + i0, 

0;.  (02  ± (00 

7)1= 	02  - iO3  

878. Let 

12=x1e2 +x2c4 +x3c+x4e3 +x5, 

733=x1s3  +x2e +x3e4 +x4e2 +x5, 

7)4=X1C4 + X2e3 + X3e2 +x4E+ X5. 

731. Let us consider the rational function Ai= — — and arrange it in po- 

wers of e, replacing 1 by — e— 0— 0— e4 : 

Al.= EP' + C2(1)3+ e3T3+ E4(P4• 
The coefficients of m co22 3, 4 ao co are rational numbers. Substituting 0, 0 and 
0 for e, we get 

7)04 = pi + E4 	cq),-F Cpq, 
731 

A3 	
7)311  = C3 pi  4_ cp2 + p3 + cp4,  

7)4 

A4 = 7)413 	 = (pi + E3  + E2  (p3 + Ecp4  

For the "elementary functions" we can take f, 	P2, (P3, cp4. Indeed  Al, 
A2, A3, A4 can be expressed rationally in terms of them. Furthermore, 

.12 .71r 2 = Ar  i A2  Az  1, 14  y]i4=  Ai2 Al  A3 I x47 1 ,  

74-3= A F2 AzFl, 	71,=AIA2 I  A3 Ai • 

CHAPTER 7 

LINEAR ALGEBRA 

879. (a) Dimensionality r=2, the basis is generated, for example, by 
X1  and X2; 

(b) r=2, the basis is generated, say, by X1, and X2; 
(c)r= 2, the basis is generated, say, by X1  and X2. 
880. (a) The dimensionality of the intersection is equal to one, the basis 

vector 
Z=(5, —2, —3, —4)= X1-4 X2=  3 	)72. 

+x2e2  +x30+ X4E 4 + X5, 
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The dimensionality of the sum is equal to 3, the basis is generated, say, 
by the vectors Z, X1, Y1. 

(b) The sum coincides with the first space, the intersection with the se-
cond. 

(c) The sum is the entire four-dimensional space, the intersection consists 
only of the zero vector. 

1 	1 	1 \ 
881. (a) 

( 4
5 	

4 ' 	4 	4 )' 	
(b) (1, 0, — 1, 0), 

+  X2 X3 - 
882. (a) xl= 	

2 
	, 

x1 x2+ x3 — .7C4 
	  5 2 

x1-x2-x3+x4 	, —xi+x2-1-x3+x4 
x,— 	  

2 	' 
X4  = 

2 

(b) x'1 =x2 —x3 +x4, x'2 = 	x'3 =x4, x4 =x1—x2+x3--x4 

, 	1 
883. x',..4+.x;x4= —

8 • 

884. Let ao + ai  cos x+ a, cos' x+ 	+ a n  cosh x= bo + bi  cos x 

	

+b 2  cos 2x+ 	+ bn  cos nx. 

Then ao=bo — b2+b4 —  • • . , 

a  = 2k — {b k  

(k+2p)(k +p-1)(k+p —2) .. (k+1)  , 
ok+2„], 

n—k 
1 ,c.p. 72 — 

b 0 = au+ 
	

E 2 -2P C1pci2,0, 

15p5 2 

2-2p ckP+2pak+24 bk =2,_k (ak+ I  

n—k 

885. The point of intersection with the first line has the coordinates 
/14 	1 	7 	11 )  

3 ' 
, with the second, the coordinates (42, 1, 7, 11). \ 	9 ' 9 , 9  

886. The straight lines Xo+ tX1, Yo + t 1'1  lie in the manifold Xo+ t (Y0 —  
—X0)+tiXi + t2 Yl• 

887. For the problem to be solvable for the straight lines X0+ tXi, Yo+ 
+tY1, it is necessary and sufficient that the vectors X0, Yo, X1, Y1  be line-
arly dependent. This is equivalent to being able to embed straight lines in a 
three-dimensional subspace containing the coordinate origin. 

888. The planes Xo+t1X1+t2X2  and Yo +t1l'1+t2 Y2  can be embedded 
in the manifold X0 + t (Y0 — X0)+4 Xi+ t 2 X2+ ts Yi+ t44 

889. There are 6 such cases; 

II* 
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(1) the planes have no common points and cannot be embedded in a 
four-dimensional linear manifold (the planes cross absolutely); 

(2) the planes have no common points, are contained in a four-dimen-
sional manifold, but are not embedded in a three-dimensional manifold (they 
cross parallel to a straight line); 

(3) the planes have no common points and are embedded in a three-di-
mensional manifold (the planes are parallel); 

(4) the planes have one common point. In this case, they are embedded 
in a four-dimensional manifold, but cannot be embedded in a three-dimen-
sional manifold; 

(5) the planes intersect along a straight line; 
(6) the planes are coincident. 
In three-dimensional space, only cases 3, 5, 6 are realized. 
890. Let Q= X0+ P be a linear manifold, let P be a linear space. If A', E Q 

and X2 EQ, then Xi= Xo + Y1, X2 = X0+ Y2, where Y, and Y2  belong to P. 
Then aX1+ (1 — a) X2 = X0 + Yi+ (1 —a) Y2 E Q for any a. Conversely, let 
Q be a set of vectors containing, together with the vectors A'1, A'2, their li-
near combination «X1+(1 —a) X2 for arbitrary a. Let X, be some fixed vec-
tor from Q and let P denote the set of all vectors Y= X— X0. If YEP, then 
c YeP for any c, because c Y=- cX+ (1 + c) X,— X,. Furthermore, if 

X,EP and Y2 = X2 - X,EP, then a Y1+ (1 —a) Y2 = aXi+ (1 —a) X2 - X0 eP 
for any a. Now let us take some fixed a, a00, a0 I, arbitrary c1, c2. Then 
Cl  

/ 	
c2  

1a 
Y2eP for any Y1, Y2 EP, and, hence, also 

a 	—  
, 

ci  + c2 Y2= a ca — Yi + (I —a) 1 	 Y2EP. 
c2

a   
Consequently, P is a linear space and Q is a linear manifold. 
Remark. The result is not true if the base field is a field of residues mo-

dulo 2. 
891. (a) 9, (b) 0. 

892. (a) 90', 	(b) 45°, (c) cos cp 
77 

893. cos (p =
1
= 

v n 

894. cos A= —
5 	 8 

, cos B= 	, 
V39 	V78 

cos C= — 2  
3 

895. V n. 
896. For odd n there are no orthogonal diagonals. For n= 2m, the num-

ber of diagonals orthogonal to the given one is equal to C'27,_1 1 . 
897. The coordinates of the points are represented by the rows of the matrix 

1 	0 	0 

I/ 34 	
0 

2

1 	1 •/' 4 
2 	=1/ I 2 	V 6 

1 	1 	1 	 1 	r:+ 1  
V12 	V24 	V20 (0 — 1) 	2n 

0 0 

0 0 

0 0 
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n  898. R=V 2 (n 	i)  

The coordinates of the centre are 

(899 

(

1 	1 	 1 	 1 

2' 	1/12' • 	• ' 	1/2n (n -1)' 	1/ 2 0+ 1) n 

3 	1 	2 	1 

1/15' 	15' 	15' 	1/15/ 

1 	1 
900. (0, v 2  , - v 2  , - 	0) 

901. For the other two vectors we can take, say, 

	

1 	 1 
(0, -4, 3, 1) and 	(-13, 5, 6, 2). 

	

1/26 	 31/26 

902. (I, 2, 1, 3), (10, -1, 1, -3), (19, -87, -61, 72). 

7 	3 	-4 -2 
903. For example, 

(3°9 - 37 51 	-29 	5/ • 

904. The system is interpreted as a problem in seeking vectors ortho-
gonal to a system of vectors depicting the coefficients of the equations. The 
set of sought-for vectors is a space orthogonally complementary to the space 
generated by the given vectors. The fundamental system of solutions is the 
basis of the space of the desired vectors. 

905. For example, 1/1  (1, 0, 2, 

	

	1),   (1, 12, 8, 17). 
1/498 

906. (a) X' = (3, 1, -1, -2) EP, (b) 	(1, 7, 3, 3) eP, 

X"=(2, 1, -1,4) IP, 	X"=(-4, -2, 6, 0) IP. 

907. Let A1, A2, 	A. be linearly independent, and let P be the space 
spanned by them. Furthermore, let X= Y+ Z, YeP, ZIP. 

Set 	 Y=ci  Ai+C2 A2+ ... +cm  Am. 

Form a system of equations to determine c1, c2, ..., cm; to do this, use scalar 
multiplication of the latter equation by Ai, i=1, 2, ..., m and take into ac-
count that YAi= XAi. 

We obtain 

c2A1A2-1- • • 	cmAiAm = XAD  

ciA,Ai + cz A-1- • • • + crnA2Am= X A2. 

CiAmAl+ C2AMA2+ 	• +CniA i = XAm. 
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The determinant A of this system is nonzero by virtue of the linear indepen-
dence of Al, A2, ..., Am. 

We find c1i  c2, 	cm  and substitute them into the expression for Y. This 
yields 

and 

1 
Y= -4. 

 

Z = 

0 

X A, 

XA 2  

X A m  

X 

A1X 

A 2 X 

Am X 

—A1 	— A2 
Al. 	A1A2  

	

A2A1 	/4 

AmA 1  A,A 2 

	

Al 	A2 

	

Al 	A1A2  

	

A2 A1 	A2  

	

AmA1 	A mA2 

• 

• 

• 

• 

• • 

• • 

• • 

• • 

• —Am 

A i A 

A 2,4 

Ain 

Am 

AiAm  

A2A m 

in 

m 

m  

These equations are to be understood in the sense that the vectors Y and Z 
are linear combinations of the vectors in the first row with coefficients equal 
to the corresponding cofactors. 

From this we finally get 

0 — • — X A m  

A1X Ai A1A 2  • • A iA nz 
Y2 = Y(X—Z)=-• YX= 

A A2 X A2A1 .q • A2/I m 

and 

Am X AmA1  A mA2 A 2m  

X 2  XA1  XA2  

41 X Al A 1A 2 	• • • A 
Z2=Z (X— Y)=ZX= A2 X A2A1 Al/ 	• • • A2Am 

Am X AmA2  mA2 	• • • A% 

908. Let Y be some vector of the space P and let X' be the orthogonal 
projection of the vector X on P. 

Then 

cos (X, Y)= 	
X Y 	X' Y 	1 X'l • I  Y 1 •  cos  ( X', Y) 

IX1•1 Y1 	1X1•1 171 	1 XI .1 Y1 

I 
X'i  

cos (X' Y) 
X1 

whence it follows that cos (X, Y) attains a maximum value for those Y for 
which cos (X', Y)= I, that is, for Y=aX' when a >0. 

909. (a) 45°, (b) 90°. 
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910. t 

911. 1 X— Y12 =1 (X— X')+(X' — n12=1 X— X' 12  + IX' — Y 12?.- 
1 X— X' 1 2. The equation is possible only for Y= X'. 

912. (a) 1/ 7, (b) 

/7 ! 
913.   • 

(n + 1) (n + 2) ... 2n-  / 2n + 1 

914. The required shortest distance is equal to the shortest distance from 
point Xo — Yo  to the space P+ Q. 

915. Let one of the vertices lie at the origin of coordinates and let Xi, 
X2, ..., Xn  be vectors emanating from the origin to the other vertices. It is 

easy to see that A1=1, XiX; = . The manifold passing through the first 

m+1 vertices is a space t1  X1+ +t. X.. The manifold passing through 
the other n— m vertices is X,,+ t„,±1 (X„,+1—  X„) + + t,,_ Xn). 
The desired shortest distance is the distance from Xn  to the space P genera-
ted by the vectors X1, X2, • • Xm, Xn— Xrn -1- 11 • • Xn— Xn_ 1. 

Let 

Xi+ ... +t. X,,,+t„, 4_1(X„ — Xm+ 0+ 	+tn _ i  (X,,— 	Y 

where YIP. Forming the scalar product Xn  by X„ Xn — X,n +i, 
Xn — Xn _ 1, we get the following system of equations for determining t1, 
tn _i: 

1 	 1 	1 	1 	 1 	1 
ti+ 2  t2 + • • • + 2  tin= 2  , fin+1+ -2  n2+2+ ± 2 tn—l—  2 

1 	 1 	1 	1 	 1 	1 
ti +t2 + • • • 	 tm ÷i+tm+ 2+ • • • 2 	 +- 2  - to — 1 = 

-1  2 

1 	1 	1 	 1 
2 	2 
1 

ti+ 
 1 

t2 + • • • +tm=- ' 2 tm+1+  2 tm+2+  • • • + t 1—  2 ' 

whence t1=t2= • 
1 	 1 

• 	tm — 	tin+i — tin+ 2 = 	• =- to —1=  - - • 
M + 1 	 n —m 

Consequently 

	

Y-  Xn7+1+ Xin+ 2 + 	' •  +X, 	+ X2+ • ' • + Xm  

	

n — m 	 in+ 1 

Thus, the common perpendicular is a vector connecting the centres of 
the chosen faces. The shortest distance is equal to the length of this vector 

YI= V2 (n-1  m'+1  )(m+1) 
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916. (a) The projection of the vector (t1-F2t2, t1-2t2, 4+54, t1+20 
on the first plane is (t1+24, t1-2t2, 0, 0). Hence, 

2a+  8t1 	2A2 +8 
cos2 (p — 

4a+ 14t1t2  + 37q 4A2  +14X+ 37' 

where A= —
tz 

. This expression attains a maximum equal to 
8

for )∎ = —4. 

(b) The angle between any vector of the second plane and its orthogonal 

projection on the first plane remains fixed and is equal to 1r4  . 

917. The cube is a set of points whose coordinates satisfy the inequali- 

ties 
	a 

ties — 	y, 1=1, 2, 3, 4 . Here, a is the length of a side of the cube. 

We pass to new axes, taking for the coordinate vectors, e=(
1 1 1 	1 

	

, -2-, 	, 
	/ ' 

1 	1 	1 	 1 	1 	1 
— 2 , — 	 , — 	—2 , — 	and e,',= 

	

(1 	I1 	1\ 
2' - 2' 2 ). 

These vectors are orthonormal and their directions coincide with the direc-
tions of certain diagonals of the cube. The coordinates of points of the cube 
in these axes satisfy the inequalities 

— 	4+ 4+ 	 4—x'4 -a, 

4+4— x4 „...a, 	 4 - + x4 a. 

We get the intersection that interests us by setting x'i =0. It is a solid lo-
cated in the space spanned by e2. e3, e4'. and the coordinates of the points of 
which satisfy the inequalities + x2 + x; + a. 

This is a regular octahedron bounded by planes intercepting segments 
of length a on the axes. 

B! 131132 . . . 	BiBm 

918. V' [Bi, B2, 	. . • , Bn]= B2B3  •M • • • 	B2Bm 	• 

1 B,1B1  BmB2 . 

This formula is readily established by induction if we take into account 
the result of Problem 507. Frcm this formula it follows immediately that 
the volume does not depend on the numbering of the vertices and that 

V [CBI, B2, 	Bm] =ICI • V [Bi, B2, 

Now let Bi=B;.+BL C1, CI, C7 [be [the orthogonal projections°  of the 
vectors Bi, B; and B; on the space that is orthogonally complementary to 
(B2, ..., Bin). It is obvious that C1=Ci+C7. By definition, 
V [B1, Bz, 	BA= I Ci  I V [Bz, 	Bm], V [13;, B2, 	B„]= 
=I C;1 • V [B2, ..., Bm], V  [X, .132, 	B m1=-1 C;'.  1 V [B2, 	Bm]. 
Since I Cz. I I Ci I+ I Ci  I, it follows that V [Bz., B2, 	 [B;, B2, 

[B", B2, 	 equality sign is only possible if C;.  and CC 
are collinear and in the same direction, which, in turn, occurs if and only if 

B' lie in a space spanned by B1, Bz, 	/3„,, and the coefficients of B1  in 
the expressions of Bi, B'1 in terms of B1, B2, ..., .13m  have the same signs; 
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that is, 	lie "on one side" of the space (B2, .. B.) in the space (Be 
Bz, 	B.). 	

Bi 	B1B2  . . . 

919. V2  [B1, B2, 	Bn] = B2 B1  Ba 	. . . B2B,, 

Bn B, B,,B2  . . . Bn 
where B is a matrix whose columns are the coordinates of the vectors B1, 
B2, • • 	132. 

920. The following two properties of volume are an immediate conse-
quence of the definition: 

(d) V [B2 + .X2  By, ..., B.1.--= V [B„ B2, . 	Bm] 

for any X belonging to the space (B2, ..., Bin) because the points B1, Bi + X 
are at the same distances from (B2, 	Bm). 

(e) V [B1, B2, ..., 	I Bl I • V [B2, ..., B 

This follows from the fact that the "height", that is, the length of the com-
ponent of vector B1  orthogonal to (B„ Bm) does not exceed the length of 
the vector B1  itself. 

Now let C1, C2, 	C. be orthogonal projections of the vectors B2, B2, 
B,,, on the space P. Assume that the inequality V [C2, 	Cm],  V [B2, 
Bm ] has already been proved. Denote by g the component, orthogonal 

to (B2, Bm), of the vector B1, by C; its projection on P. Since 15.;- Bi c 
(B2, ..., B„,), we conclude that C- C (C2, ..., Cm) and, hence, that V [C1, 
C2, . C „]= V [C;, C2, ..., Cm] C;.  I • V [C2, ..., C77]. But obviously, 
C1 	I B'i  I and, by the induction hypothesis, V [C2, ..., 	[B2, . • ., 
Bm]. Consequently, V [C1, C2, • • Cm] 131. I • V [B23 • • •, Bmi = V [B2, 
B2, ..., Bm ]. There is a basis for induction, since the theorem is obvious 
for one-dimensional parallelepipeds. 

921. From the formula for computing the square of a volume it follows 
that V [A2, ..., Am, B„ ..., Bic ] = V [A„ ..., A] • V [B„ Bk ] if each vec-
tor Ai  is orthogonal to every vector B./. In the general case, we replace the 
vectors B1, Bk  by their projections C„ Ck  on the space that is ortho-
gonally complementary to (A1, ., Am). By virtue of the result of the prece- 
ding problem, V [C1, 	C k]-.c.. V [B1, . Bic], whence 

[212, ..., Am, B1, ..., Bk1= V [A1, ..., Am, C1, 	Ck ] 
= V [A1, ..., Am ] • V [C„ 	C k ]---C, V [Ai , ..., A,,,] • V [B„ 	Bic ]. 

The content of this problem coincides with that of Problem 518. 
922. This follows immediately from the inequality V [Ai, • A m] ,C..I A1 I  x 

x V [A„ Am], which, in turn, is an immediate consequence of the defi-
nition of a volume. 

This problem coincides, in content, with Problem 519. 
923. A similarity transformation of a solid in n-dimensional space im-

plies a change in volume proportional to the nth power of the expansion 
factor. For a parallelepiped, this follows immediately from the volume for-
mula, for any other solid, the volume is the limit of the sum of volumes of 
the parallelepipeds. Hence, the volume V2(R) of an n-dimensional sphere of 
radius R is equal to Vn  (1) Rn. 

To compute Vn  (I), partition the sphere by a system of parallel (n -1)- 
dimensional "planes" and take advantage of Cavalieri's principle. 

Let x be the distance of the cutting "plane"  from  the centre. The section 
is an (n - 1)-dimensional sphere of radius 1/1 -x1 

BB I ---- I B Io. 
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Consequently, 
n-1 

Vn (1)=2 f Vn _1(V1-x') dx=2 	(1) f (1-x2) 2  dx 
0 	 0 

1 n _i 

=Vn_3(1) f t 2  (1 - t) 2  dt = V ,,_ (1) B (11112-j, 2) 
0 

(n41 )  r  ( 1  )  

vn_i(i) 

( 1.+1) 
From this it follows that 

v„(1)_ 
r 
 (

+1) 
2 

924. The polynomials 1, x, 	xn form the basis. The square of the vo- 
lume of the corresponding parallelepiped is 

n  

n
T 

1 

1 
2 

1 

1 
2 

1 
3 

1 
n+2 

• 	• 
1 

[I! 	2! 

n + 1 
1 

n+2 

1 

(n + 1)! (n + 2)! 

n+1 2n+1 

. . . (2n + 1) ! 

925. (a) Xi=1, Xi=c (1, -1); A2=3, X2=c (1 , 1); 

(b) Al = 7, X1=c(1, 1); A2 =  -2, X2=c (4, -5); 
(c) Al  =ai, X1= c (1, i); Ay =  -ai, X2= c (1, -i); 
(d) Al  = 2, X1=c1  (1, 1, 0, 0)+c2  (1, 0, 1, 0)+c3  (1, 0, 0, 1); 

A2  =-2, X2=c (1, -1, -1, -1); 
(e) X =2, X= ci  (-2, 1,0) +c2  (1, 0, 1); 
(f) X =-1, X=c(1, 1, -1); 
(g)A1 = 1, X1=c2  (1, 0, 1)+ c2 (0, 1, 0); A2= -1, X2 =c (1, 0, -1); 
(h)A1 =0, Xi=c (3, -1, 2); A2,3 = V-14, 

X2,3=c (3±2V -14, 13, 2-T- 31/-14); 
(i) Al  =1, Xi= c (3, -6, 20); A2 =  -2, X2=C (0, Op 1); 

(j) X1=1, X2=C 	1, 1); A2=e, X2=C (3+2e, 2+3e, 
3+3e); Xs= E2, Xa =c (3+2e2, 2+3E2, 3+30) 

where 

C=
1 
 + 	 

2 	2 
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926. The eigenvalues A-1  are reciprocals of the eigenvalues A. Indeed, 

from I A-1—A E 1=0 it follows that I E —AA I =0, A — . E =0. 

927. The eigenvalues of the matrix A2  are equal to the squares of the ei-
genvalues for A. Indeed, let 

A — AE I= (Ai — A) (A  2 	• • (An — A).  
Then 

I A -0 	 (A2+A) • • • (An+ A). 
Multiplying these equations and substituting A for A2, we get 

A2 —AE 1=(A1 —  A) (AZ — A) • • • (A2,i — A). 

928. The eigenvalues of Am are equal to the mth powers of the eigenva-
lues of A. 

To see this, the simplest thing is to replace in the equation 

I A—AEI= (A1 —  A) 0,2 	(An 
A by Ae, Ae2, 	AEn —I, where 

. . 	27c 
e = cos 	± sin 	, 

n 	n 

multiply the equations and substitute A for An. 
929. f (A)= bo  (A — 	) ( A — ciE), hence 

If (A)1 = .1 A —U.  1 ... I A 	I= 	F (U • • • F (Em).  

930. Let 

	

F (A) = I A —XE I= (Ai — A) (Az — A) 	(An — A) 

f (4= bo (x— (x— 2) (x— 

n 

	

I f (A) I =1)! 	 —k)= f (A1)J (A2) • • • f (),n). 
i=I k= I 

931. Put 
cp (x)=f (x)— 

and apply the result of the preceding problem. 
We get 

	

f (A) — A E I= (f — (f — 	(f (A„)— 

whence it follows that the eigenvalues of the matrix f (A) are f (AO, f (A2), • . • , 
f (An). 

932. Let X be an eigenvector of the matrix A corresponding to the ei-
genvalue A. 

Then 
EX= X, 

A X =XX , 

A2 X=X2 X, 

and 

Then 

AmX= AmX. 
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Multiplying these vector equations by arbitrary coefficients and combining, 
we get for any polynomial f 

f ( A) X = f (A) X 

i.e., Xis the eigenvector of f (A) corresponding to the eigenvalue f (A) . 

933. The eigenvalues of A2  are n and —n of ,-multiplicities 
n + 

1 and 
2 

n-1 
—
2 

respectively. Hence, the eigenvalues of A are +1/ n, —1/ n , + / 17i 

and — 1/ni. Let us denote their multiplicities by a, b, c, d. Then a+ b=-n 
+ 1 
 - -- 

2 

c+d=
n— 

2 
1
. The sum of the eigenvalues of a matrix is equal to the sum of 

the elements of the principal diagonal. 
Hence 

[a — b + (c — d) i] 1/n=1+c+e4 + 	+c`n-1)2. 

The modulus of the right side of this equation is equal to 1/72 (Problem 126). 
Consequently 

(a — b)2  + (c — d)2  = 1 . 

Since the numbers c—d and c+d are of the same parity, we conclude that 

— 
a—b =0, c—d= + 1 if 

n 2 1
is odd 

and 

a— b= +1, c— d=0 if 
n-

2
1 
 is even. 

Hence, for n=l+ 4k 

c=d=k, a=k+l, b=k or a=k, b=k+1 
for n=3 +4k 

a=b=k+l, c=k+l, d=k or c=k, d= k+1. 

Thus, the eigenvalues are determined to within sign. To determine the 
sign, take advantage of the fact that the product of the eigenvalues is equal 
to the determinant of the matrix. Using the result of Problem 2c,9, it is czsy 
to find that for n=1+4k 

a=k+1, b=k, 
for n=3 +4k 

c=k+1, d=k. 

Thus, the eigenvalues are completely determined. 
934. 1 + e ± e4+ 	+,(n 	= n for n= 4k +1, 

	

1 +e-1-e4 + 	-Fc("— ')'= +il/n for n=4k+ 3. 

935. (a) Put Lc  =a". Then 

aek — at" 
Xk=Y 

	

2kn 	2kn 
where ek = cos 	i sin —

n 
, k=0, 1, ..., n-1. 

1 —aek 
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(b) 4=a1+ a2ck + a3q+ . . + an< I . 

km. 
(c) Xk= 2i cos

/1+1' k —1, 
2. . . . n 

936. 

whence it follows, by the result of Problem 537, that 

I A x B—AE„,,,i= Ip (B) 
where 

(x) = I Ax —AE,, I= 11 (.ix-A). 
i-1 

By the result of Problem 930, 
n 	ni 

cp (B) I= n cP (PO= 1 	 (2(ik 
k=1 	i=1 k=1 

Thus, the eigenvalues of A x B are the numbers cok, where oci  are the ei-
genvalues of A, and P k  are the eigenvalues of B. 

937. If A is a nonsingular matrix, then 

I BA AEHIA (AB—AE) A 1=1 A-1 1 • I AB —AL' I • I A 1=1 AB—M.  I. 

It is possible to get rid of the assumption that A is nonsingular by passing 
to the limit or by using the theorem on the identity of polynomials in many 
variables. 

It is also possible, using the theorem on the multiplication of rectangular 
matrices, to compute directly the coefficients of the polynomials 

I AB—A E I and I BA—AE  

and satisfy yourself that they are equal. 
938. Complete the matrices A and B to the square matrices A' and B' 

of order n by adjoining to A n— m rows and to B n—m columns made up of 
zeros. Then BA=B'A' and A'B' is obtained from AB by bordering with ze-
ros. Using the result of the preceding problem yields what we set out to 
prove. 

The solutions of the Problems 939, 940, 941 are not unique. The answers 
given below correspond to a transformation that least of all deviates from 
the "triangular". 

939. (a) ,j2+ 	 (b) —42 +42 + x'32, 

	

x',=xi+x2, 	 -= 

	

-=- X2 + 2X2, 	 x2 = X2 — 2x2, 

X:'1= 	x3, 	 x:',=x, 	+x, 

anB — )E,, 	a,,B 	 ai„B 

A x B—A.Emn= 	021B 	a22 B—).Ent  . . . 	azn B  

) 

(  

an2B 	an2B 	. • . an,,B — AErn  



0 1 

0 0 

0 0 

941. ( x,±x2  
1 	2 

+x3+x4 + •• 	• 

1 

0 	0 	... 	1 

( xi —za  
+Xn 
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(C)x12 x22  — x?, 

	

1 	1 

	

xi= 
2 	2 

x1+ - x2+ x3, 

	

1 	1 

	

,x;= 	x1— -2  x2, 

(d) 

Xi = 	+ x3 x4, 

x2=x2+ x, +x4 , 

= 	x,, 	x3 =x2 —x3 +2x4 , 

x,',= 

(e) x'12-42 +x,2 —x42, 

1 
x,=x2+-

2 
 x2 ,  

x2= 2 

, 	1 	1 
x2 2

x2+ 
 2 x4' 

, 	1 	1 
x4=  2 x

3-2 x4
. 

3 	4 	 n+1 
940. x',2 -1- —

4 
42 +-

6 
42 + 	+ 	x'2  

2n 	" • 

The variables x'„ 	, x;, are expressed linearly in terms of x„ 
x2,...., x. with the matrix 

1 
—(x,+ 2 - 2 

x4+ + x„)2  

— 3  (x + x + . + 
4 	4  3 5 	• • 	3 xn  

n — 1 	2  
2 (n — 2) xn.  

942. The matrix of a positive quadratic form is equal to AA, where A 
is a nonsingular real matrix carrying the sum of squares to the given form, 

The positivity of the minors follows from the result of Problem 510, 
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943. Let f=anAl+ • • . +ainxixn 

+anixnxi+ . . . +annxn  

be a quadratic form. We denote 

f(k)=a1,4+ 	+aikxixk 

+akixkx j + 	+akkxt, 

al l • • • ail( 
, r is the rank of the form f 

ak 1  • • • akk 

f=oc1x12+0c2X?+ 

xl  = XI+ bi2X2 + • • • + binXn, 

.X2 = 	X2+ • • ± b2nXn• 

X'n = 	 Xn. 

Since the determinant of a triangular transformation is equal to 1, Di= 
=An=ociaz .• • an. Putting 

Xk = • • • = Xn = 0 

we get 
f (k ) = ix(ik)2  cx2Xk)Z 	 ak4k) 

where 
Xlk) = +1)12)(2+ • • ± bikXk, 

X IC) = 	X2+ . • • + b2kXk. 

(k) Xk = Xk. 

Whence it follows that Ak =ccia2 	ock and that a necessary condition for 
the possibility of a triangular transformation to diagonal form is 

4100, 42 00, ..., 4, 00. 

It is easy to verify that this condition is sufficient. 

Furthermore, ak= AkA 	for k r, ak=0 for k > r. 
— 

The discriminant of the form 

fk (xk +1, • • • , xn)=f— CCIXi2 	• • 	OCkX;c2  

=ak÷ix':+i+ • • . +anxti' 2  

An  
is equal to ak ±i ak +2 	a„= Ak  

944. The necessity of the Sylvester conditions was proved in Problem 
942. The sufficiency follows from the result of Problem 943. 

Ak= 

Let 

where 
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945. Let 1 be a linear form in the variables xl, x2, 	xn. Transform the 
form f by means of a transformation with determinant unity, taking the form 
1 for the last of the new variables. Then perform a triangular transformation 
of the form f to canonical form. 

The form f becomes 
f= Gclxi2  + oczx'22 	. . . 	a n x; 

and xn =I. 
The discriminant of the form f is equal to a1a2  ... an. The discriminant 

of the form f+12  is equal to oc loc2  . an _ i(an  + 1 ). It is greater than the discri-
minant of the form f, since all the coefficients a1, a2, • • •, an-1, an  are positive. 

946. f (xi, x2, • • . xn) 
= a„x1+ 2a22x2x2+ . . . + 2anixixn+ 

azl =a 11  (x,+ — x2+ ...  . • + 	xn)2  + (x2, • • • , xn) 
all 	 an 

where 
a21 and f = cp 	(— x2 + . . . + 	xn)2. 
all 	 all 

The form f1  is positive and its discriminant is equal to 
Di- 

where Df is the 
all 

discriminant of f. On the basis of the result of Problem 945, Df1> 
Df  

which completes the proof. 
947. The proof is the same as for the law of inertia. 
948. Form the linear forms 

	

/k = u1-1-u2xk + 	+u„4-1, k=1, 2, . , 

where xl, x 2, 	are roots of the given equation. 
To equal roots will correspond equal forms, distinct roots are associa- 

ted with linearly independent forms, real roots are associated with real forms, 
and conjugate complex roots are associated with conjugate complex forms. 

The real and imaginary parts of the complex form /k= ),‘+12 ki will be 
linearly independent among themselves and also relative to all forms corres-
ponding to roots distinct from xk  and x'k. 

Form the quadratic form 
n 

f (a1, 	, un)=. 	u2 + u2xi + . . . + u„x7 — 1 )2  • 

k=1 

The rank of this form is equal to the number of distinct roots of the given 
equation. The matrix of its coefficients is 

S1  . • • Sn-1  
(S1 	S2 . . . Sn 

Sn _1 Sn . • • 5 211- 2 

The sum of squares of the conjugate complex linear forms /k =Xk + 
+ ip.k  and 4= AI,— ip-k  is equal to 2A2k-2112. Hence, the number of negati- 
ve squares in any (by the law of inertia) canonical representation of the form f 
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is equal to the number of distinct pairs of conjugate complex roots of the gi-
ven equation. 

949. This follows from the results of Problems 948, 944. 
950. The operation (f, cp) is obviously distributive. It is therefore suffi-

cient to carry out the proof for the squares of the linear forms. 
Let 

f= («ix,. + c4.2x 2+ ... + c(„xd2  , 

? = (Pixi+ P 2X 2 + • • • +13„X71)2. 

It is then easy to see that 

(PO= (cciPixi +(x2 P2x2+ ... + oc,,(3,,x,,)2 .- O. 

1 
951. (a) 4.x',2 + 242 — 2x 2, 	xl=

2  x,— -3- x2+ -3- x3 , 

2 	1 	2 
x2= 3x1+ 3 x2 —  x3 , 

1 	2 	2 
x3 = 3  xi + -3- x2+ --a x3; 

, 	2 	1 	2 
(b) 	2.x? — .42 + 5x32, xi = --a  x,— -a  X2 - -3-  X3, 

2 	2 	1 
.4= d  xi+ x2+ X3, 

1 	2 	2 
x;= xi — x2 + -j  x2 ; 

1 	2 	2 
(c) 	7x',2 + 442 + x;2, X1. = --s-  Xi + -3-  X2 - -3-  X3 , 

2 	1 	2 
x2= s  xi+ -a  X2+ X3 o 

2 	2 	1 
x; = — x1+ s x2+ ---3 3 o 

1 	2  
(d) 	10x,2 + x22 + x;2, 	x',= 3- x, + s x2 — 

2
x3, 

2V 5 	V 5 x; = 5  xl — 5  X2 1 

2 V 5 	41/ 5 

"X3  = 15 xl+  15 x” 

1 	2 	2 
(e) 	—7x',2 + 2x;2 + 2x 2  XI = s x1+ x2— s X3 , 

1/ 	V 

	

x2 =
2 
 5  x, 	55 x2, 

21/5 	41/5 	V 5 
xi + 	X2 + - 

15 	15 	3 	' ' 

75 

3 	' 
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, 	2 	1 	2 
(f) 	2.42 +54+84, x„=.a  xi+ x2+ x3, 

, 	1 	2 	2 
X2 = -s 	-s X2 — x3, 

, 	2 	2 	1 
x3= 3  x,— 3  Xy — 3  x3: 

(g) 	74-24+74, 	
22 

x,-22 x,, 

, 	2 	1 	2 
X2 	x,+-s  x2+

3 
 X3, 

, 1/ 2 	2V2 	1/ 2 
X 3 = - X — 3  x2+ ---6-  x3; 

2 	2 	1 
(h) 	1 1 xi2  + 5x? — x;2, xi= -3  x1  — 3 x2 —  x3, 

2 	1 	2 
4 = -a  + -a  Xy 	X3, 

1 	2 	2 
x3= 3- xi + -3  X2 — x3;  

(i) X? — X+342 +5X 2 X; = XX2 --  X+
1 
  x4 I? 	1, 	 y 	2 3   

1 

	

X2 = Xy -F 2X2 —  2- Xs 	x4, 

, 	1 	1 	1 	1 
4— 2  xi — -2  X2+ -2  X3 	, 

x12 +x22-42-4, 

1 	I 	 1 
X4= 9  y — 2  Xy — 2 X3+ 2  X4 

x1— 2
2 
 x1+ V 22 x2' 

	

V 2 	V 2 
x2= 	 2 x3+  2 x4, 

, 1/ 2 	1/ 2-  
x3= 2 Xi- 2  x2, 

	

-V 2 	1/ 2 

	

2 	2 xi' 
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( k ) 	 + 3x? x,42,  

41 

	

V 2 	 V2 
= 2 x2 	+ 2  x4, 

, 	2 	V 2 
x2 = 2  xi + 2  x2, 

, 	1 	1 	1 	1 
X3 2  xi+ 2  X2-2 X3 '2 X4, 

, 	1 	1 	1 
xi=  — 2 xi+  2 x2+  2 x2-1  

'= -2 	V 
2 

x , 	2  xi + 2  x2 , 

-,1/ 2 	
2 

V 

	

x2= 	 2-- x3 + 2  x1 , 

	

x2= 1 	— 1 	
1 	1 

2  x 2  X2 + 2  X3-  2  X4 

	

I 	I 	 1 = 
2

x 
1 — 2  x2-  2 x3+ x4; 

(I) 	x12 +.1- 2 + 
	3x'42,  

.f. 
, 	1 	I 	1 	1 

(m) X? ± 7 X 2 2  - 3X7, Xi = .7c1+  X2+2 X4+ 	4 

	

, -= 1 

	1 	1 	1 

X2  2 xi '
i_ 
 2 x2  2 x3-2 x4  

	

1 	1 	1 	1 
x2=  2 xi— -2 x2+  2 x2—  2 x4 ' 

	

1 	1 	1 	1 
xl=  2 xi—  2 x2— 

2 x3+
' 2 x4;  

	

1 	1 	1 	1 (n) 5xi2 _ 5x,22 +  3x,2_3x,42, xi  _ 2 xi  + 2 x2+ 2 x3  + 2 x4, 

, 	1 	1 	1 	1 
x2— 2 xi+ 

2 x2 2 x2  2x4 ' 

, 	1 	1 	1 	1 
x3— 2 xi— 

2 x2 + 2x3 2 
x4 ' 

, 	1 	1 	1 	1 
x4=  2 xi  2 x2—  2 x3+  2 xl.  

952. (a) ill+ I  A-'2  4. 1 	, 
2 	2 ,X22  + X32  + 	• +x'2); 

(b) 11+1 ,2 1  / 
2 x1 2 x̀2

2 
 +x32 + • • • + x',f) 
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where 

	

xl= l -- (xi + xo + 	+ xn); 
V n 

	

x;=,xiixi+ai2x2+ 	+ ccinx„, i= 2, ... , n 

where (ail, ai„ ..., aid is any orthogonal and normalized fundamental sys-
tem of solutions of the equation 

xi +x2 + 	-Fxn =0. 
rc 

• 953. x;2 cos 
n+ 1

+ x? cos 
n + 1

+ ... +x`"2 cos 
n + 1 

954. If all the eigenvalues of the matrix A lie in the interval, [a, b], then all 
the eigenvalues of the matrix A—AE ate negative for A> b and positive for 
A<a. Hence, a quadratic form with matrix A—A.E.  is negative for X> b and 
positive for < a . Conversely, if the quadratic form (A — XE)X X is nega-
tive for A> b and positive for A <a, then all the eigenvalues of the matrix 
A — AL' are positive for X < a and negative for X> b. 

Consequently, all the eigenvalues of the matrix A lie in the interval [a, b]. 
955. The following inequalities hold for any vector X: 

aX • X..< AIX • 	• X, bX • X<BX • X<..dX • X 

whence (a + b) X • X <(A+B) X • X-..<„(c+d) X X. Therefore, all the ei-
genvalues of the matrix A+B lie in the interval [a+ c, b+d]. 

956. (a) This follows from the result of Problem 937. 

(b) AX12=AX • AX=X • A AX•.< 1 X12  • HA I12. 
The equal sign occurs for the eigenvector of the matrix AA belonging 

to the eigenvalue II A112. 
(c) 1 	+ B)X I<IAX1+1BX1-< (I1 A II + II B II) 1 X I 

for any vector X. But for some vector X0, 

I (A + B) x I= (II A + BID • I Xo I. 
Consequently 

	

II A + B 	A II+ II B II. 
(d) I ABX '<II A II • I B X 1 <II A 11 • IIBII 1 X 1 . 
Applying this inequality to the vector X0, for which 

II AB 	! Xol= ABXol 
we get 

II AB II<II A II • IIB II  
(e) Let A=p+qi be an eigenvalue of the matrix A, X= Y+iZ the corres-

ponding eigenvector. 
Then 

AY=pY—qZ,AZ=qY+pZ 
whence 

I Y12, 

I qY+pZI 2<IIA112  I Z12. 

Combining these inequalities, we get 
1, 	12 	y12+1 z 12) (p2 92) ( I 	1 2 +1 Z 12) 	A 112 	Y [2  +I. Z 12) 
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and, hence, 
IAIsII A II. 

957. Let A be a real nonsingular matrix; then AAX • X= I AX II is a 
positive quadratic form which can be brought to canonical form by a trans-
formation of the variables with the triangular matrix B which has positive 
diagonal elements. Therefore, AA=BB, whence it follows that AB-' • AB-'= 
=E, that is, AB-1.=P is an orthogonal matrix. From this we have A=PB. 
Uniqueness follows from the uniqueness of the triangular transformation of 
a quadratic form to canonical form. 

958. AA is a symmetric matrix with positive eigenvalues a,, ..., An. 
Consequently, 

AA = P- 

We construct the matrix 

B=P- 

 

P. 

  

P 

 

     

• 

where i  is the positive square root of Al. It is obvious that B is again a sym-
metric matrix with positive eigenvalues and B2= AA-  . Whence it follows that 
AB-1=Q is an orthogonal matrix, A= QB. 

959. After carrying the coordinate origin to the centre of the surface, the 
surface must contain point - X along with point X, and, hence, the equation 
must not contain the running coordinates to first powers. After a parallel 
translation of the axes X= X0 + X', where X0  is the translation vector, the 
equation of the surface becomes 

AX' • X' +2 (AX0+B) X' + AX0  • X0+2BXo+ C=0. 
Therefore, for the existence of a centre, it is necessary and sufficient that the 
equation A X0+B be solvable with respect to the vector X0, for which, in 
turn, it is necessary and sufficient that the rank of the matrix A be equal to 
the rank of the matrix (A, B). 

960. After carrying the origin to the centre, the equation of the surface 
becomes 

AX • X+y=0. 

If r is the rank of the matrix A and al, 	oc, are nonzero eigenvalues, then 
after an appropriate orthogonal transformation of the coordinates, the equa-
tion takes on the canonical form 

oci4+ ... 	ar4+ y=0. 

961. The surface has no centre if the rank of (A,1  B) is greater than the 
rank of A, which is only possible if r= rank A <n. Denote the whole space 
by R, the space AR by P and the orthogonal complement of P by Q. Then 
for any YEQ we will have AY=0 because 

I AY 12= AY • AY= Y • AA Y=0 
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since AA YEP. Let 
B=B1+B2, Bi EP, B2EQ• 

Then B2 00, otherwise B would belong to P and the rank of (A, B) would 
be equal to r. Let B2=AX,. After the translation X= X0 + X', the equation 
of the surface becomes 

AX' • X' +2B2 X' + c' =0. 

Make one more translation X' = aB2+ X". Then 

AX' • X' =a2AB2  • B2+2aAB2  • X" + AX" • X"= AX" • X" 

because AB2 =0 and, hence, the equation becomes 

AX" • X"+2B2 X" +2a I B2 12+ c' =O. 
Take 

c' 
a- 	

2 B, 12  

Then the equation becomes 

AX" • X"+2B2 X"=0. 

Now perform an orthogonal transformation of the coordinates, taking 
pairwise orthogonal unit eigenveaors of the matrix A for the basis of the space, 
including in them the unit vector that is collinear with the vector B2 and in 
the opposite direction. This can be done because B2  is an eigenvector of A. 
On this basis, the equation becomes 

A2.7c;. + 	 23,x,+1= 

where (32= I By I. It remains to divide by [3.9. 
962. Under a linear transformation with the matrix A, the space is map-

ped onto the subspace spanned by the vectors A1, Ay, ..., An  whose coordi-
nates form the columns of A. The required result follows immediately. 

963. Let e1, e2, 	ea  be the basis of Q. Then Q' is a space spanned by 

	

e:7, where 	 are the images of el, e2, 	under the li- 
near transformation thus performed. Hence, 	Besides, it is obvious 
that q' 	because Q' lies in R'. Furthermore, let P' be the complementary 
space of Q, of dimension p= n— q, and let p' be its image under a linear trans-
formation. Its dimension p' does not exceed n—q. But P'+ Q' =R', hence, 
p' +q' ›r. From this, 

964. Let the rank of A be r1, the rank of B be r2  and let BR= Q. The di-
mensionality of Q is equal to r2. Then p, which is equal to the rank of AB, is 
the dimensionality of ABR= AQ. By virtue of the result of the preceding 
problem, ri+r2 —n-  p min (r9, r2). 

965. A double performance of the operation of projection is equivalent 
to a single performance. Indeed, in the first projection, all the vectors of the 
space R go into the vectors of the subspace P, which under the second projec-
tion remain fixed. Hence, A2=A. Conversely, let A2= A. Denote by P the 
set of all vectors Y=AX, by Q the set of vectors Z such that AZ=0. It is 
obvious that P and Q are linear spaces. Their intersection is the zero vector, 
because if AX=Z, then AX= A2X= AZ=0. Furthermore, for any vector X 
we have the expansion X=AX+(E—A) X. It is obvious that (E— A) XeQ 
because A (E— A) X=(A— A') X=0. Therefore, P + Q is the whole space, 
that is, P and Q are mutually complementary subspaces. The operation AX is 
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a transition from the vector X to its component in P, that is, it is the opera-
tion of projection on P parallel to Q. 

966. Let P _LQ. Choose an orthonormal basis of the whole space by com-
bining the orthonormal bases of P and Q. In this basis, the projection matrix 
will have the diagonal form 

1 
1 

• 

A' 1
0 

0 

In any other orthonormal basis, the projec ion matrix is equal to A= 
=B-1A'B, where B is some orthogonal matrix. Obviously, A is symmetric. 

Conversely, if A is a symmetric matrix and A =A, then the spaces P=AR 
and Q=(E— A) R are orthogonal, because 

A X (E — A) Y = X • A (E — A) Y = X (A — A2) Y=0. 

967. Let A be a skew-symmetric matrix. It is easy to see that AX • X=0 
for any real vector X, because 

AX • X= X • AX= X • (— AX)= —AX • X. 

Let A= + Pi be an eigenvalue of the matrix A and U= X+ Yi its corres-
ponding eigenvector. Then 

AX=ccX-13 Y, AY= px+. Y. 

From this it follows that a( 1 X12 +1 Y12  )= A X • X+ AY • Y=0 and m=0. 
Furthermore, px • Y+ al Y12 = A Y • Y=0, whence X • Y=0 for (3o0. 
Finally, from the equality P ( I X 1 2 - I YI2)= AY • X+ AX Y= AY • X-
- X • A Y=0 follows I XI=1 Yl• 

968. Let 
0 a12 	• • • am 

A=(— a 12 0 	 • • • a2n 

— ain  —al„ 	. . 	. 0 

be a skew-symmetric matrix. If all its eigenvalues are equal to zero, then A=0. 
Indeed, the sum of the products of all eigenvalues taken two at a time is equal 

to the sum of all principal minors of the second order 	a2k  and the 

i<k 
fact that this sum is zero implies aik=0 for any i, k, that is, A=0. 

Let A have a nonzero eigenvalue A1= a1i. Normalize the real and imagi-
nary parts of the eigenvector belonging to it. Because of the equality of their 
lengths, the normalizing factor will be the same, and the equations 

AX= — ai Y, AY = a,X 

will hold for the resulting vectors. 
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Form an orthogonal matrix by putting the vectors X and Y in the first 
two columns. Then 

	

0 	al  

I —a, 	0 ... 
P-1AP-=- 	0 

	

\ 0 	0 . . 

Since the matrix .11-"AP is skew-symmetric, all nonindicated elements of 
the first two rows are zero, and the matrix of the elements of the 3rd, 4th, 
..., nth row and the 3rd, 4th, ..., nth column will be skew-symmetric. Argu- 

	

ing in similar fashion, we isolate yet 	another submatrix 	I. The pro- 
-

0 a2 

02 0  
cess is continued until the lower left corner has a matrix all eigenvalues of 
which are zero. But all the elements of such a matrix are zero. The problem 
is solved. 

969. Let 
B (E — A) (E + A) - . 

Then 
B=(E+ A)-' (E— A)=(E— A)-' (E+ A)= B-'. 

Furthermore 

B+ E=(E— A) (E+ A)-1+ (E+ A) (E+ A)-1= 2 (E+ A)-' 

and, hence, 
I B+ E 100. 

Conversely, if 
B=B-1  and I B+ E 100 

then for A we can take (E+ B)-' (E— B). It is easy to s:e that A is a skew-
symmetric matrix. 

970. Let A be an orthogonal matrix. Then 

AX • AY = X • AAY= X • Y 

for any real vectors X and Y. Let 

X=cc-I-(3i 

be an eigenvalue of the matrix A, and 

U= X+ Yi 

a corresponding eigenvector. Then 

AX=aX—pY, A Y=oc Y+ f3X 
whence 

I X12= X • X= AX • AX=oc2  I X 12+32  I Y 1 2 -24X • Y, 

YI2 = Y- Y=A Y • A Y=a2  I YI2 +132  IX 12 +2«13X • Y. 

Adding these equations, we get 0+ p2= 1. 
971. For SOO, we get, from the last equations of the preceding problem, 

3 (1 X12-1 YI2  )+2ocX • Y=0. 
On the other hand, 

X• Y= A X • AY=(0— [32) X • Y-E.p. ( x [2- Y12) 
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whence 
a (1 X12-1 Yr)-2PX • Y=0. 

Therefore 
X. Y =I X 12  —1 Y12 =0. 

972. 1. Let A= cc+ Pi= cos + i sin cp be a complex eigenvalue of the 
matrix. Form an orthogonal matrix A, the first two columns of which cons-
titute the real and imaginary parts of an eigenvector belonging to A. Then 

coscp sin cp 

—sin cp cos cp 

Q Q = 0 0 .. 

0 0 .. 

0 0 • 	• 	• 

Because of the orthogonality of the matrix Q-',4Q, the sum of the squa-
res of the elements of each row is equal to I, and, hence, all nonindicated 
elements of the first two rows are equal to 0. 

2. Let A= +1 be a real eigenvalue of the matrix A, and let X be a nor-
malized eigenvector belonging to A. 

Form an orthogonal matrix, the vector X constituting the first column. 
Then 

AQ=(

11 . . . 

0 	• • •)• 

0 	. . . 

All nonindicated elements of the first row are zero since the sum of the 
squares of the elements of each row of the orthogonal matrix Q-1AQ is equal 
to unity. 

Applying the foregoing reasoning to the orthogonal matrices which remain 
in the lower left-hand corner, we get the required result. 

(c) ( — 3 0 0 

	

, 	0 0 	1 

	

(1) ( 2 0 	0 

0 — I 0 
0 	0 0 

, 

— 1 0 0 
0 0 1 
0 0 0 

0 0 

i 0 
Q 

973. 

(a) ( 1 	0 

0 	2 
0 	0 

0 

0 
—1 

, 

(b) ( — 2 

0 
0 

0 	0 

1 	0 
0 	1 

) 

(i)  - 1 0 0 ' (e) 2 	1 0 ( 

0 — 1 1 , 0 	2 1 	, 
0 0 — 1 0 	0 2 / 

(g) 0 0 (h) —1 1 0 

(

2 

0 	2 0 	, 0 — 1 0l, 
0 	0 0 0 0 0 0 / 

(j)  0 	1 0 (k)  1 	1 0 

0 	0 1 	, 0 	1 1 ), 
0 	0 0 \ 0 	0 1 / 
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(m)(

3 	0 	0 

	

0 	—2 	0 

	

0 	0 	—1 

(n) ( 2 

, 	0 
0 

974.  

(a) 	1 	1 	\ 	(b) 	, 	1 

/ 	0 	1 0 

t 	1 	1 1  

\ 	0 	1 	/ \ 

27-c 	27c 
where e=cos--- +1 sin 

n 	/I 

975. The submatrix 	Ai 1 

0 	 0 

0 	0 
0 	0 

I 

1 	1 

0 	1 

0 

, 

1
/  

1 

(o) 0 

0 
0 

(c) 

1 

0 
0 

/ 

0 

0 
0)  

• 

• / 
- 1 	' 

cannot be periodic. 

Ai 	1 

• 1 /I al  

Remark. The result is not valid in a field with nonzero characteristic. For 
example, in a field of characteristic 2 we have 

976. Let A be a given matrix and let B=C-'AC be its reduction to Jor-
dan canonical form. The canonical matrix B is of triangular form and its 
diagonal elements are equal to the eigenvalues of the matrix A, each one 
being repeated as many times as its multiplicity in the characteristic equa-
tion. Furthermore, Bm' 	 c'n  (Problem 531). Consequently, the 
characteristic polynomials of the matrices Am and Bn, coincide. Given an 
appropriate numbering of combinations, the matrix Bm' has triangular form 
and, hence, its eigenvalues are equal to the diagonal elements. They are also, 
evidently, equal to all possible products of the eigenvalues of the matrix A 
taken m at a time. 

977. The matrices A— XE and A—AE obviously have coincident elemen- 
tary divisors. Therefore, A and A are convertible to cne and the same cano-
nical matrix and, hence, they are interconvertible. 

978. If A= CD, where C, D are symmetric matrices and the n-.atrix C is 
nonsingular, then A= DC and, hence, A= 	AC. Thus, the matrix C should 
be sought among matrices that transform A into A. 

Let A= SBS-', where B is a canonical matrix: 

where Bi= 

' 	 • 
Bk 

1 	
141 

R. 

B= 
	By 



CH. 7. LINEAR ALGEBRA 

Then A=-S —'BS. Denote by H, the matrix 

1 
1 

1 
1 

It is easy to see that Bi=H, 1B1H1  and, therefore, 

111  

H2 
—B = H — 1BH where H= 

Hk 

Thus, A = S —' H —' BHS= S —'11-1S-1  ASHS=C-1AC where C= SHS . 
The matrix C is obviously symmetric. Put D= C —  IA. Then D= AC-1= 

C-1ACC-1= D. Thus, the matrix D is also symmetric and A= CD . 
979. Let A—AB' I =  (_ i)n (X" — c1 An —1_ c2 An —2 _ 	— cn). 

It is obvious that pi=tr A =ci. Suppose we have already proved that Pi= 
=c1, p2=c2, • • •, Pk— I.= ck_i. Under this assumption, we shall prove that 

	

— 	_ iA=Ak— pk= ck. By construction, Ak= kA _piAk 1._p2Ak 2_ 	Pk_ 
— ciA k  — C2Ak — ... — Ck_ 	Hence 

tr A k= kp k= tr Ak —citr Ak — —ck_1  tr A 

= S k— k_i —  • • • — C k— 

where S1, S2, 	S k  are p3xer sums of the eigenvalues of the matrix A. But 
by Newton's formulas, S k —  CIS k_i — 	C k_ i= 'xi,. Consequently, 

Pk= Ck• 

Next, Bn= An — ciAn —1  — . . . — c„_ 1A— c„E= 0 by the Hamilton-Cayley 
relation. Finally, 

AB„_ i= An= c„E 
whence 

Bn_ i= c„A-1. 
980. Let 

0 

C= c21 

c,,, 

We consider the diagonal matrix 

C12 • • • Cln 

0 	. 	Cyr, 

Cn2 • .. 0 

X= 

0  

a2  

) 

• 
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the diagonal elements of which are arbitrary but pairwise distinct. Let us 
take 

y=(

bu b12 • • • bin 

bn, h n2  • • • bnn 

b22 • • • 1,2) • 

Then 

0 	 bi2 (a2 — al) • • • bin (an — al) 

( X Y— YX= NI (al —az) 	0 	. . . b2n (an — 00 

k  
and, consequently, it suffices to take bik= 	for ilk. Now, using 

mathematical induction, we establish that any matrix with trace zero is si-
milar to a matrix all diagonal elements of which are zero. Since tr C=0, CO ELE 
for E./.00, and, hence, there is a vector U such that CU and U are linearly 
independent. Including the vectors U and CU in the basis, we find that C is 
similar to the matrix 

o 	112 

Y22 

o 	Y n2 

Y13 

Y23 

Yn3 

Yin \ 

Yen 

Ynn 

= 0 

Q F )• 

It is obvious that tr P=tr C=0. 
Hence, by the induction hypothesis, r=s-i Ps where P' is a matrix 

with zero diagonal elements. Then all the diagonal elements are zero in the 
matrix 

(0 	

PS 

1  SI' C\I  01  SC) (S-1-Q S-'FS) 

bm  (al — an) bn2 (c,2 — an) • • • 	0 

C"= 
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