

Д. К. ФАДДЕЕВ, И. С. СОМИНСКИЙ

СБОРНИК ЗАДАЧ

 ПО ВЮСШЕЙ АЛГЕБРЕЧЗААТЕАЬСТВО «HAYKA" MOCKBA

D. FADDEEV, I. SOMINSKY

PROBLEMS
 IN HIGHER ALGEBRA

TRANSLATED FROM THE RUSSIAN
by
GEORGE YANKOVSKY

Revised from the 1968 Russian edition

На английском языке

TO THE READER

Mir Publishers would be grateful for your comments on the content, translation and design of this book. We would also be pleased to receive any other suggestions you may wish to make.

Our address is: Mir Publishers, 2 Pervy Rizhsky Pereulok, Moscow, USSR.

Contents

Introduction 9
Part I
PROBLEMS
CHAPTER 1. COMPLEX NUMBERS 11

1. Operations on Complex Numbers 11
2. Complex Numbers in Trigonometric Form 13
3. Equations of Third and Fourth Degree 19
4. Roots of Unity 21
CHAPTER 2. EVALUATION OF DETERMINANTS 25
5. Determinants of Second and Third Order 25
6. Permutations 26
7. Definition of a Determinant 27
8. Basic Properties of Determinants 29
9. Computing Determinants 31
10. Multiplication of Determinants 51
11. Miscellaneous Problems 56
CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS 61
12. Cramer's Theorem 61
13. Rank of a Matrix 64
14. Systems of Linear Forms 66
15. Systems of Linear Equations 68
CHAPTER 4. MATRICES 76
16. Operations on Square Matrices 76
17. Rectangular Matrices. Some Inequalities 83
CHAPTER 5. POLYNOMIALS AND RATIONAL FUNCTIONS OF ONE VARIABLE 88
18. Operations on Polynomials. Taylor's Formula. Multiple Roots 88
19. Proof of the Fundamental Theorem of Higher Algebra and Allied Questions 92
20. Factorization into Linear Factors. Factorization into Irreducible Factors in the Field of Reals. Relationships Between Coefficients and Roots 93
21. Euclid's Algorithm 97
22. The Interpolation Problem and Fractional Rational Functions 100
23. Rational Roots of Polynomials. Reducibility and Irreducibility over the Field of Rationals 103
24. Bounds of the Roots of a Polynomial 107
25. Sturm's Theorem 108
26. Theorems on the Distribution of Roots of a Polynomial 111
27. Approximating Roots of a Polynomial 115
CHAPTER 6. SYMMETRIC FUNCTION 3 116
28. Expressing Symmetric Functions in Terms of Elementary Sym- metric Functions. Computing Symmetric Functions of the Roots of an Algebraic Equation 116
29. Power Sums 121
30. Transformation of Equations 123
31. Resultant and Discriminant 124
32. The Tschirnhausen Transformation and Rationalization of the Denominator 129
33. Polynomials that Remain Unchanged under Even Permutations of the Variables. Polynomials that Remain Unchanged under Cir- cular Permutations of the Variables 130
CHAPTER 7. LINEAR ALGEBRA 133
34. Subspaces and Linear Manifolds. Transformation of Coordinates 133
35. Elementary Geometry of n-Dimensional Euclidean Space 135
36. Eigenvalues and Eigenvectors of a Matrix 139
37. Quadratic Forms and Symmetric Matrices 141
38. Linear Transformations. Jordan Canonical Form 146
PART II
HINTS TO SOLUTIONS
CHAPTER 1. COMPLEX NUMBERS 151
CHAPTER 2. EVALUATION OF DETERMINANTS 153
CHAPTER 4. MATRICES 159
CHAPTER 5. POLYNOMIALS AND RATIONAL FUNCTIONS OF ONE VARIABLE 160
CHAPTER 6. SYMMETRIC FUNCTIONS 164
CHAPTER 7. LINEAR ALGEBRA 166
PART IIIANSWERS AND SOLUTIONS
CHAPTER 1. COMPLEX NUMBERS 168
CHAPTER 2. EVALUATION OF DETERMINANTS 186
CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS 196
CHAPTER 4. MATRICES 203
CHAPTER 5. POLYNOMIALS AND RATIONAL FUNCTIONS OF ONE VARIABLE 221
CHAPTER 6. SYMMETRIC FUNCTIONS 261
CHAPTER 7. LINEAR ALGEBRA 286
INDEX 313

INTRODUCTION

This book of problems in higher algebra grew out of a course of instruction at the Leningrad State University and the Herzen Pedagogical Institute. It is designed for students of universities and teacher's colleges as a problem book in higher algebra.

The problems included here are of two radically different types. On the one hand, there are a large number of numerical examples aimed at developing computational skills and illustrating the basic propositions of the theory. The authors believe that the number of problems is sufficient to cover work in class, at home and for tests.

On the other hand, there are a rather large number of problems of medium difficulty and many which will demand all the initiative and ingenuity of the student. Many of the problems of this category are accompanied by hints and suggestions to be found in Part II. These problems are starred.

Answers are given to all problems, some of the problems are supplied with detailed solutions.

The authors

PART I. PROBLEMS

CHAPTER 1
COMPLEX
NUMBERS

Sec. 1. Operations on Complex Numbers

1. $(1+2 i) x+(3-5 i) y=1-3 i$.

Find x and y, taking them to be real.
2. Solve the following system of equations; x, y, z, t are real:
$(1+i) x+(1+2 i) y+(1+3 i) z+(1+4 i) t=1+5 i$,
$(3-i) x+(4-2 i) y+(1+i) z+4 i t=2-i$.
3. Evaluate i^{n}, where n is an integer.
4. Verify the identity
$x^{4}+4=(x-1-i)(x-1+i)(x+1+i)(x+1-i)$.
5. Evaluate:
(a) $(1+2 i)^{6}$,
(b) $(2+i)^{7}+(2-i)^{7}$,
(c) $(1+2 i)^{5}-(1-2 i)^{5}$.
6. Determine under what conditions the product of two complex numbers is a pure imaginary.
7. Perform the indicated operations:
(a) $\frac{1+i \tan \alpha}{1-i \tan \alpha}$,
(b) $\frac{a+b i}{a-b i}$,
(c) $\frac{(1+2 i)^{2}-(1-i)^{3}}{(3+2 i)^{3}-(2+i)^{2}}$,
(d) $\frac{(1-i)^{5}-1}{(1+i)^{5}+1}$,
(e) $\frac{(1+i)^{9}}{(1-i)^{7}}$.
8. Evaluate $\frac{(1+i)^{n}}{(1-i)^{n-2}}$, where n is a positive integer.
9. Solve the following systems of equations:
(a) $(3-i) x+(4+2 i) y=2+6 i,(4+2 i) x-(2+3 i) y=5+4 i$;
(b) $(2+i) x+(2-i) y=6,(3+2 i) x+(3-2 i) y=8$;
(c) $x+y i-2 z=10, x-y+2 i z=20, i x+3 i y-(1+i) z=30$.
10. Evaluate:
(a) $\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{2}$,
(b) $\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{3}$.
*11. Let $\omega=-\frac{1}{2}+\frac{i \sqrt{3}}{2}$. Evaluate:
(a) $\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)$,
(b) $(a+b)(a+b \omega)\left(a+b \omega^{2}\right)$,
(c) $\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}$,
(d) $\left(a \omega^{2}+b \omega\right)\left(b \omega^{2}+a \omega\right)$.
12. Find the conjugates of:
(a) a square, (b) a cube.
*13. Prove the following theorem:
If as a result of a finite number of rational operations (i. e., addition, subtraction, etc.) on the numbers $x_{1}, x_{2}, \ldots, x_{n}$, we get the number u, then the same operations on the conjugates \bar{x}_{1}, $\bar{x}_{2}, \ldots, \bar{x}_{n}$ yield the number \bar{u}, which is conjugate to u.
14. Prove that $x^{2}+y^{2}=\left(s^{2}+t^{2}\right)^{n}$ if $x+y i=(s+t i)^{n}$.
15. Evaluate:
(a) $\sqrt{2} i$,
(b) $\sqrt{-8 i}$,
(c) $\sqrt{3-4} i$,
(d) $\sqrt{-15+8 i}$,
(e) $\sqrt{-3-4 i}$, (f) $\sqrt{-11+60} i$, (g) $\sqrt{-8+6 i}$,
(h) $\sqrt{-8-6 i}$, (i) $\sqrt{8-6} i$, (j) $\sqrt{8+6} i$, (k) $\sqrt{2-3 i}$,
(1) $\sqrt{4+i}+\sqrt{4-i}$, (m) $\sqrt{1-i \sqrt{3}}$; (n) $\sqrt[4]{-1}$, 4
(o) $\sqrt{2-i \sqrt{12}}$.
16. $\sqrt{a+b i}= \pm(\alpha+\beta i)$. Find $\sqrt{-a-b i}$.
17. Solve the following equations:
(a) $x^{2}-(2+i) x+(-1+7 i)=0$,
(b) $x^{2}-(3-2 i) x+(5-5 i)=0$,
(c) $(2+i) x^{2}-(5-i) x+(2-2 i)=0$.
*18. Solve the equations and factor the left-hand members into factors with real coefficients:
(a) $x^{4}+6 x^{3}+9 x^{2}+100=0$,
(b) $x^{4}+2 x^{2}-24 x+72=0$.
19. Solve the equations:
(a) $x^{4}-3 x^{2}+4=0$, (b) $x^{4}-30 x^{2}+289=0$.
20. Develop a formula for solving the biquadratic equation $x^{4}+p x^{2}+q=0$ with real coefficients that is convenient for the case when $\frac{p^{2}}{4}-q<0$.

Sec. 2. Complex Numbers in Trigonometric Form

21. Construct points depicting the following complex numbers:

$$
1,-1,-\sqrt{2}, i,-i, \quad i \sqrt{2},-1+i, \quad 2-3 i
$$

22. Represent the following numbers in trigonometric form:
(a) 1 , (b) -1 , (c) i, (d) $-i$, (e) $1+i$,
(f) $-1+i$, (g) $-1-i$, (h) $1-i$, (i) $1+i \sqrt{3}$,
(j) $-1+i \sqrt{3}, \quad(\mathrm{k})-1-i \sqrt{3}$, (1) $1-i \sqrt{3}, \quad$ (m) $2 i$,
(n) -3 , (o) $V \overline{3}-i$, (p) $2+\sqrt{3}+i$.
23. Use tables to represent the following numbers in trigonometric form:
(a) $3+i$, (b) $4-i$,
(c) $-2+i$,
(d) $-1-2 i$.
24. Find the loci of points depicting the complex numbers whose:
(a) modulus is 1, (b) argument is $\frac{\pi}{6}$.
25. Find the loci of points depicting the numbers z that satisfy the inequalities:
(a) $|z|<2$,
(b) $|z-i| \leqslant 1$,
(c) $|z-1-i|<1$.
26. Solve the equations:
(a) $|x|-x=1+2 i$,
(b) $|x|+x=2+i$.
*27. Prove the identity

$$
|x+y|^{2}+|x-y|^{2}=2\left(|x|^{2}+|y|^{2}\right) .
$$

What geometrical meaning does it have?
*28. Prove that any complex number z different from -1 , whose modulus is 1 , can be represented in the form $z=\frac{1+t i}{1-t i}$ where t is real.
29. Under what conditions is the modulus of the sum of two complex numbers equal to the difference of the moduli of the summands?
30. Under what conditions is the modulus of the sum of two complex numbers equal to the sum of the moduli of the summands?
*31. z and z^{\prime} are two complex numbers, $u=\sqrt{ } \overline{z z}^{\prime}$. Prove that

$$
|z|+\left|z^{\prime}\right|=\left|\frac{z+z^{\prime}}{2}-u\right|+\left|\frac{z+z^{\prime}}{2}+u\right| .
$$

32. Demonstrate that if $|z|<\frac{1}{2}$, then

$$
\left|(1+i) z^{3}+i z\right|<\frac{3}{4} .
$$

33. Prove that

$$
\begin{gathered}
(1+i \sqrt{3})(1+i)(\cos \varphi+i \sin \varphi)= \\
=2 \sqrt{2}\left[\cos \left(\frac{7 \pi}{12}+\varphi\right)+i \sin \left(\frac{7 \pi}{12}+\varphi\right)\right] .
\end{gathered}
$$

34. Simplify $\frac{\cos \varphi+i \sin \varphi}{\cos \psi-i \sin \psi}$.
35. Evaluate $\frac{(1-i \sqrt{3})(\cos \varphi+i \sin \varphi)}{2(1-i)(\cos \varphi-i \sin \varphi)}$.
36. Evaluate:
(a) $(1+i)^{25}$,
(b) $\left(\frac{1+i \sqrt{3}}{1-i}\right)^{20}$,
(c) $\left(1-\frac{\sqrt{3}-i}{2}\right)^{24}$,
(d) $\frac{(-1+i \sqrt{3})^{15}}{(1-i)^{20}}+\frac{(-1-i \sqrt{3})^{15}}{(1+i)^{20}}$,
*37. Prove that

(b) $(\sqrt{3}-i)^{n}=2^{n}\left(\cos \frac{n \pi}{6}-i \sin \frac{n \pi}{6}\right)$,
n an integer.
*38. Simplify $(1+\omega)^{n}$, where $\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$.
37. Assuming $\omega_{1}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \omega_{2}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}$, determine $\omega_{1}^{n}+\omega_{2}^{n}$, where n is an integer.
*40. Evaluate $(1+\cos \alpha+i \sin \alpha)^{n}$.
*41. Prove that if $z+\frac{1}{z}=2 \cos \Theta$, then

$$
z^{m}+\frac{1}{z^{m}}=2 \cos m \Theta
$$

42. Prove that $\left(\frac{1+i \tan \alpha}{1-i \tan \alpha}\right)^{n}=\frac{1+i \tan n \alpha}{1-i \tan n \alpha}$.
43. Extract the roots:
(a) ${ }^{3} \sqrt{i}$,
(b) $\sqrt[3]{2-2 i}$,
(c) $\stackrel{4}{V}^{V}-4$,
(d) $\sqrt{6}^{1}$,
(e) $\sqrt{ }-2 \overline{7}$.
44. Use tables to extract the following roots:
(a) $\sqrt{2+i}$,
(b) $\sqrt{3}^{3-i}$,
(c) ${ }^{5} / \overline{2+3} i$.
45. Compute:
(a) $\sqrt[6]{\frac{1-i}{\sqrt{3}+i}}$,
(b) $\sqrt[8]{\frac{1+i}{\sqrt{3}-i}}$,
(c) $\sqrt[6]{\frac{1-i}{1+i \sqrt{3}}}$.
46. Write all the values of ${ }^{n} \sqrt{\alpha}$ if you know that β is one of the values.
47. Express the following in terms of $\cos x$ and $\sin x$:
(a) $\cos 5 x$
(b) $\cos 8 x$,
(c) $\sin 6 x$,
(d) $\sin 7 x$.
48. Express $\tan 6 \varphi$ in terms of $\tan \varphi$.
49. Develop formulas expressing $\cos n x$ and $\sin n x$ in terms of $\cos x$ and $\sin x$.
50. Represent the following in the form of a first-degree polynomial in the trigonometric functions of angles that are multiples of x :
(a) $\sin ^{3} x$, (b) $\sin ^{4} x$, (c) $\cos ^{5} x$, (d) $\cos ^{6} x$.
*51. Prove that
(a) $2^{2 m} \cos ^{2 m} x=2 \sum_{k=0}^{m-1} C_{2 m}^{k} \cos 2(m-k) x+C_{2 m}^{m}$,
(b) $2^{2 m} \cos ^{2 m+1} x=\sum_{k=0}^{m} C_{2 m+1}^{k} \cos (2 m-2 k+1) x$,
(c) $2^{2 m} \sin ^{2 m} x=2 \sum_{k=0}^{m-1}(-1)^{m+k} C_{2 m}^{k} \cos 2(m-k) x+C_{2 m}^{m}$,
(d) $2^{2 m} \sin ^{2 m+1} x=\sum_{k=0}^{m}(-1)^{m+k} C_{2 m+1}^{k} \sin (2 m-2 k+1) x$.
*52. Prove that $2 \cos m x=(2 \cos x)^{m}$

$$
\begin{gathered}
-\frac{m}{1}(2 \cos x)^{m-2}+\frac{m(m-3)}{1 \cdot 2}(2 \cos x)^{m-4} \\
-\ldots+(-1)^{p} \frac{m(m-p-1)}{} \frac{(m-p-2) \ldots(m-2 p+1)}{p!} \\
\times(2 \cos x)^{m-2 p}+\ldots
\end{gathered}
$$

*53. Express $\frac{\sin m x}{\sin x}$ in terms of $\cos x$.
*54. Find the sums:
(a) $1-C_{n}^{2}+C_{n}^{4}-C_{n}^{6}+\ldots$,
(b) $C_{n}^{1}-C_{n}^{3}+C_{n}^{5}-C_{n}^{7}+\ldots$

*55. Prove that

(a) $1+C_{n}^{4}+C_{n}^{8}+\ldots=\frac{1}{2}\left(2^{n-1}+2^{\frac{n}{2}} \cos \frac{n \pi}{4}\right)$,
(b) $C_{n}^{1}+C_{n}^{5}+C_{n}^{9}+\ldots=\frac{1}{2}\left(2^{n-1}+2^{\frac{n}{2}} \sin \frac{n \pi}{4}\right)$,
(c) $C_{n}^{2}+C_{n}^{6}+C_{n}^{10}+\ldots=\frac{1}{2}\left(2^{n-1}-2^{\frac{n}{2}} \cos \frac{n \pi}{4}\right)$,
(d) $C_{n}^{3}+C_{n}^{7}+C_{n}^{11}+\ldots=\frac{1}{2}\left(2^{n-1}-2^{\frac{n}{2}} \sin \frac{n \pi}{4}\right)$.
*56. Find the sum

$$
C_{n}^{1}-\frac{1}{3} C_{n}^{3}+\frac{1}{9} C_{n}^{5}-\frac{1}{27} C_{n}^{7}+\ldots
$$

57. Prove that $(x+a)^{m}+(x+a \omega)^{m}+\left(x+a \omega^{2}\right)^{m}=3 x^{m}+$ $+3 C_{m}^{3} x^{m-3} a^{3}+\ldots+3 C_{m}^{n} x^{m-n} a^{n}$, where $\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$ and n is the largest integral multiple of 3 not exceeding m.
58. Prove that
(a) $1+C_{n}^{3}+C_{n}^{6}+\ldots=\frac{1}{3}\left(2^{n}+2 \cos \frac{n \pi}{3}\right)$,
(b) $C_{n}^{1}+C_{n}^{4}+C_{n}^{7}+\ldots=\frac{1}{3}\left(2^{n}+2 \cos \frac{(n-2) \pi}{3}\right)$,
(c) $C_{n}^{2}+C_{n}^{5}+C_{n}^{8}+\ldots=\frac{1}{3}\left(2^{n}+2 \cos \frac{(n-4) \pi}{3}\right)$.
59. Compute the sums:
(a) $1+a \cos \varphi+a^{2} \cos 2 \varphi+\ldots+a^{k} \cos k \varphi$,
(b) $\sin \varphi+a \sin (\varphi+h)+a^{2} \sin (\varphi+2 h)+\ldots+a^{k} \sin (\varphi+k h)$,
(c) $\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos n x$.
60. Demonstrate that

$$
\sin x+\sin 2 x+\ldots+\sin n x=\frac{\sin \frac{n+1}{2} x \cdot \sin \frac{n x}{2}}{\sin \frac{x}{2}}
$$

61. Find

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2} \cos x+\frac{1}{4} \cos 2 x+\ldots+\frac{1}{2^{n}} \cos n x\right)
$$

62. Prove that if n is a positive integer and Θ is an angle satisfying the condition $\sin \frac{\Theta}{2}=\frac{1}{2 n}$, then

$$
\cos \frac{\Theta}{2}+\cos \frac{3 \Theta}{2}+\ldots+\cos \frac{2 n-1}{2} \Theta=n \sin n \Theta .
$$

63. Show that
(a) $\cos \frac{\pi}{11}+\cos \frac{3 \pi}{11}+\cos \frac{5 \pi}{11}+\cos \frac{7 \pi}{11}+\cos \frac{9 \pi}{11}=\frac{1}{2}$,
(b) $\cos \frac{2 \pi}{11}+\cos \frac{4 \pi}{11}+\cos \frac{6 \pi}{11}+\cos \frac{8 \pi}{11}+\cos \frac{10 \pi}{11}=-\frac{1}{2}$,
(c) $\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}+\cos \frac{7 \pi}{13}+\cos \frac{9 \pi}{13}+\cos \frac{11 \pi}{13}=\frac{1}{2}$.
64. Find the sums
(a) $\cos a-\cos (a+h)+\cos (a+2 h)-\ldots+(-1)^{n-1} \cos [a+(n$
$-1) h$],
(b) $\sin a-\sin (a+h)+\sin (a+2 h)-\ldots+(-1)^{n-1} \sin [a$

$$
+(n-1) h] .
$$

65. Prove that if x is less than unity in absolute value, then the series
(a) $\cos \alpha+x \cos (\alpha+\beta)+x^{2} \cos (\alpha+2 \beta)+\ldots+x^{n} \cos (\alpha$

$$
+n \beta)+\ldots
$$

(b) $\sin \alpha+x \sin (\alpha+\beta)+x^{2} \sin (\alpha+2 \beta)+\ldots+x^{n} \sin (\alpha+n \beta)+\ldots$ converge and the sums are respectively equal to

$$
\frac{\cos \alpha-x \cos (\alpha-\beta)}{1-2 x \cos \beta+x^{2}}, \quad \frac{\sin \alpha-x \sin (\alpha-\beta)}{1-2 x \cos \beta+x^{2}} .
$$

66. Find the sums of:
(a) $\cos x+C_{n}^{1} \cos 2 x+\ldots+C_{n}^{n} \cos (n+1) x$,
(b) $\sin x+C_{n}^{1} \sin 2 x+\ldots+C_{n}^{n} \sin (n+1) x$.
67. Find the sums of:
(a) $\cos x-C_{n}^{1} \cos 2 x+C_{n}^{2} \cos 3 x-\ldots+(-1)^{n} C_{n}^{n} \cos (n+1) x$,
(b) $\sin x-C_{n}^{1} \sin 2 x+C_{n}^{2} \sin 3 x-\ldots+(-1)^{n} C_{n}^{n} \sin (n+1) x$.
*68. $\overrightarrow{O A}_{1}$ and $\overrightarrow{O B}$ are vectors depicting 1 and i respectively. From O drop a perpendicular $O A_{2}$ on $A_{1} B$; from A_{2} drop a perpendicular $A_{2} A_{3}$ on $O A_{1}$; from A_{3}, a perpendicular $A_{3} A_{4}$ on $A_{1} A_{2}$, etc. in accordance with the rule: from A_{n} a perpendicular $A_{n} A_{n+1}$ is dropped on $A_{n-\varepsilon} A_{n-1}$. Find the limit of the sum

$$
\overrightarrow{O A}_{1}+{\overrightarrow{A_{1}} A_{2}}+\overrightarrow{A_{2} A_{3}}+\ldots
$$

*69. Find the sum

$$
\sin ^{2} x+\sin ^{2} 3 x+\ldots+\sin ^{2}(2 n-1) x
$$

70. Show that:
(a) $\cos ^{2} x+\cos ^{2} 2 x+\ldots+\cos ^{2} n x=\frac{n}{2}+\frac{\cos (n+1) x \sin n x}{2 \sin x}$,
(b) $\sin ^{2} x+\sin ^{2} 2 x+\ldots+\sin ^{2} n x=\frac{n}{2}-\frac{\cos (\mathrm{n}+1) x \sin n x}{2 \sin x}$.
*71. Find the sums of:
(a) $\cos ^{3} x+\cos ^{3} 2 x+\ldots+\cos ^{3} n x$,
(b) $\sin ^{3} x+\sin ^{3} 2 x+\ldots+\sin ^{3} n x$.
*72. Find the sums of:
(a) $\cos x+2 \cos 2 x+3 \cos 3 x+\ldots+n \cos n x$,
(b) $\sin x+2 \sin 2 x+3 \sin 3 x+\ldots+n \sin n x$.
71. Find $\lim _{n \rightarrow \infty}\left(1+\frac{\alpha}{n}\right)^{n}$ for $\alpha=a+b i$.
72. Definition: $e^{\alpha}=\lim _{n \rightarrow \infty}\left(1+\frac{\alpha}{n}\right)^{n}$. Prove that
(a) $e^{2 \pi i}=1$,
(b) $e^{\pi i}=-1$,
(c) $e^{\alpha+\beta}=e^{\alpha} \cdot e^{\beta}$,
(d) $\left(e^{\alpha}\right)^{k}=e^{\alpha k}$ for integral k.

Sec. 3. Equations of Third and Fourth Degree

75. Solve the following equations using Cardan's formula:
(a) $x^{3}-6 x+9=0$,
(b) $x^{3}+12 x+63=0$,
(c) $x^{3}+9 x^{2}+18 x+28=0$,
(d) $x^{3}+6 x^{2}+30 x+25=0$,
(e) $x^{3}-6 x+4=0$,
(f) $x^{3}+6 x+2=0$,
(g) $x^{3}+18 x+15=0$,
(h) $x^{3}-3 x^{2}-3 x+11=0$,
(i) $x^{3}+3 x^{2}-6 x+4=0$,
(j) $x^{3}+9 x-26=0$,
(k) $x^{3}+24 x-56=0$,
(l) $x^{3}+45 x-98=0$,
(m) $x^{3}+3 x^{2}-3 x-1=0$,
(n) $x^{3}-6 x^{2}+57 x-196=0$,
(o) $x^{3}+3 x-2 i=0$,
(p) $x^{3}-6 i x+4(1-i)=0$,
(q) $x^{3}-3 a b x+a^{3}+b^{3}=0$,
(r) $x^{3}-3 a b f g x+f^{2} g a^{3}+f g^{2} b^{3}=0$,
(s) $x^{3}-4 x-1=0$;
(t) $x^{3}-4 x+2=0$.
*76. Using Cardan's formula, prove that

$$
\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}=-4 p^{3}-27 q^{2}
$$

if x_{1}, x_{2}, x_{3} are roots of the equation $x^{3}+p x+q=0$.
(The expression $-4 p^{3}-27 q^{2}$ is called the discriminant of the equation $x^{3}+p x+q=0$.)
*77. Solve the equation

$$
\left(x^{3}-3 q x+p^{3}-3 p q\right)^{2}-4(p x+q)^{3}=0
$$

*78. Derive a formula for solving the equation

$$
x^{5}-5 a x^{3}+5 a^{2} x-2 b=0
$$

79. Solve the following equations:
(a) $x^{4}-2 x^{3}+2 x^{2}+4 x-8=0$,
(b) $x^{4}+2 x^{3}-2 x^{2}+6 x-15=0$,
(c) $x^{4}-x^{3}-x^{2}+2 x-2=0$,
(d) $x^{4}-4 x^{3}+3 x^{2}+2 x-1=0$,
(e) $x^{4}-3 x^{3}+x^{2}+4 x-6=0$,
(f) $x^{4}-6 x^{3}+6 x^{2}+27 x-56=0$,
(g) $x^{4}-2 x^{3}+4 x^{2}-2 x+3=0$,
(h) $x^{4}-x^{3}-3 x^{2}+5 x-10=0$,
(i) $x^{4}+2 x^{3}+8 x^{2}+2 x+7=0$,
(j) $x^{4}+6 x^{3}+6 x^{2}-8=0$,
(k) $x^{4}-6 x^{3}+10 x^{2}-2 x-3=0$,
(l) $x^{4}-2 x^{3}+4 x^{2}+2 x-5=0$,
(m) $x^{4}-x^{3}-3 x^{2}+x+1=0$,
(n) $x^{4}-x^{3}-4 x^{2}+4 x+1=0$,
(o) $x^{4}-2 x^{3}+x^{2}+2 x-1=0$,
(p) $x^{4}-4 x^{3}-2 x^{2}-8 x+4=0$,
(q) $x^{4}-2 x^{3}+3 x^{2}-2 x-2=0$,
(r) $x^{4}-x^{3}+2 x-1=0$,
(s) $4 x^{4}-4 x^{3}+3 x^{2}-2 x+1=0$,
(t) $4 x^{4}-4 x^{3}-6 x^{2}+2 x+1=0$.
80. Ferrari's method for solving the quartic equation $x^{4}+$ $+a x^{3}+b x^{2}+c x+d=0$ consists in representing the left member in the form

$$
\left(x^{2}+\frac{a}{2} x+\frac{\lambda}{2}\right)^{2}-\left[\left(\frac{a^{2}}{4}+\lambda-b\right) x^{2}+\left(\frac{a \lambda}{2}-c\right) x+\left(\frac{\lambda^{2}}{4}-d\right)\right] .
$$

Then λ is chosen so that the expression in the square brackets is the square of a first-degree binomial. For this purpose it is necessary and sufficient that

$$
\left(\frac{\alpha \lambda}{2}-c\right)^{2}-4\left(\frac{a^{2}}{4}+\lambda-b\right)\left(\frac{\lambda^{2}}{4}-d\right)=0,
$$

that is, λ must be a root of some auxiliary cubic equation. Having found λ, factor the left member.

Express the roots of the auxiliary equation in terms of the roots of the fourth-degree equation.

Sec. 4. Roots of Unity

81. Write the following roots of unity of degree
(a) 2 , (b) 3 , (c) 4 , (d) 6 , (e) 8 , (f) 12 , (g) 24 .
82. Write the primitive roots of degree
(a) 2 , (b) 3 , (c) 4 , (d) 6 , (e) 8 , (f) 12 , (g) 24 .
83. To what exponent do the following belong:
(a) $z_{k}=\cos \frac{2 k \pi}{180}+i \sin -\frac{2 k \pi}{180}$ for $k=27,99,137$;
(b) $z_{k}=\cos \frac{2 k \pi}{144}+i \sin \frac{2 k \pi}{144}$ for $k=10,35,60$?
84. Write out all the 28th roots of unity belonging to the exponent 7.
85. For each of the roots of unity: (a) 16th, (b) 20 th, (c) 24 th, indicate the exponent it belongs to.
86. Write out the "cyclotomic polynomials" $X_{n}(x)$ for n equal to:
(a) 1 , (b) 2 , (c) 3 , (d) 4 , (e) 5 , (f) 6 , (g) 7 , (h) 8 , (i) $9,(\mathrm{j}) 10$, (k) 11 , (l) $12,(\mathrm{~m}) 15$, (n) 105.
*87. Let ε be a primitive $2 n$-th root of unity. Compute the sum $1+\varepsilon+\varepsilon^{2}+\ldots+\varepsilon^{n-1}$.
*88. Find the sum of all the nth roots of unity.
*89. Find the sum of the k th powers of all nth roots of unity. 90. In the expression $(x+a)^{m}$ substitute in succession, for a, the $m m$ th roots of unity, then add the results.
*91. Compute $1+2 \varepsilon+3 \varepsilon^{2}+\ldots+n \varepsilon^{n-1}$, where ε is an nth root of unity.
*92. Compute $1+4 \varepsilon+9 \varepsilon^{2}+\ldots+n^{2} \varepsilon^{n-1}$, where ε is an nth root of unity.
87. Find the sums:
(a) $\cos \frac{2 \pi}{n}+2 \cos \frac{4 \pi}{n}+\ldots+(n-1) \cos \frac{2(n-1) \pi}{n}$,
(b) $\sin \frac{2 \pi}{n}+2 \sin \frac{4 \pi}{n}+\ldots+(n-1) \sin \frac{2(n-1) \pi}{n} \ldots$.
*94. Determine the sum of the following primitive roots of unity: (a) 15th, (b) 24th, (c) 30th.
88. Find the fifth roots of unity by solving the equation $x^{5}-$ $-1=0$ algebraically.
89. Using the result of Problem 95, write $\sin 18^{\circ}$ and $\cos 18^{\circ}$.
*97. Write the simplest kind of algebraic equation whose root is the length of the side of a regular 14 -sided polygon inscribed in a circle of radius unity.
*98. Decompose $x^{n}-1$ into linear and quadratic factors with real coefficients.
*99. Use the result of Problem 98 to prove the formulas:
(a) $\sin \frac{\pi}{2 m} \cdot \sin \frac{2 \pi}{2 m} \ldots \sin \frac{(m-1) \pi}{2 m}=\frac{\sqrt{m}}{2^{m-1}}$,
(b) $\sin \frac{\pi}{2 m+1} \cdot \sin \frac{2 \pi}{2 m+1} \ldots \sin \frac{m \pi}{2 m+1}=\sqrt{2 m+1} \frac{2 m}{2^{m}}$
*100. Prove that $\prod_{k=0}^{n-1}\left(a+b \varepsilon_{k}\right)=a^{n}+(-1)^{n-1} b^{n}$
where

$$
\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n} .
$$

*101. Prove that

$$
\prod_{k=0}^{n-1}\left(\varepsilon_{k}^{2}-2 \varepsilon_{k} \cos \Theta+1\right)=2(1-\cos n \Theta)
$$

if

$$
\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}
$$

102. Prove that

$$
\prod_{k=0}^{n-1} \frac{\left(t+\varepsilon_{k}\right)^{n}-1}{t}=\prod_{k=1}^{n-1}\left[t^{n}-\left(\varepsilon_{k}-1\right)^{n}\right]
$$

where $\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$.
*103. Find all the complex numbers that satisfy the condition $\bar{x}=x^{n-1}$ where \bar{x} is the conjugate of x.
104. Show that the roots of the equation $\lambda(z-a)^{n}+\mu(z-b)^{n}=$ $=0$, where λ, μ, a, b are complex, lie on one circle, which in a particular case can degenerate into a straight line (n is a natural number).
*105. Solve the equations:
(a) $(x+1)^{m}-(x-1)^{m}=0, \quad$ (b) $(x+i)^{m}-(x-i)^{m}=0$,
(c) $x^{n}-n a x^{n-1}-C_{n}^{2} a^{2} x^{n-2}-\ldots-a^{n}=0$.
106. Prove that if A is a complex number with modulus 1 , then the equation

$$
\left(\frac{1+i x}{1-i x}\right)^{m}=A
$$

has all roots real and distinct.
*107. Solve the equation

$$
\begin{aligned}
\cos \varphi+C_{n}^{1} \cos (\varphi+\alpha) x+C_{n}^{2} \cos (\varphi+2 \alpha) & x^{2} \\
& +\ldots+C_{n}^{n} \cos (\varphi+n \alpha) x^{n}=0
\end{aligned}
$$

Prove the following theorems:
108. The product of an a th root of unity by a b th root of unity is an $a b$ th root of unity.
109. If a and b are relatively prime, then $x^{a}-1$ and $x^{b}-1$ have a unique root in common.
110. If a and b are relatively prime, then all the $a b$ th roots of unity are obtained by multiplying the a th roots of unity by the b th roots of unity.
111. If a and b are relatively prime, then the product of a primitive a th root of unity by a primitive b th root of unity is a primitive $a b$ th root of unity, and conversely.
112. Denoting by $\varphi(n)$ the number of primitive nth roots of unity, prove that $\varphi(a b)=\varphi(a) \varphi(b)$ if a and b are relatively prime.
*113. Prove that if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, then

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{\mathrm{z}}}\right) \ldots\left(1-\frac{1}{p_{k}}\right) .
$$

114. Show that the number of primitive nth roots of unity is even if $n>2$.
115. Write the polynomial $X_{p}(x)$ where p is prime.
*116. Write the polynomial $X_{p}^{m}(x)$ where p is prime.
*117. Prove that for n odd and greater than unity, $X_{2 n}(x)=$ $=X_{n}(-x)$.
116. Prove that if d is made up of prime divisors which enter into n, then each primitive $n d$ th root of unity is a d th root of a primitive nth root of unity, and conversely.
*119. Prove that if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, then $X_{n}(x)=X_{n^{\prime}}\left(x^{n^{\prime \prime}}\right)$ where

$$
n^{\prime}=p_{1} p_{2} \ldots p_{k}, n^{\prime \prime}=\frac{n}{n^{\prime}} .
$$

*120. Denoting by $\mu(n)$ the sum of the primitive nth roots of unity, prove that $\mu(n)=0$ if n is divisible by the square of at least one prime number; $\mu(n)=1$ if n is the product of an even number of distinct prime numbers; $\mu(n)=-1$ if n is the product of an odd number of distinct prime numbers.
121. Prove that $\Sigma \mu(d)=0$ if d runs through all divisors of the number $n, n \neq 1$.
*122. Prove that $X_{n}(x)=\Pi\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}$ where d runs through all divisors of n.
*123. Find $X_{n}(1)$.
*124. Find $X_{n}(-1)$.
*125. Determine the sum of the products of the primitive nth roots of unity taken two at a time.
*126. $S=1+\varepsilon+\varepsilon^{4}+\varepsilon^{9}+\ldots+\varepsilon^{(n-1)^{2}}$ where ε is a primitive nth root of unity. Find $|S|$.

CHAPTER 2
 EVALUATION OF DETERMINANTS

Sec. 1, Determinants of Second and Third Order

Compute the determinants:

$$
\begin{aligned}
& \text { 127. (a) }\left|\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right| \text {, } \\
& \text { (b) }\left|\begin{array}{rr}
2 & 1 \\
-1 & 2
\end{array}\right| \text {, } \\
& \text { (c) }\left|\begin{array}{rr}
\sin \alpha & \cos \alpha \\
-\cos \alpha & \sin \alpha
\end{array}\right| \text {, } \\
& \text { (d) }\left|\begin{array}{cc}
a & c+d i \\
c-d i & b
\end{array}\right| \text {, } \\
& \text { (e) }\left|\begin{array}{ll}
\alpha+\beta i & \gamma+\delta i \\
\gamma-\delta i & \alpha-\beta i
\end{array}\right| \text {, } \\
& \text { (f) }\left|\begin{array}{ll}
\sin \alpha & \cos \alpha \\
\sin \beta & \cos \beta
\end{array}\right| \text {, } \\
& \text { (g) }\left|\begin{array}{ll}
\cos \alpha & \sin \alpha \\
\sin \beta & \cos \beta
\end{array}\right| \text {, } \\
& \text { (h) }\left|\begin{array}{cc}
\tan \alpha & -1 \\
1 & \tan \alpha
\end{array}\right| \text {, } \\
& \text { (i) }\left|\begin{array}{ll}
1+\sqrt{2} & 2-\sqrt{3} \\
2+\sqrt{3} & 1-\sqrt{2}
\end{array}\right| \text {, } \\
& \text { (j) }\left|\begin{array}{cc}
1 & \log _{b} a \\
\log _{a} b & 1
\end{array}\right| \text {, } \\
& \text { (k) }\left|\begin{array}{ll}
a+b & b+d \\
a+c & c+d
\end{array}\right| \text {, } \\
& \text { (1) }\left|\begin{array}{ll}
a+b & a-b \\
a-b & a+b
\end{array}\right| \text {, } \\
& \text { (m) }\left|\begin{array}{cc}
x-1 & 1 \\
x^{3} & x^{2}+x+1
\end{array}\right| \\
& \text { (n) }\left|\begin{array}{cc}
\omega & \omega \\
-1 & \omega
\end{array}\right|
\end{aligned}
$$

where $\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$,

$$
\text { (o) }\left|\begin{array}{rr}
\varepsilon & 1 \\
-1 & \varepsilon
\end{array}\right|
$$

where $\varepsilon=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$.

Sec. 2. Permutations

129. Write out the transpositions enabling one to go from the permutation $1,2,4,3,5$ to the permutation $2,5,3,4,1$.
130. Assuming that $1,2,3,4,5,6,7,8,9$ is the initial arrangement, determine the number of inversions in the permutations:
(a) $1,3,4,7,8,2,6,9,5$;
(b) $2,1,7,9,8,6,3,5,4$;
(c) $9,8,7,6,5,4,3,2,1$.
131. Assuming $1,2,3,4,5,6,7,8,9$ to be the initial ordering, choose i and k so that:
(a) the permutation $1,2,7,4, i, 5,6, k, 9$ is even;
(b) the permutation $1, i, 2,5, k, 4,8,9,7$ is odd.
*132. Determine the number of inversions in the permutation $n, n-1, \ldots, 2,1$ if the initial permutation is $1,2, \ldots . n$.
*133. There are I inversions in the permutation $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. How many inversions are there in the permutation $\alpha_{n}, \alpha_{n-1}, \ldots$, α_{2}, α_{1} ?
132. Determine the number of inversions in the permutations:
(a) $1,3,5,7, \ldots, 2 n-1,2,4,6, \ldots, 2 n$,
(b) $2,4,6,8, \ldots, 2 n, 1,3,5, \ldots, 2 n-1$
if the initial permutation is $1,2, \ldots, 2 n$.
133. Determine the number of inversions in the permutations:
(a) $3,6,9, \ldots, 3 n, 1,4,7, \ldots, 3 n-2,2,5, \ldots, 3 n-1$,
(b) $1,4,7, \ldots, 3 n-2,2,5, \ldots, 3 n-1,3,6, \ldots, 3 n$
if the initial permutation is $1,2,3, \ldots, 3 n$.
134. Prove that if $a_{1}, a_{2}, \ldots, a_{n}$ is a permutation with I the number of inversions, then, when returned to its original ordering, the numbers $1,2, \ldots, n$ form a permutation with the same number of inversions I.
135. Determine the parity of the permutation of the letters $t h$, r, m, i, a, g, o, l if for the original ordering we take the words (a) logarithm, (b) algorithm.

Compare and explain the results.

Sec. 3. Definition of a Determinant

138. Indicate the signs of the following products that enter into a sixth-order determinant:
(a) $a_{23} a_{31} a_{42} a_{56} a_{14} a_{65}$, (b) $a_{32} a_{43} a_{14} a_{51} a_{66} a_{25}$.
139. Do the following products enter into a 5 th-order determinant:
(a) $a_{13} a_{24} a_{23} a_{41} a_{55}$,
(b) $a_{21} a_{13} a_{34} a_{55} a_{42}$?
140. Choose i and k so that the product $a_{1 i} a_{32} a_{4 k} a_{25} a_{53}$ enters into a fifth-order determinant with the plus sign.
141. Write out all the summands that enter into a fourth-order determinant with the plus sign and contain the factor a_{23}.
142. Write out all the summands that enter into a fifth-order determinant and are of the form $a_{14} a_{23} a_{3 \alpha_{3}} a_{4 \alpha_{3}} a_{5 \alpha_{6}}$. What will happen if $a_{14} a_{23}$ is taken outside the parentheses?
143. With what sign does the product of the elements of the principal diagonal enter an n th-order determinant?
144. What sign does the product of elements of the secondary diagonal have in an n th-order determinant?
*145. Guided solely by the definition of a determinant, prove that the determinant

$$
\left|\begin{array}{ccccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} \\
\beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{5} \\
a_{1} & a_{2} & 0 & 0 & 0 \\
b_{1} & b_{2} & 0 & 0 & 0 \\
c_{1} & c_{2} & 0 & 0 & 0
\end{array}\right|
$$

is zero.
146. Using only the definition of a determinant, evaluate the coefficients of x^{4} and x^{3} in the expression

$$
f(x)=\left|\begin{array}{lllr}
2 x & x & 1 & 2 \\
1 & x & 1 & -1 \\
3 & 2 & x & 1 \\
1 & 1 & 1 & x
\end{array}\right|
$$

147. Evaluate the determinants:
(a) $\left|\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 2 & 0 & \ldots & 0 \\ 0 & 0 & 3 & \ldots & 0 \\ \ldots & \ldots & \ldots & \cdots & . \\ 0 & 0 & 0 & \ldots & n\end{array}\right|$,
(b) $\left|\begin{array}{cccccc}0 & 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & 0 & \ldots & 1 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & 0 & 0 & \ldots & 0 & 0\end{array}\right|$,
(c) $\left|\begin{array}{ccccc}1 & a & a & \ldots & a \\ 0 & 2 & a & \ldots & a \\ 0 & 0 & 3 & \ldots & a \\ \ldots & \ldots & \ldots & \cdots & . \\ 0 & 0 & 0 & \ldots & n\end{array}\right|$.

Note: In all problems, determinants are taken to be of order n unless otherwise stated or unless it follows from the conditions of the problem.
148. $F(x)=x(x-1)(x-2) \ldots(x-n+1)$.

Compute the determinants:
(a) $\left|\begin{array}{ccccc}F(0) & F(1) & F(2) & & F(n) \\ F(1) & F(2) & F(3) & \ldots & F(n+1) \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ F(n) & F(n+1) & F(n+2) & \ldots & F(2 n)\end{array}\right|$;

Sec. 4. Basic Properties of Determinants

*149. Prove that an n th-order determinant, each element $a_{i k}$ of which is a complex conjugate of $a_{k i}$, is equal to a real number.
*150. Prove that a determinant of odd order is zero if all its elements satisfy the condition

$$
a_{i k}+a_{k i}=0
$$

(skew-symmetric determinant).
151. The determinant $\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right|$ is equal to Δ.

To what is the following determinant equal

$$
\left|\begin{array}{cccc}
a_{21} & a_{22} & \ldots & a_{2 n} \\
a_{31} & a_{32} & \ldots & a_{3 n} \\
\hdashline \cdots & \ldots & \ldots & \cdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n} \\
a_{11} & a_{12} & \ldots & a_{1 n}
\end{array}\right| ?
$$

152. How is a determinant affected if all columns are written in reversed order?
*153. What is the sum of

$$
\left.\Sigma\left|\begin{array}{cccc}
a_{1 \alpha_{1}} & a_{1 \alpha_{2}} & \ldots & a_{1 \alpha_{n}} \\
a_{2 \alpha_{1}} & a_{2 \alpha_{2}} & \ldots & a_{2 \alpha_{n}} \\
\cdots & \cdots & \cdots & \ldots
\end{array} a_{n}\right| \begin{array}{llll}
& a_{n \alpha_{n}}
\end{array} \right\rvert\,
$$

if the summation is taken over all permutations of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$?
*154. Solve the equations:
(a) $\left|\begin{array}{ccccc}1 & x & x^{2} & \ldots & x^{n-1} \\ 1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \\ 1 & a_{2} & a_{2}^{2} & \ldots & a_{2}^{n-1} \\ \ldots & \ldots & \ldots & \ldots & . \\ 1 & a_{n-1} & a_{n-1}^{2} & \ldots & a_{n-1}^{n-1}\end{array}\right|=0$
where $a_{1}, a_{2}, \ldots, a_{n-1}$ are all distinct;
(b) $\left|\begin{array}{ccccc}1 & 1 & 1 & & 1 \\ 1 & 1-x & 1 & & 1 \\ 1 & 1 & 2-x & \ldots & 1 \\ \cdots & \ldots & \cdots & \cdots & \ldots \\ 1 & 1 & 1 & \ldots & (n-1)-x\end{array}\right|=0$;
(c) $\left|\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & & a_{n} \\ a_{1} & a_{1}+a_{2}-x & a_{3} & & a_{n} \\ a_{1} & a_{2} & a_{2}+a_{3}-x & \ldots & a_{n} \\ \cdots \ldots & \ldots & \ldots & \ldots \ldots \ldots & \ldots \\ a_{1} & a_{2} & a_{3} & \ldots & a_{n-1}+a_{n}-x\end{array}\right|=0$.
*155. The numbers 204, 527 and 255 are divisible by 17 . Prove that 17 divides

$$
\left|\begin{array}{lll}
2 & 0 & 4 \\
5 & 2 & 7 \\
2 & 5 & 5
\end{array}\right|
$$

*156. Compute the determinant

$$
\left|\begin{array}{cccc}
\alpha^{2} & (\alpha+1)^{2} & (\alpha+2)^{2} & (\alpha+3)^{2} \\
\beta^{2} & (\beta+1)^{2} & (\beta+2)^{2} & (\beta+3)^{2} \\
\gamma^{2} & (\gamma+1)^{2} & (\gamma+2)^{2} & (\gamma+3)^{2} \\
\delta^{2} & (\delta+1)^{2} & (\delta+2)^{2} & (\delta+3)^{2}
\end{array}\right|
$$

157. Prove that

$$
\left|\begin{array}{ccc}
b+c & c+a & a+b \\
b_{1}+c_{1} & c_{1}+a_{1} & a_{1}+b_{1} \\
b_{2}+c_{2} & c_{2}+a_{2} & a_{2}+b_{2}
\end{array}\right|=2\left|\begin{array}{ccc}
a & b & c \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|
$$

158. Simplify the determinant $\left|\begin{array}{ll}a m+b p & a n+b q \\ c m+d p & c n+d q\end{array}\right|$ by expanding it into summands.
159. Find the sum of the cofactors of all elements of the determinants:
(a) $\left|\begin{array}{lllll}a_{1} & 0 & 0 & \ldots & 0 \\ 0 & a_{2} & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & a_{n} \\ 0 & 0 & 0 & \ldots & a_{n}\end{array}\right|$;
(b) $\left|\begin{array}{ccccc}0 & 0 & \ldots & 0 & a_{1} \\ 0 & 0 & \ldots & a_{2} & 0 \\ \ldots & \ldots & \ldots & \ldots \\ a_{n} & 0 & \ldots & 0 & 0\end{array}\right|$.
160. Expand the following determinant by the elements of the third row and evaluate:

$$
\left|\begin{array}{rrrr}
1 & 0 & -1 & -1 \\
0 & -1 & -1 & 1 \\
a & b & c & d \\
-1 & -1 & 1 & 0
\end{array}\right|
$$

161. Expand the determinant

$$
\left|\begin{array}{llll}
2 & 1 & 1 & x \\
1 & 2 & 1 & y \\
1 & 1 & 2 & z \\
1 & 1 & 1 & t
\end{array}\right|
$$

by the elements of the last column and evaluate.
162. Expand the determinant

$$
\left|\begin{array}{llll}
a & 1 & 1 & 1 \\
b & 0 & 1 & 1 \\
c & 1 & 0 & 1 \\
d & 1 & 1 & 0
\end{array}\right|
$$

by the elements of the first column and evaluate.

Sec. 5. Computing Determinants

Compute the determinants:

$$
\text { *163. }\left|\begin{array}{ll}
13547 & 13647 \\
28423 & 28523
\end{array}\right| \cdot \quad \text { 164. }\left|\begin{array}{rrr}
246 & 427 & 327 \\
1014 & 543 & 443 \\
-342 & 721 & 621
\end{array}\right| .
$$

165. $\left|\begin{array}{llll}3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3\end{array}\right|$ 166. $\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20\end{array}\right|$. \quad 167. $\left|\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3\end{array}\right|$
166.

$\left|\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64\end{array}\right| . \quad \mathbf{1 6 9 .}\left|\begin{array}{rrrr}1 & 2 & 3 & 4 \\ -2 & 1 & -4 & 3 \\ 3 & -4 & -1 & 2 \\ 4 & 3 & -2 & -1\end{array}\right|$.
170.
$\left|\begin{array}{lllll}2 & 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 & 1 \\ 1 & 1 & 4 & 1 & 1 \\ 1 & 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 1 & 6\end{array}\right| . \quad$ 171. $\left|\begin{array}{ccccc}5 & 6 & 0 & 0 & 0 \\ 1 & 5 & 6 & 0 & 0 \\ 0 & 1 & 5 & 6 & 0 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 1 & 5\end{array}\right|$.
172.

$$
\left|\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & a & b \\
1 & a & 0 & c \\
1 & b & c & 0
\end{array}\right| . \quad \text { 173. }\left|\begin{array}{ccc}
x & y & x+y \\
y & x+y & x \\
x+y & x & y
\end{array}\right| .
$$

174.

$$
\left.\left|\begin{array}{rrrrr}
x & 0 & -1 & 1 & 0 \\
1 & x & -1 & 1 & 0 \\
1 & 0 & x-1 & 0 & 1 \\
0 & 1 & -1 & x & 1 \\
0 & 1 & -1 & 0 & x
\end{array}\right| . \quad \mathbf{1 7 5 .} \right\rvert\, \begin{array}{cccc}
1+x & 1 & 1 & 1 \\
1 & 1-x & 1 & 1 \\
1 & 1 & 1+z & 1 \\
1 & 1 & 1 & 1-z
\end{array}
$$

176.

$\left|\begin{array}{cccc}1 & 1 & 2 & 3 \\ 1 & 2-x^{2} & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 9-x^{2}\end{array}\right|$.

$$
\text { 177. }\left|\begin{array}{lll}
\cos (a-b) & \cos (b-c) & \cos (c-a) \\
\cos (a+b) & \cos (b+c) & \cos (c+a) \\
\sin (a+b) & \sin (b+c) & \sin (c+a)
\end{array}\right| .
$$

178.

$$
\left|\begin{array}{rrrr}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right| .
$$

*179. $\left|\begin{array}{rrrrr}1 & 2 & 3 & \ldots & n \\ -1 & 0 & 3 & \ldots & n \\ -1 & -2 & 0 & \ldots & n \\ \ldots & \cdots & \ldots & \ldots & n \\ -1 & -2 & -3 & \ldots & 0\end{array}\right|$.
*180. $\left|\begin{array}{ccccc}1 & a_{1} & a_{2} & & a_{n} \\ 1 & a_{1}+b_{1} & a_{2} & & a_{n} \\ 1 & a_{1} & a_{2}+b_{2} & \ldots & a_{n} \\ \ldots & \ldots & \ldots & \ldots & \cdots \\ 1 & a_{1} & a_{2} & \ldots & a_{n}+b_{n}\end{array}\right|$.
*181. $\left|\begin{array}{cccccc}1 & x_{1} & x_{2} & \ldots & x_{n-1} & x_{n} \\ 1 & x & x_{2} & \ldots & x_{n-1} & x_{n} \\ 1 & x_{1} & x & \ldots & x_{n-1} & x_{n} \\ \cdots & \cdots & \ldots & \ldots & \cdots & \cdots \\ 1 & x_{1} & x_{2} & \ldots & x & x_{n} \\ 1 & x_{1} & x_{2} & \ldots & x_{n-1} & x\end{array}\right|$.
*182. $\left|\begin{array}{cccccc}1 & 2 & 3 & \ldots & n-1 & n \\ 1 & 3 & 3 & \ldots & n-1 & n \\ 1 & 2 & 5 & \ldots & n-1 & n \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right|$.
*183. $\left|\begin{array}{ccccc}1 & 2 & 2 & \ldots & 2 \\ 2 & 2 & 2 & \ldots & 2 \\ 2 & 2 & 3 & \ldots & 2 \\ \ldots & \ldots & \ldots & \ldots & n\end{array}\right|$.
*184. $\left.\left\lvert\, \begin{array}{ccccccc}1 & b_{1} & 0 & 0 & \ldots & 0 & 0 \\ -1 & 1-b_{1} & b_{2} & 0 & \ldots & 0 & 0 \\ 0 & -1 & 1-b_{2} & b_{3} & \ldots & 0 & 0 \\ \cdots & \ldots & \cdots & \ldots & \ldots & \ldots & \ldots\end{array}\right.\right]$.
*185.
$\left|\begin{array}{ccccc}a & a+h & a+2 h & \ldots & a+(n-1) h \\ -a & a & 0 & \ldots & 0 \\ 0 & -a & a & \ldots & 0 \\ \ldots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a\end{array}\right|$.
*186. $\left|\begin{array}{cccc}a & -(a+h) & \ldots & (-1)^{n-1}[a+(n-1) h] \\ a & a & \ldots & 0 \\ 0 & a & \ldots & 0 \\ \cdots & \cdots & \cdots & \ldots \\ 0 & 0 & \ldots & \ldots\end{array}\right|$.
*187. $\left|\begin{array}{cccccccc}1 & C_{n}^{1} & C_{n}^{2} & C_{n}^{3} & \ldots & C_{a}^{n-2} & C_{n}^{n-1} & C_{n}^{n} \\ 1 & C_{n-1}^{1} & C_{n-1}^{2} & C_{n-1}^{3} & \ldots & C_{n-1}^{n-2} & C_{n-1}^{n-1} & 0 \\ 1 & C_{n-2}^{1} & C_{n-2}^{2} & C_{n-2}^{3} & \ldots & C_{n-2}^{n-2} & 0 & 0 \\ \cdots & \cdots\end{array}\right| \cdots \cdots \cdots \cdots \cdots$,
*188. $\left|\begin{array}{lrrrrr}a_{0} & -1 & 0 & \ldots & 0 & 0 \\ a_{1} & x & -1 & \ldots & 0 & 0 \\ a_{2} & 0 & x & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{n-1} & 0 & 0 & \ldots & x & -1 \\ a_{n} & 0 & 0 & \ldots & 0 & x\end{array}\right|$.
*189.
$\left|\begin{array}{ccccccc}n & n-1 & n-2 & \ldots & 3 & 2 & 1 \\ -1 & x & 0 & \ldots & 0 & 0 & 0 \\ 0 & -1 & x & \ldots & 0 & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \cdots \\ 0 & 0 & 0 & \ldots & -1 & x & 0 \\ 0 & 0 & 0 & \ldots & 0 & -1 & x\end{array}\right|$.
*190. Compute the difference $f(x+1)-f(x)$, where

$$
f(x)=\left|\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & x \\
1 & 2 & 0 & 0 & \ldots & 0 & x^{2} \\
1 & 3 & 3 & 0 & \ldots & 0 & x^{3} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \cdots & \cdots
\end{array}\right| .
$$

Compute the determinants:
*191.

$$
\left|\begin{array}{cccccc}
x & a_{1} & a_{2} & \ldots & a_{n-1} & 1 \\
a_{1} & x & a_{2} & \ldots & a_{n-1} & 1 \\
a_{1} & a_{2} & x & \ldots & a_{n-1} & 1 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right| . \quad{ }^{* 192 .}\left|\begin{array}{ccccc}
x & a & a & \ldots & a \\
a & x & a & \ldots & a \\
a_{1} & a_{2} & a_{3} & \ldots & x
\end{array}\right| 1 .\left|\begin{array}{ccccc}
a & a & x & \ldots & a \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n}
\end{array}\right| .
$$

193.

$\left|\begin{array}{cccccc}x & a & a & \ldots & a & a \\ -a & x & a & \ldots & a & a \\ -a & -a & x & \ldots & a & a \\ \cdots & \cdots & \ldots & \ldots & \ldots & \cdots \\ -a & -a & -a & \ldots & -a & x\end{array}\right|$.
*194. $\left|\begin{array}{cccccc}-a_{1} & a_{1} & 0 & \ldots & 0 & 0 \\ 0 & -a_{2} & a_{2} & \ldots & 0 & 0 \\ 0 & 0 & -a_{3} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & -a_{n} & a_{n} \\ 1 & 1 & 1 & \ldots & 1 & 1\end{array}\right|$.
*195. $\left|\begin{array}{cccccc}a_{1} & -a_{2} & 0 & \ldots & 0 & 0 \\ 0 & a_{2} & -a_{3} & \ldots & 0 & 0 \\ 0 & 0 & a_{3} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & a_{n-1} & -a_{n} \\ 1 & 1 & 1 & \ldots & 1 & 1+a_{n}\end{array}\right|$.

*198.

$$
\left|\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & a_{1}+a_{2} & \ldots & a_{1}+a_{n} \\
1 & a_{2}+a_{1} & 0 & \ldots & a_{2}+a_{n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & a_{n}+a_{1} & a_{n}+a_{2} & \ldots & 0
\end{array}\right| .
$$

*199. $\left|\begin{array}{cccccc}1 & 2 & 3 & \ldots & n-1 & n \\ 1 & 1 & 1 & \ldots & 1 & 1-n \\ 1 & 1 & 1 & \ldots & 1-n & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & 1-n & 1 & \ldots & 1 & 1\end{array}\right|$.
*200. $\left|\begin{array}{cccccc}2 & 1-\frac{1}{n} & 1-\frac{1}{n} & \ldots & 1-\frac{1}{n} \\ 1-\frac{1}{n} & 2 & 1-\frac{1}{n} & \ldots & 1-\frac{1}{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1-\frac{1}{n} & 1-\frac{1}{n} & 1-\frac{1}{n} & \ldots & 2\end{array}\right|$ (order $n+1$).
*201. $\left|\begin{array}{cccccc}1 & a & a^{2} & a^{3} & \ldots & a^{n} \\ x_{11} & 1 & a & a^{2} & \ldots & a^{n-1} \\ x_{21} & x_{22} & 1 & a & \ldots & a^{n-2} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \cdots \\ x_{n 1} & x_{n 2} & x_{n 3} & x_{n 4} & \ldots & 1\end{array}\right|$.
*202. $\left|\begin{array}{cccccc}1 & 2 & 3 & 4 & \ldots & n \\ 2 & 1 & 2 & 3 & \ldots & n-1 \\ 3 & 2 & 1 & 2 & \ldots & n-2 \\ 4 & 3 & 2 & 1 & \ldots & n-3 \\ \ldots & \ldots & \ldots & \ldots & \ldots . \\ n & n-1 & n-2 & n-3 & \ldots & 1\end{array}\right|$.
*203. $\left|\begin{array}{llllllll}a_{0} & b_{1} & 0 & 0 & \ldots & 0 & 0 \\ a_{1} & -b_{0} & b_{2} & 0 & \ldots & 0 & 0 \\ a_{2} & 0 & -b_{1} & b_{3} & \ldots & 0 & 0 \\ \ldots & \ldots & \cdots & \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{n-1} & 0 & 0 & 0 & \ldots & -b_{n-2} & b_{n} \\ a_{n} & 0 & 0 & 0 & \ldots & 0 & -b_{n-1}\end{array}\right|$.
*204.

$\left.\left.\left|\begin{array}{cccccc}x & y & 0 & \ldots & 0 & 0 \\ 0 & x & y & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & . \\ 0 & 0 & 0 & \ldots & x & y \\ y & 0 & 0 & \ldots & 0 & x\end{array}\right| \cdot \right\rvert\, \begin{array}{cccc}1+x_{1} y_{1} & 1+x_{1} y_{2} & \ldots & 1+x_{1} y_{n} \\ 1+x_{2} y_{1} & 1+x_{2} y_{2} & \ldots & 1+x_{2} y_{n} \\ \ldots & \ldots & \ldots & \ldots\end{array}\right]$.
207. $\left.\left\lvert\, \begin{array}{cccc}a_{1}-b_{1} & a_{1}-b_{2} & \ldots & a_{1}-b_{n} \\ a_{2}-b_{1} & a_{2}-b_{2} & \ldots & a_{2}-b_{n} \\ \ldots & \ldots & \ldots & \ldots\end{array}\right.\right)$.
*208. $\left.\left\lvert\, \begin{array}{rrrr}1+a_{1}+x_{1} & a_{1}+x_{2} & \ldots & a_{2}+x_{n} \\ a_{2}+x_{1} & 1+a_{2}+x_{2} & \ldots & a_{2}+x_{n} \\ \ldots \ldots \ldots \ldots & \ldots & \ldots & \ldots\end{array}\right.\right)$.
209.

$$
\left|\begin{array}{cccc}
a^{n}-\alpha & a^{n+1}-\alpha & \ldots & a^{n+p-1}-\alpha \\
a^{n+p}-\alpha & a^{n+p+1}-\alpha & \ldots & a^{n+2 p-1}-\alpha \\
\ldots \ldots \ldots \ldots & \ldots \ldots \ldots & \ldots & \cdots \cdots \cdots \\
a^{n+p(p-1)}-\alpha & a^{n+p(p-1)+1}-\alpha & \ldots & a^{n+p^{2}-1}-\alpha
\end{array}\right| .
$$

210. Prove that the determinant

$$
\left.\left\lvert\, \begin{array}{cccc}
f_{1}\left(a_{1}\right) & f_{1}\left(a_{2}\right) & \ldots & f_{1}\left(a_{n}\right) \\
f_{2}\left(a_{1}\right) & f_{2}\left(a_{2}\right) & \ldots & f_{2}\left(a_{n}\right) \\
\ldots & \cdots & \cdots & \ldots
\end{array}\right.\right)
$$

is equal to zero if $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are polynomials in x, each of degree not exceeding $n-2$, and the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are arbitrary.

Compute the determinants:
*211. $\left|\begin{array}{ccccccc}1 & 2 & 3 & 4 & \ldots & n-1 & n \\ -1 & x & 0 & 0 & \ldots & 0 & 0 \\ \cdots & \ldots & \ldots & \ldots & \ldots & \ldots & \\ 0 & 0 & 0 & 0 & \ldots & x & 0 \\ 0 & 0 & 0 & 0 & \ldots & -1 & x\end{array}\right|$.
*212.
$\left.\left\lvert\, \begin{array}{cccccc}a_{1}+x_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & a_{n} \\ -x_{1} & x_{2} & 0 & \ldots & 0 & 0 \\ 0 & -x_{2} & x_{3} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right.\right]$.
*213.
$\left|\begin{array}{cccccc}a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \\ -y_{1} & x_{1} & 0 & \ldots & 0 & 0 \\ 0 & -y_{2} & x_{2} & \ldots & 0 & 0 \\ \ldots & \cdots & \cdots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & -y_{n} & x_{n}\end{array}\right| .\left|\begin{array}{ccccc}0 & 1 & 1 & \ldots & 1 \\ 1 & a_{1} & 0 & \ldots & 0 \\ 1 & 0 & a_{2} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \cdots \\ 1 & 0 & 0 & \ldots & a_{n}\end{array}\right|$.
*215. $\left|\begin{array}{ccccc}n!a_{0} & (n-1)!a_{1} & (n-2)!a_{2} & \ldots & a_{n} \\ -n & x & 0 & \ldots & 0 \\ 0 & -(n-1) & x & \ldots & 0 \\ \cdots & \cdots & \cdots & \ldots & \ldots \\ 0 & 0 & 0 & \cdots & \cdots\end{array}\right|$.
216. $\left|\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 1 & a_{1} & 0 & 0 & 0 \\ 1 & 1 & a_{2} & 0 & 0 \\ 1 & 0 & 1 & a_{3} & 0 \\ 1 & 0 & 0 & 1 & a_{4}\end{array}\right|$.

Write an n th-order determinant of this structure and compute it.

Compute the determinants:
218.
$\left|\begin{array}{cccccc}\alpha+\beta & \alpha \beta & 0 & \ldots & 0 & 0 \\ 1 & \alpha+\beta & \alpha \beta & \ldots & 0 & 0 \\ 0 & 1 & \alpha+\beta & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & 1 & \alpha+\beta\end{array}\right| .\left|\begin{array}{cccccc}2 & 1 & 0 & 0 & \ldots & 0 \\ 1 & 2 & 1 & 0 & \ldots & 0 \\ 0 & 1 & 2 & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & 2\end{array}\right|$.
*219. $\left|\begin{array}{cccccc}2 \cos \theta & 1 & 0 & \ldots & 0 & 0 \\ 1 & 2 \cos \theta & 1 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right|$.
220.
$\left.\left\lvert\, \begin{array}{ccccc}\cos \theta & 1 & 0 & \ldots & 0 \\ 1 & 2 \cos \theta & 1 & \ldots & 0 \\ 0 & 1 & 2 \cos \theta & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right.\right]$.
*221. *222.
$\left.\left|\begin{array}{ccccc}x & 1 & 0 & \ldots & 0 \\ 1 & x & 1 & \ldots & 0 \\ 0 & 1 & x & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & x\end{array}\right| \cdot \left\lvert\, \begin{array}{ccccc}x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} & \ldots & x_{1} y_{n} \\ x_{1} y_{2} & x_{2} y_{2} & x_{2} y_{3} & \ldots & x_{2} y_{n} \\ x_{1} y_{3} & x_{2} y_{3} & x_{3} y_{3} & \ldots & x_{3} y_{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right.\right]$.
*223. $\left|\begin{array}{ccccc}1+a_{1} & 1 & 1 & \ldots & 1 \\ 1 & 1+a_{2} & 1 & \ldots & 1 \\ 1 & 1 & 1+a_{3} & \ldots & 1 \\ \ldots & \ldots & \ldots & \cdots & \ldots \\ 1 & 1 & 1 & \ldots & 1+a_{n}\end{array}\right|$.
224. $\left|\begin{array}{cccccc}1 & 1 & & 1 & a_{1}+1 \\ 1 & 1 & \ldots & a_{2}+1 & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & a_{n-1}+1 & \ldots & 1 & 1 \\ a_{n}+1 & 1 & \ldots & 1 & 1\end{array}\right|$.
$* 225$.
$\left|\begin{array}{ccccc}a_{1} & x & x & \ldots & x \\ x & a_{2} & x & \ldots & x \\ x & x & a_{3} & \ldots & x \\ \ldots & x & \ldots & \ldots & a_{n}\end{array}\right|$.
*226.
$\left.\left|\begin{array}{cccccc}x_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & a_{n} \\ a_{1} & x_{2} & a_{3} & \ldots & a_{n-1} & a_{n} \\ a_{1} & a_{2} & x_{3} & \ldots & a_{n-1} & a_{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{1} & a_{2} & a_{3} & \ldots & x_{n-1} & a_{n} \\ a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & x_{n}\end{array}\right| . \left\lvert\, \begin{array}{ccccc}x_{1} & a_{2} b_{1} & a_{3} b_{1} & \ldots & a_{n} b_{1} \\ a_{1} b_{2} & x_{2} & a_{3} b_{2} & \ldots & a_{n} b_{2} \\ a_{1} b_{3} & a_{2} b_{3} & x_{3} & \ldots & a_{n} b_{3} \\ \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right.\right]$.
*228.

$$
\left.\left\lvert\, \begin{array}{ccccc}
x_{1}-m & x_{2} & x_{3} & \ldots & x_{n} \\
x_{1} & x_{2}-m & x_{3} & \ldots & x_{n} \\
x_{1} & x_{2} & x_{3}-m & \cdots & x_{n} \\
\cdots \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right.\right)
$$

229. Solve the equation

$$
\left|\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n}-\alpha_{n} x \\
a_{1} & a_{2} & \ldots & a_{n-1}-\alpha_{n-1} x & a_{n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \cdots
\end{array}\right|=0 .
$$

Compute the determinants:

$$
\text { *230. }\left|\begin{array}{ccccccc}
a & 0 & 0 & \ldots & 0 & 0 & b \\
0 & a & 0 & \ldots & 0 & b & 0 \\
0 & 0 & a & \ldots & b & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & b & \ldots & a & 0 & 0 \\
0 & b & 0 & \ldots & 0 & a & 0 \\
b & 0 & 0 & \ldots & 0 & 0 & a
\end{array}\right|
$$

(of order $2 n$).

*231. $\left|\right.$| 1 | $-b$ | $-b$ | $-b$ | | $-b$ |
| :---: | :---: | ---: | ---: | :---: | :---: |
| 1 | $n a$ | $-2 b$ | $-3 b$ | \ldots | $-(n-1) b$ |
| 1 | $(n-1) a$ | a | $-3 b$ | \ldots | $-(n-1) b$ |
| 1 | $(n-2) a$ | a | a | \ldots | $-(n-1) b$ |
| \ldots | \ldots | \ldots | \ldots | \ldots | \ldots |$|$.

*232. $\left|\begin{array}{cccc}\left(x-a_{1}\right)^{2} & a_{2}^{2} & & a_{n}^{2} \\ a_{1}^{2} & \left(x-a_{2}\right)^{2} & \ldots & a_{n}^{2} \\ \cdots & \ldots & \cdots & \cdots\end{array}\right|$.
*233. $\left|\begin{array}{cccc}\left(x-a_{1}\right)^{2} & a_{1} a_{2} & \ldots & a_{1} a_{n} \\ a_{1} a_{2} & \left(x-a_{2}\right)^{2} & \ldots & a_{2} a_{n} \\ \ldots & \cdots \cdots \cdots & \ldots & \cdots \\ a_{1} a_{n} & a_{2} a_{n} & \ldots & \left(x-a_{n}\right)^{2}\end{array}\right|$.
*234. $\left.\left\lvert\, \begin{array}{cccccc}1-b_{1} & b_{2} & 0 & 0 & \ldots & 0 \\ -1 & 1-b_{2} & b_{3} & 0 & \ldots & 0 \\ 0 & -1 & 1-b_{3} & b_{4} & \ldots & 0 \\ \ldots & \ldots & \cdots & \cdots & \ldots & \ldots\end{array}\right.\right]$.
*235. $\left|\begin{array}{ccccccc}0 & a_{2} & a_{3} & a_{4} & \ldots & a_{n-1} & a_{n} \\ b_{1} & 0 & a_{3} & a_{4} & \ldots & a_{n-1} & a_{n} \\ b_{1} & b_{2} & 0 & a_{4} & \ldots & a_{n-1} & a_{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ b_{1} & b_{2} & b_{3} & b_{4} & \ldots & 0 & a_{n} \\ b_{1} & b_{2} & b_{3} & b_{4} & \ldots & b_{n-1} & 0\end{array}\right|$.
*236.
*237.
$\left|\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & \ldots & n \\ 1 & 1 & 2 & 3 & 4 & \ldots & n-1 \\ 1 & x & 1 & 2 & 3 & \ldots & n-2 \\ 1 & x & x & 1 & 2 & \ldots & n-3 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \cdots\end{array}\right| \cdot\left|\begin{array}{cccccc}1 & 2 & 3 & 4 & \ldots & n \\ x & 1 & 2 & 3 & \ldots & n-1 \\ x & x & 1 & 2 & \ldots & n-2 \\ x & x & x & 1 & \ldots & n-3 \\ \ldots & \ldots & x & x & \ldots & 1\end{array}\right|$.

*238.	$a_{0} \therefore n$	$a_{1} \cdot \lambda^{n-1}$	$a_{2} \cdot x^{n-2}$	$a_{n-1} \lambda$	a_{n}
	$a_{0} x$	b_{1}	0	0	0
	$a_{0} \lambda^{2}$	$a_{1} x$	b_{2}	0	0
	$a_{0} x^{n-1}$	$a_{1} x^{n-2}$	$a_{2} x^{n-3}$	b_{n-1}	0
	$a_{0} x^{n}$	$a_{1} x^{n-1}$	$a_{2} x^{n-2}$	$a_{n-1} x$	b_{n}

*239. Prove that the determinant
$\left|\begin{array}{ccccc}a_{00} x^{n} & a_{01} x^{n-1} & a_{02} x^{n-2} & \ldots & a_{0 n} \\ a_{10} x & a_{11} & 0 & & 0 \\ a_{20} x^{2} & a_{21} x & a_{22} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right|=x^{n} \cdot\left|\begin{array}{ccccc}a_{00} & a_{01} & a_{02} & \ldots & a_{0 n} \\ a_{10} & a_{11} & 0 & \ldots & 0 \\ a_{n 0} x^{n} & a_{n 1} x^{n-1} & a_{n 2} x^{n-2} & \ldots & a_{n n}\end{array}\right|$.

Compute the determinants:

*240.

*242.
$\left.\left|\begin{array}{cccccc}1 & 1 & 0 & 0 & \ldots & 0 \\ 1 & C_{2}^{1} & C_{2}^{2} & 0 & \ldots & 0 \\ 1 & C_{3}^{1} & C_{3}^{2} & C_{3}^{3} & \ldots & 0 \\ \cdots & \ldots & \ldots & \ldots & \ldots & \ldots . \\ 1 & C_{n}^{1} & C_{n}^{2} & C_{n}^{3} & \ldots & C_{n}^{n-1}\end{array}\right| . \left\lvert\, \begin{array}{cccc}C_{m}^{k} & C_{m}^{k+1} & \ldots & C_{m}^{k+n} \\ C_{m+1}^{k} & C_{m+1}^{k+1} & \ldots & C_{m+1}^{k+n} \\ \ldots & \cdots & \cdots+\cdots & \ldots\end{array}\right.\right)$.
*244. $\left.\left\lvert\, \begin{array}{cccc}C_{k+m}^{m} & C_{k+m+1}^{m} & \ldots & C_{k+2 m}^{m} \\ C_{k+m+1}^{m} & C_{k+m+2}^{m} & \ldots & C_{k+2 m+1}^{m} \\ \cdots \cdots \cdots & \cdots & \cdots & \cdots\end{array}\right.\right)$.
*245. $\left|\begin{array}{cccccc}1 & 0 & 0 & \ldots & 0 & 1 \\ 1 & C_{1}^{1} & 0 & \ldots & 0 & x \\ 1 & C_{2}^{1} & C_{2}^{2} & \ldots & 0 & x^{2} \\ \ldots & \ldots & \cdots & \ldots & \ldots & \cdots \\ 1 & C_{n}^{1} & C_{n}^{2} & \ldots & C_{n}^{n-1} & x^{n}\end{array}\right|$.
*246. $\left|\begin{array}{llllll}1 & 0 & 0 & 0 & \ldots & 1 \\ 1 & 1! & 0 & 0 & \ldots & x \\ 1 & 2 & 2! & 0 & \ldots & x^{2} \\ 1 & 3 & 3 \cdot 2 & 3! & \ldots & x^{3} \\ \ldots & \ldots & \ldots \ldots \ldots . \ldots \\ 1 & n & n(n-1) & n(n-1)(n-2) & \ldots & x^{n}\end{array}\right|$.
*247.
$\left|\begin{array}{cccccc}\alpha & \alpha+\delta & \alpha+2 \delta & \alpha+3 \delta & \ldots & \alpha+(n-1) \delta \\ \alpha & 2 \alpha+\delta & 3 \alpha+3 \delta & 4 \alpha+6 \delta & \ldots & C_{n}^{1} \alpha+C_{n}^{2} \delta \\ \alpha & 3 \alpha+\delta & 6 \alpha+4 \delta & 10 \alpha+10 \delta & \ldots & C_{n+1}^{2} \alpha+C_{n+1}^{3} \delta \\ \cdots & \ldots \ldots \ldots \ldots \ldots \ldots & \ldots \ldots & \ldots \ldots & \ldots & \ldots\end{array}\right|$.
*248.
*249.
$\left|\begin{array}{cccccc}x & y & y & \ldots & y & y \\ z & x & y & \ldots & y & y \\ z & z & x & \ldots & y & y \\ \ldots & z & \ldots & \ldots & x & y \\ z & z & z & \ldots & z & x\end{array}\right|$.
250.
251.
$\left|\begin{array}{cccccc}c_{1} & a & a & \ldots & a & 1 \\ b & c_{2} & a & \ldots & a & 1 \\ b & b & c_{3} & \ldots & a & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots & . \\ b & b & b & \ldots & c_{n} & 1 \\ 1 & 1 & 1 & \ldots & 1 & 0\end{array}\right|$.
*252.

$$
\left|\begin{array}{cccccc}
\lambda & a & a & a & \ldots & a \\
b & \alpha & \beta & \beta & \ldots & \beta \\
b & \beta & \alpha & \beta & \ldots & \beta \\
b & \beta & \beta & \alpha & \ldots & \beta \\
\ldots & \ldots & \ldots & \ldots & \ldots & . \\
b & \beta & \beta & \beta & \ldots & \alpha
\end{array}\right| \cdot\left|\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
2 & 3 & 4 & \ldots & 1 \\
3 & 4 & 5 & \ldots & 2 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
n & 1 & 2 & \ldots & n-1
\end{array}\right|
$$

*254. $\left|\begin{array}{ccccc}a & a+h & a+2 h & \ldots & a+(n-1) \boldsymbol{h} \\ a+h & a+2 h & a+3 h & \ldots & a \\ a+2 h & a+3 h & a+4 h & \ldots & a+h \\ \ldots \ldots \ldots & \ldots \ldots & \ldots & \ldots & \ldots \\ a+(n-1) h & a & a+h & \ldots & a+(n-2) h\end{array}\right|$.
255. $\left|\begin{array}{ccccc}1 & x & x^{2} & \ldots & x^{n-1} \\ x^{n-1} & 1 & x & \ldots & x^{n-2} \\ \cdots & \cdots & \cdots & \ldots & \cdots \\ x & x^{2} & x^{3} & \ldots & 1\end{array}\right| . \quad$ *256. $\left|\begin{array}{cccc}a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a\end{array}\right|$.
257.
$\left|\begin{array}{llllllll}a & b & c & d & e & f & g & h \\ b & a & d & c & f & e & h & g \\ c & d & a & b & g & h & e & f \\ d & c & b & a & h & g & f & e \\ e & f & g & h & a & b & c & d \\ f & e & h & g & b & a & d & c \\ g & h & e & f & c & d & a & b \\ h & g & f & e & d & c & b & a\end{array}\right| .\left|\begin{array}{ccccc}x & a_{1} & a_{2} & \ldots & a_{n} \\ a_{1} & x & a_{2} & \ldots & a_{n} \\ \cdots & \ldots & a_{1} & \ldots & \ldots \\ a_{1} & a_{2} & a_{3} & \ldots & x\end{array}\right|$.
*259. $\left|\begin{array}{cccccc}\cos ^{n-1} \varphi_{1} & \cos ^{n-2} \varphi_{1} & \ldots & \cos \varphi_{1} & 1 \\ \cos ^{n-1} \varphi_{2} & \cos ^{n-2} \varphi_{2} & \ldots & \cos \varphi_{2} & 1 \\ \cdots \cdots \cdots \cdots & \cdots & \cdots & \ldots & \cdots & \cdots \\ \cos ^{n-1} \varphi_{n} & \cos ^{n-2} \varphi_{n} & \ldots & \cos \varphi_{n} & 1\end{array}\right|$.
260.
$\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ \sin \varphi_{1} & \sin \varphi_{2} & \ldots & \sin \varphi_{n} \\ \sin ^{2} \varphi_{1} & \sin ^{2} \varphi_{2} & \ldots & \sin ^{2} \varphi_{n} \\ \ldots \ldots & \ldots & \ldots & \cdots \\ \sin ^{n-1} \varphi_{1} & \sin ^{n-1} \varphi_{2} & \ldots & \sin ^{n-1} \varphi_{n}\end{array}\right|$.
261.

$$
\left|\begin{array}{cccc}
a^{n} & (a-1)^{n} & \ldots & (a-n)^{n} \\
a^{n-1} & (a-1)^{n-1} & \ldots & (a-n)^{n-1} \\
\cdots \cdots & \cdots \cdots \cdots & \cdots & \cdots \cdots \cdots \\
a & a-1 & \cdots & a-n \\
1 & 1 & \cdots & 1
\end{array}\right| .
$$

262.

$\left|\begin{array}{ccccc}\left(a_{1}+x\right)^{n} & \left(a_{1}+x\right)^{n-1} & & a_{1}+x & 1 \\ \left(a_{2}+x\right)^{n} & \left(a_{2}+x\right)^{n-1} & \ldots & a_{2}+x & 1 \\ \cdots \cdots \cdots & \cdots \cdots \cdots \cdots & \cdots & \cdots \cdots \cdots & \\ \left(a_{n+1}+x\right)^{n} & \left(a_{n+1}+x\right)^{n-1} & \ldots & a_{n+1}+x & 1\end{array}\right|$.
263.
$\left|\begin{array}{ccccc}(2 n-1)^{n} & (2 n-2)^{n} & \ldots & n^{n} & (2 n)^{n} \\ (2 n-1)^{n-1} & (2 n-2)^{n-1} & \ldots & n^{n-1} & (2 n)^{n-1} \\ \cdots \cdots \cdots & \cdots \cdots & \cdots & \cdots & \cdots \\ 2 n-1 & 2 n-2 & \cdots & n & 2 n \\ 1 & 1 & \ldots & 1 & 1\end{array}\right|$.
*264.
$\left|\begin{array}{ccccc}w_{1} & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \\ w_{2} & a_{2} & a_{2}^{2} & \ldots & a_{2}^{n-1} \\ \ldots & \ldots & \ldots & \ldots & . \\ w_{n} & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n-1}\end{array}\right|$.
*265.

266.

267.	1	1	1
	$\varphi_{1}\left(x_{1}\right)$	$\varphi_{1}\left(x_{2}\right)$	$\varphi_{1}\left(x_{n}\right)$
	$\varphi_{2}\left(x_{1}\right)$	$\varphi_{2}\left(x_{2}\right)$	$\varphi_{2}\left(x_{n}\right)$
	$\varphi_{n-1}\left(x_{1}\right)$	${ }_{n-1}\left(x_{2}\right)$	${ }_{n-1}\left(x_{n}\right)$

where $\varphi_{k}(x)=x^{k}+a_{1 k} x^{k-1}+\ldots+a_{k k}$.
268. $\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ F_{1}\left(\cos \varphi_{1}\right) & F_{1}\left(\cos \varphi_{2}\right) & \ldots & F_{1}\left(\cos \varphi_{n}\right) \\ F_{2}\left(\cos \varphi_{1}\right) & F_{2}\left(\cos \varphi_{2}\right) & \ldots & F_{2}\left(\cos \varphi_{n}\right) \\ \ldots \ldots \ldots & \ldots & \ldots & \ldots\end{array}\right|$
where $F_{k}(x)=a_{0 k} x^{k}+a_{1 k} x^{k-1}+\ldots+a_{k k}$.
*269. $\left|\begin{array}{cccc}1 & 1 & \cdots & 1 \\ \binom{x_{1}}{1} & \binom{x_{2}}{1} & \cdots & \binom{x_{n}}{1} \\ \binom{x_{1}}{2} & \binom{x_{2}}{2} & \cdots & \binom{x_{n}}{2} \\ \cdots \cdots & \cdots & \cdots & \cdots\end{array}\right|$
where $\binom{x}{k}=\frac{x(x-1) \ldots(x-k+1)}{1 \cdot 2 \ldots k}$.
*270. Prove that the value of the determinant

$$
\left|\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \ldots & a_{2}^{n-1} \\
\ldots & \cdots & \ldots & \ldots & \cdots \\
1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n-1}
\end{array}\right|
$$

is divisible by $1^{n-1} 2^{n-2} \ldots(n-1)$ for integral $a_{1}, a_{2}, \ldots, a_{n}$.
Compute the determinants:
*271.
*272.
$\left|\begin{array}{ccccc}1 & 2 & 3 & \ldots & n \\ 1 & 2^{3} & 3^{3} & \ldots & n^{3} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & 2^{2 n-1} & 3^{2 n-1} & \ldots & n^{2 n-1}\end{array}\right| \cdot\left|\begin{array}{cccc}\frac{x_{1}}{x_{1}-1} & \frac{x_{2}}{x_{2}-1} & \ldots & x_{n}-1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\ \ldots \ldots & \ldots \ldots & \ldots & \ldots \\ x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}\end{array}\right|$.
*273. $\left|\begin{array}{cccccc}a_{1}^{n} & a_{1}^{n-1} b_{1} & a_{1}^{n-2} b_{1}^{2} & \ldots & a_{1} b_{1}^{n-1} & b_{1}^{n} \\ a_{2}^{n} & a_{2}^{n-1} b_{2} & a_{2}^{n-2} b_{2}^{2} & \ldots & a_{2} b_{2}^{n-1} & b_{2}^{n} \\ \cdots \cdots \cdots \cdots & \ldots & \cdots & \ldots & \ldots & \ldots \\ a_{n+1}^{n} & a_{n+1}^{n-1} b_{n+1} & a_{n+1}^{n-2} b_{n+1}^{2} & \ldots & a_{n+1} b_{n+1}^{n-1} & b_{n+1}^{n}\end{array}\right|$.
274.

*275.
$\left|\begin{array}{cccccc}a_{1}^{2 n}+1 & a_{1}^{2 n-1}+a_{1} & a_{1}^{2 n-2}+a_{1}^{2} & \ldots & a_{1}^{n+1}+a_{1}^{n-1} & a_{1}^{n} \\ a_{2}^{2 n}+1 & a_{2}^{2 n-1}+a_{2} & a_{2}^{2 n-2}+a_{2}^{2} & \ldots & a_{2}^{n+1}+a_{2}^{n-1} & a_{2}^{n} \\ \cdots & \cdots \cdots \cdots \cdots \cdots \cdots \cdots & \cdots \\ a_{n+1}^{2 n}+1 & a_{n+1}^{2 n-1}+a_{n+1} & a_{n+1}^{2 n-2}+a_{n+1}^{2} & \ldots & a_{n+1}^{n+1}+a_{n+1}^{n-1} & a_{n+1}^{n}\end{array}\right|$.
*276. $\left|\begin{array}{ccccc}1 & \cos \varphi_{0} & \cos 2 \varphi_{0} & \ldots & \cos (n-1) \varphi_{0} \\ 1 & \cos \varphi_{1} & \cos 2 \varphi_{1} & \ldots & \cos (n-1) \varphi_{1} \\ \ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots & \ldots & \cdots \cdots\end{array}\right|$.
*277. $\left|\begin{array}{cccc}\sin (n+1) \alpha_{0} & \sin n \alpha_{0} & \ldots & \sin \alpha_{0} \\ \sin (n+1) \alpha_{1} & \sin n \alpha_{1} & \ldots & \sin \alpha_{1} \\ \ldots \ldots \ldots \ldots \ldots & \ldots & \ldots & \ldots \\ \sin (n+1) \alpha_{n} & \sin n \alpha_{n} & \ldots & \sin \alpha_{n}\end{array}\right|$.
*278. $\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ x_{1}\left(x_{1}-1\right) & x_{2}\left(x_{2}-1\right) & \ldots & x_{n}\left(x_{n}-1\right) \\ x_{1}^{2}\left(x_{1}-1\right) & x_{2}^{2}\left(x_{2}-1\right) & \ldots & x_{n}^{2}\left(x_{n}-1\right) \\ \ldots \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n-1}\left(x_{1}-1\right) & x_{2}^{n-1}\left(x_{2}-1\right) & \ldots & x_{n}^{n-1}\left(x_{n}-1\right)\end{array}\right|$.
*279. $\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\ x_{1}^{3} & x_{2}^{3} & \ldots & x_{n}^{3} \\ \ldots & \ldots & \ldots & . \\ x_{1}^{n} & x_{2}^{n} & \ldots & x_{n}^{n}\end{array}\right| . \quad$ 280. $\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n-2} & x_{2}^{n-2} & \ldots & x_{n}^{n-2} \\ x_{1}^{n} & x_{2}^{n} & \ldots & x_{n}^{n}\end{array}\right|$.

281.

$$
\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\ldots & \ldots & \ldots & \ldots \\
x_{1}^{s-1} & x_{2}^{s-1} & \ldots & x_{n}^{s-1} \\
x_{1}^{s+1} & x_{2}^{s+1} & \ldots & x_{n}^{s+1} \\
\ldots & \ldots & \ldots . & \ldots \\
x_{1}^{n} & x_{2}^{n} & \ldots & x_{n}^{n}
\end{array}\right| .
$$

283. 284.

$\left|\begin{array}{cccc}1 & x & x^{2} & x^{3} \\ x^{3} & x^{2} & x & 1 \\ 1 & 2 x & 3 x^{2} & 4 x^{3} \\ 4 x^{3} & 3 x^{2} & 2 x & 1\end{array}\right| \cdot\left|\begin{array}{ccccc}1 & x & x^{2} & x^{3} & x^{4} \\ 1 & 2 x & 3 x^{2} & 4 x^{3} & 5 x^{4} \\ 1 & 4 x & 9 x^{2} & 16 x^{3} & 25 x^{4} \\ 1 & \boldsymbol{y} & \boldsymbol{y}^{2} & y^{3} & \boldsymbol{y}^{4} \\ 1 & 2 y & 3 y^{2} & 4 y^{3} & 5 y^{4}\end{array}\right|$.
*285. $\left|\begin{array}{ccccc}1 & x & x^{2} & \ldots & x^{n} \\ 1 & 2 x & 3 x^{2} & \ldots & (n+1) x^{n} \\ 1 & 2^{2} x & 3^{2} x^{2} & \ldots & (n+1)^{2} x^{n} \\ \cdots \cdots \cdots \cdots & \ldots & \ldots & \cdots \cdots \cdots \\ 1 & 2^{n-1} x & 3^{n-1} x^{2} & \ldots & (n+1)^{n-1} x^{n} \\ 1 & y & y^{2} & \ldots & y^{n}\end{array}\right|$.
*286. $\left|\begin{array}{ccccc}1 & x & x^{2} & \ldots & x^{n-1} \\ 1 & 2 x & 3 x^{2} & \ldots & n x^{n-1} \\ 1 & 2^{2} x & 3^{2} x^{2} & \ldots & n^{2} x^{n-1} \\ \ldots & \ldots & 3^{2} & \ldots & \ldots \\ 1 & 2^{k-1} x & 3^{k-1} x^{2} & \ldots & n^{k-1} x^{n-1} \\ 1 & y_{1} & y_{1}^{2} & \ldots & y_{1}^{n-1} \\ 1 & y_{2} & y_{2}^{2} & \ldots & y_{2}^{n-1} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 1 & y_{n-k} & y_{n-k}^{2} & \ldots & y_{n-k}^{n-1}\end{array}\right|$.
*287. $\left|\begin{array}{ccccc}1 & x & x^{2} & \ldots & x^{n-1} \\ 0 & 1 & C_{2}^{1} x & \ldots & C_{n-1}^{1} x^{n-2} \\ 0 & 0 & 1 & \ldots & C_{n-1}^{2} x^{n-3} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & C_{n-1}^{k-1} x^{n-k} \\ 1 & y & y^{2} & \ldots & y^{n-1} \\ 0 & 1 & C_{2}^{1} y & \ldots & C_{n-1}^{1} y^{n-2} \\ \ldots & \ldots & \ldots & \ldots & \ldots \ldots \\ 0 & 0 & 0 & \ldots & C_{n-1}^{n-k-1} y^{k}\end{array}\right|$.
288.
(a) Write the expansion of a fourth-order determinant in terms of the minors of the first two rows.
(b) Compute the determinant

$$
\left|\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right|
$$

usin the expansion by minors of the second order.
(c) Compute the determinal t

$$
\left|\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right|
$$

via an expansion by second-order minors.
(d) Compute the determinant of Problem 145.

Compute the determinants:
(e) $\left|\begin{array}{rrrrrr}1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 3 & 4 & 0 & 0 & 0 \\ 3 & 6 & 10 & 0 & 0 & 0 \\ 4 & 9 & 14 & 1 & 1 & 1 \\ 5 & 15 & 24 & 1 & 5 & 9 \\ 9 & 24 & 38 & 1 & 25 & 81\end{array}\right|$,
(f) $\left|\begin{array}{llll}a_{1} & 0 & b_{1} & 0 \\ 0 & c_{1} & 0 & d_{1} \\ b_{2} & 0 & a_{2} & 0 \\ 0 & d_{2} & 0 & c_{2}\end{array}\right|$,
(g) $\left|\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 1 \\ x_{1} & x_{2} & 0 & 0 & 0 & x_{3} \\ a_{1} & b_{1} & 1 & 1 & 1 & c_{1} \\ a_{2} & b_{2} & x_{1} & x_{2} & x_{3} & c_{2} \\ a_{3} & b_{3} & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & c_{3} \\ x_{1}^{2} & x_{2}^{2} & 0 & 0 & 0 & x_{3}^{2}\end{array}\right|$,
(h) $\left|\begin{array}{cccccc}\lambda & 0 & 0 & \ldots & 0 & a \\ x_{1} & \alpha & \beta & \ldots & \beta & y_{1} \\ x_{2} & \beta & \alpha & \ldots & \beta & y_{2} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ x_{n} & \beta & \beta & \ldots & \alpha & y_{n} \\ a & 0 & 0 & \ldots & 0 & \lambda\end{array}\right|$.
(i) Compute the determinant of Problem 230 using the Laplace theorem.
(j) Compute the determinant of Problem 171 using the Laplace theorem.
(k) Compute the determinant

$$
\left|\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & x_{1} & x_{2} & x_{3} & x_{4} \\
0 & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2}
\end{array}\right|
$$

(1) Let A, B, C and D be third-order determinants formed from the array

$$
\left(\begin{array}{llll}
a_{1} & b_{1} & c_{1} & d_{1} \\
a_{2} & b_{2} & c_{2} & d_{2} \\
a_{3} & b_{3} & c_{3} & d_{3}
\end{array}\right)
$$

by deleting the first, second, third and fourth columns, respectively. Prove that

$$
\left|\begin{array}{llllll}
a_{1} & b_{1} & c_{1} & d_{1} & 0 & 0 \\
a_{2} & b_{2} & c_{2} & d_{2} & 0 & 0 \\
a_{3} & b_{3} & c_{3} & d_{3} & 0 & 0 \\
0 & 0 & a_{1} & b_{1} & c_{1} & d_{1} \\
0 & 0 & a_{2} & b_{2} & c_{2} & d_{2} \\
0 & 0 & a_{3} & b_{3} & c_{3} & d_{3}
\end{array}\right|=A D-B C .
$$

(*m) Compute the fifteenth-order determinant

$$
\left|\begin{array}{lll}
\Delta & \Delta_{1} & \Delta_{1} \\
\Delta_{1} & \Delta & \Delta_{1} \\
\Delta_{1} & \Delta_{1} & \Delta
\end{array}\right|
$$

formed (as indicated) from the following blocks:

$$
\Delta=\left(\begin{array}{rcccr}
a & x & x & -x & -x \\
x & 2 a & a & 0 & 0 \\
x & a & 2 a & 0 & 0 \\
-x & 0 & 0 & 2 a & a \\
-x & 0 & 0 & a & 2 a
\end{array}\right), \Delta_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Sec. 6. Multiplication of Determinants
289. Using the rule for multiplying matrices, represent the following products of determinants in the form of a determinant:
(a) $\left|\begin{array}{ll}4 & 3 \\ 1 & 3\end{array}\right| \cdot\left|\begin{array}{rr}1 & -2 \\ -3 & 2\end{array}\right|$,
(b) $\left|\begin{array}{rrr}3 & 2 & 5 \\ -1 & 3 & 6 \\ 1 & -1 & 2\end{array}\right| \cdot\left|\begin{array}{rrr}-2 & 3 & 4 \\ -1 & -3 & 5 \\ 2 & 1 & -1\end{array}\right|$,
(c) $\left|\begin{array}{rrrr}2 & 1 & 1 & 1 \\ -1 & 2 & 1 & 1 \\ -1 & -1 & 2 & 1 \\ -1 & -1 & -1 & 2\end{array}\right| \cdot\left|\begin{array}{rr}3 & 1 \\ 1 & 3\end{array}\right| \cdot\left|\begin{array}{rr}-2 & 1 \\ -1 & 2\end{array}\right|$.
290. Compute the determinant Δ by multiplying it by the determinant δ :
(a) $\Delta=\left|\begin{array}{rrrr}1 & 2 & 3 & 4 \\ -1 & 0 & -3 & -8 \\ -1 & 1 & 0 & -13 \\ 2 & 3 & 5 & 15\end{array}\right|$,
$\delta=\left|\begin{array}{rrrr}1 & -2 & -3 & -11 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right| ;$
(b) $\Delta=\left|\begin{array}{rrrr}-1 & -9 & -2 & 3 \\ -5 & 5 & 3 & -2 \\ -12 & -6 & 1 & 1 \\ 9 & 0 & -2 & 1\end{array}\right|, \quad \delta=\left|\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ -3 & 4 & 2 & 1\end{array}\right|$;
(c) $\Delta=\left|\begin{array}{llll}a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a\end{array}\right|, \quad \delta=\left|\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right|$.
291. Compute the square of the determinant:
(a) $\begin{aligned}\left|\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right|, ~(b)\left|\begin{array}{rrrr}1 & -1 & 1 & -1 \\ 2 & 2 & 1 & 1 \\ 2 & 0 & -3 & -1 \\ 3 & -7 & -1 & 9\end{array}\right| \text {, } \\ \text { (c) }\left|\begin{array}{rrrr}a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a\end{array}\right| .\end{aligned}$
292. The determinant

$$
\left|\begin{array}{ccccc}
a_{00} & a_{01} & a_{02} & \ldots & a_{0, n-1} \\
a_{10} & a_{11} & a_{12} & \ldots & a_{1, n-1} \\
\cdots \cdots & \cdots \cdots & \cdots & \cdots & \cdots
\end{array}\right|=D
$$

What is

$$
\left|\begin{array}{cccc}
\varphi_{0}\left(x_{1}\right) & \varphi_{0}\left(x_{2}\right) & \ldots & \varphi_{0}\left(x_{n}\right) \\
\varphi_{1}\left(x_{1}\right) & \varphi_{1}\left(x_{2}\right) & \ldots & \varphi_{1}\left(x_{n}\right) \\
\cdots \cdots & \cdots & \cdots & \cdots \\
\varphi_{n-1}\left(x_{1}\right) & \varphi_{n-1}\left(x_{2}\right) & \ldots & \varphi_{n-1}\left(x_{n}\right)
\end{array}\right|
$$

where $\varphi_{i}(x)=a_{0 i}+a_{1 i} x+\ldots+a_{n-1, i} x^{n-1}$?
Use the result obtained to find the solution of Problems 265, 267, 268.

Compute the determinants:
*293.

*294.

$$
\left|\begin{array}{cccc}
\sin 2 \alpha_{1} & \sin \left(\alpha_{1}+\alpha_{2}\right) & \ldots & \sin \left(\alpha_{1}+\alpha_{n}\right) \\
\sin \left(\alpha_{2}+\alpha_{1}\right) & \sin 2 \alpha_{2} & \ldots & \sin \left(\alpha_{2}+\alpha_{n}\right) \\
\ldots \ldots \ldots \ldots & \ldots \ldots \ldots \ldots & \ldots & \ldots
\end{array}\right|
$$

*295.
$\left|\begin{array}{cccccc}s_{0} & s_{1} & s_{2} & \ldots & s_{n-1} & 1 \\ s_{1} & s_{2} & s_{3} & \ldots & s_{n} & x \\ \ldots \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ s_{n-1} & s_{n} & s_{n+1} & \ldots & s_{2 n-2} & x^{n-1} \\ s_{n} & s_{n+1} & s_{n+2} & \ldots & s_{2 n-1} & x^{n}\end{array}\right|$ where $s_{k}=x_{1}^{k}+x_{2}^{k}+\ldots+x_{n}^{k}$.
*296. $\left|\begin{array}{rrrrrrrr}a & b & c & d & l & m & n & p \\ b & -a & -d & -c & m & -l & p & -n \\ c & d & -a & -b & n & -p & -l & m \\ d & -c & b & -a & p & n & -m & -l \\ l & -m & -n & -p & -a & b & c & d \\ m & l & p & -n & -b & -a & d & -c \\ n & -p & l & m & -c & -d & -a & b \\ p & n & -m & l & -d & c & -b & -a\end{array}\right|$.
*297. $\left|\begin{array}{cccc}\cos \varphi & \sin \varphi & \cos \varphi & \sin \varphi \\ \cos 2 \varphi & \sin 2 \varphi & 2 \cos 2 \varphi & 2 \sin 2 \varphi \\ \cos 3 \varphi & \sin 3 \varphi & 3 \cos 3 \varphi & 3 \sin 3 \varphi \\ \cos 4 \varphi & \sin 4 \varphi & 4 \cos 4 \varphi & 4 \sin 4 \varphi\end{array}\right|$.
*298.

$\left|\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & \varepsilon & \varepsilon^{2} & \ldots & \varepsilon^{n-1} \\ 1 & \varepsilon^{2} & \varepsilon^{4} & \ldots & \varepsilon^{2 n-2} \\ \cdots & \cdots & \cdots \cdots & \ldots & \cdots \\ 1 & \varepsilon^{n-1} & \varepsilon^{2(n-1)} & \ldots & \varepsilon^{(n-1)^{2}}\end{array}\right|$,

$|$| a_{0} | a_{1} | a_{2} | \ldots | a_{n-1} |
| :---: | :---: | :---: | :---: | :---: |
| a_{n-1} | a_{0} | a_{1} | \ldots | a_{n-2} |
| \ldots | \ldots | \ldots | \ldots | \cdots |
| a_{1} | a_{2} | a_{3} | \ldots | a_{0} |

(cyclic determinant).
where $\varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$.
301. Apply the result of Problem 300 to the determinant

$$
\left|\begin{array}{llll}
x & u & z & y \\
y & x & u & z \\
z & y & x & u \\
u & z & y & x
\end{array}\right|
$$

302. Apply the result of Problem 300 to Problems 192, 205, and 255 .

Compute the determinants:
303.
$\left|\begin{array}{cccccc}1 & C_{n-1}^{1} & C_{n-1}^{2} & \cdots & C_{n-1}^{n-2} & 1 \\ 1 & 1 & C_{n-1}^{1} & \cdots & C_{n-1}^{-3} & C_{n-2}^{n-1} \\ C_{n-1}^{n-2} & 1 & 1 & \cdots & C_{n-1}^{n-4} & C_{n-1}^{n-3} \\ \hdashline \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ C_{n-1}^{1} & C_{n-1}^{2} & C_{n-1}^{3} & \cdots & 1 & 1\end{array}\right|$.
304. $\left|\begin{array}{ccccc}1 & 2 a & 3 a^{2} & \cdots & n a^{n-1} \\ n a^{n-1} & 1 & 2 a & \cdots & (n-1) a^{n-2} \\ \cdots \cdots & \cdots & \cdots & \cdots & \cdots \\ 2 a & 3 a^{2} & 4 a^{3} & \cdots & 1\end{array}\right|$.
305.
$\left|\begin{array}{cccc}s-a_{1} & s-a_{2} & \cdots & s-a_{n} \\ s-a_{n} & s-a_{1} & \cdots & s-a_{n-1} \\ \cdots \cdots & \cdots & \cdots & \cdots \\ s-a_{2} & s-a_{3} & \cdots & s-a_{1}\end{array}\right|$
where $s=a_{1}+a_{2}+\ldots+a_{n}$.

309.
$\left|\begin{array}{lllc}\cos \theta & \cos 2 \theta & \ldots & \cos n \theta \\ \cos n \theta & \cos \theta & \ldots & \cos (n-1) \theta \\ \ldots \ldots & \ldots & \ldots & \cdots\end{array}\right|$.
310.

*311. $\left|\begin{array}{ccccc}1^{2} & 2^{2} & 3^{2} & \ldots & n^{2} \\ n^{2} & 1^{2} & 2^{2} & \cdots & (n-1)^{2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 2^{2} & 3^{2} & 4^{2} & \cdots & 1^{2}\end{array}\right|$
312. Prove that

$$
\left.\begin{array}{|lllllll}
a_{0} & a_{1} & a_{1} & a_{2} & a_{1} & a_{2} & a_{2} \\
a_{2} & a_{0} & a_{1} & a_{1} & a_{2} & a_{1} & a_{2} \\
a_{2} & a_{2} & a_{0} & a_{1} & a_{1} & a_{2} & a_{1} \\
a_{1} & a_{2} & a_{2} & a_{0} & a_{1} & a_{1} & a_{2} \\
a_{2} & a_{1} & a_{2} & a_{2} & a_{0} & a_{1} & a_{1} \\
a_{1} & a_{2} & a_{1} & a_{2} & a_{2} & a_{0} & a_{1} \\
a_{1} & a_{1} & a_{2} & a_{1} & a_{2} & a_{2} & a_{0}
\end{array} \right\rvert\,, ~=~=\left(a_{0}+3 a_{1}+3 a_{2}\right)\left(a_{0}^{2}-a_{0} a_{1}-a_{0} a_{2}+2 a_{1}^{2}+2 a_{2}^{2}-3 a_{1} a_{2}\right)^{3} .
$$

313. Compute the determinant

$$
\left.\left\lvert\, \begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
-a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
-a_{n-1} & -a_{n} & a_{1} & \ldots & a_{n-2} \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right.\right] \cdot .
$$

(skew-symmetric determinant).
*314. Prove that a cyclic determinant of order $2 n$ may be represented as a product of a cyclic determinant of order n and a skew-cyclic determinant of order n.
315. Compute the determinant

$$
\left|\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
\mu a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
\mu a_{n-1} & \mu a_{n} & a_{1} & \ldots & a_{n-2} \\
\ldots & \ldots & \ldots & \ldots & \cdots \\
\mu a_{2} & \mu a_{3} & \mu a_{4} & \ldots & a_{1}
\end{array}\right| .
$$

Sec. 7. Miscellaneous Problems
316. Prove that if

$$
\Delta(x)=\left|\begin{array}{ccccc}
a_{11}(x) & a_{12}(x) & \ldots & a_{1 n}(x) \\
a_{21}(x) & a_{22} & (x) & \ldots & a_{2 n}(x) \\
\ldots & \cdots & \ldots & \ldots & \ldots
\end{array}\right|
$$

then

$$
\begin{aligned}
& \Delta^{\prime}(x)=\left|\begin{array}{cccc}
a_{11}^{\prime}(x) & a_{12}^{\prime}(x) & \ldots & a_{1 n}^{\prime}(x) \\
a_{21}(x) & a_{22}(x) & \ldots & a_{2 n}(x) \\
\ldots & \cdots & \ldots & \ldots
\end{array}\right| \cdots \cdots, ~ \\
& \left.+\cdots+\left\lvert\, \begin{array}{cccc}
a_{11}(x) & a_{12}(x) & \ldots & a_{1 n}(x) \\
a_{21}(x) & a_{22}(x) & \ldots & a_{2 n}(x) \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right.\right) .
\end{aligned}
$$

317. Prove that

$$
\left|\begin{array}{cccc}
a_{11}+x & a_{12}+x & \ldots & a_{1 n}+x \\
a_{21}+x & a_{22}+x & \ldots & a_{2 n}+x \\
\ldots & \ldots & \cdots & \ldots
\end{array}\right|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{n 1}+x & a_{n 2}+x & \ldots & a_{n n}+x
\end{array}\right|=\left|\begin{array}{cccc}
a_{21} & a_{22} & \ldots & a_{2 n} \\
\cdots & \cdots & \ldots & \cdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

where $A_{i k}$ is the cofactor of the element $a_{i k}$.
318. Using the result of Problem 317, compute the determinants of Problems 200, 223, 224, 225, 226, 227, 228, 232, 233, 248, 249, 250.
319. Prove that the sum of the cofactors of all the elements of the determinant

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

is equal to

$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{21}-a_{11} & a_{22}-a_{12} & \cdots & a_{2 n}-a_{1 n} \\
\cdots \cdots \cdots & \cdots \cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \cdots \\
a_{n 1}-a_{n-1,1} & a_{n 2}-a_{n-1,2} & \cdots & a_{n n}-a_{n-1, n}
\end{array}\right|
$$

Prove the following theorems:
320. The sum of the cofactors of all elements of a determinant remains unaltered if the same number is added to all elements.
321. If all the elements of one row (column) of a determinant are equal to unity, the sum of the cofactors of all elements of the determinant is equal to the determinant itself.
322. Compute the sum of the cofactors of all the elements of the determinant of Problem 250.
*323. Compute the determinant

$$
\left.\left\lvert\, \begin{array}{cccc}
\left(a_{1}+b_{1}\right)^{-1} & \left(a_{1}+b_{2}\right)^{-1} & \cdots & \left(a_{1}+b_{n}\right)^{-1} \\
\left(a_{2}+b_{1}\right)^{-1} & \left(a_{2}+b_{2}\right)^{-1} & \cdots & \left(a_{2}+b_{n}\right)^{-1} \\
\cdots \cdots \cdots & \cdots & \cdots \cdots & \cdots
\end{array}\right.\right] .
$$

324. Denote by P_{n} and Q_{n} the determinants

$$
\left|\begin{array}{cccccc}
a_{0} & 1 & 0 & \cdots & 0 & 0 \\
-1 & a_{1} & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & a_{n-2} & 1 \\
0 & 0 & 0 & \cdots & -1 & a_{n-1}
\end{array}\right|
$$

and

$$
\left|\begin{array}{cccccc}
a_{1} & 1 & 0 & \cdots & 0 & 0 \\
-1 & a_{2} & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & a_{n-2} & 1 \\
0 & 0 & 0 & \cdots & -1 & a_{n-1}
\end{array}\right|
$$

respectively, and prove that

$$
\begin{gathered}
\frac{P_{n}}{Q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{8}+}}} \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{gathered}
$$

Compute the determinants
*325.
$\left|\begin{array}{cccccc}c & a & 0 & \cdots & 0 & 0 \\ b & c & a & \cdots & 0 & 0 \\ 0 & b & c & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & c & a \\ 0 & 0 & 0 & \cdots & b & c\end{array}\right| \cdot\left|\begin{array}{cccccc}p & q & 0 & \cdots & 0 & 0 \\ 2 & p & q & \cdots & 0 & 0 \\ 0 & 1 & p & \cdots & 0 & 0 \\ \cdots & 0 & \cdots & \cdots & \cdots & \\ 0 & 0 & 0 & \cdots & p & q \\ 0 & 0 & 0 & \cdots & 1 & p\end{array}\right|$.
*327. Represent the determinant

$$
\left.\left\lvert\, \begin{array}{cccc}
a_{11}+x & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}+x & \cdots & a_{2 n} \\
\cdots \cdots & \cdots & \cdots & \cdots
\end{array}\right.\right) \cdots \cdots, ~
$$

in the form of a polynomial in powers of x.
*328. Compute a determinant of order ($2 n-1$) in which the first $n-1$ elements of the principal diagonal are equal to unity and the other elements of the principal diagonal are equal to n. In each of the first $n-1$ rows, the n elements to the right of the principal diagonal are equal to unity and in each of the last n rows, the elements to the left of the principal diagonal are $n-1$, $n-2, \ldots, 1$. The other elements of the determinant are zero.

For example,

$$
\left|\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 0 & 0 \\
0 & 1 & 2 & 3 & 0 \\
0 & 0 & 1 & 2 & 3
\end{array}\right| ; \quad\left|\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 4 & 0 & 0 \\
0 & 0 & 1 & 2 & 3 & 4 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 4
\end{array}\right| .
$$

Compute the determinants:

*329. $\left\lvert\,$| x | 1 | 0 | 0 | \cdots | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-n$ | $x-2$ | 2 | 0 | \cdots | 0 | 0 |
| 0 | $-(n-1)$ | $x-4$ | 3 | \cdots | 0 | 0 |
| \cdots |
| 0 | 0 | 0 | 0 | \cdots | \cdots | \cdots |
| 330. | | | | | | |
| | $\left\|\begin{array}{ccccccc}x & 1 & 0 & 0 & \cdots & 0 & 0 \\ n-1 & x & 2 & 0 & \cdots & 0 & 0 \\ 0 & n-2 & x & 3 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & x\end{array}\right\|$. | | | | | |$..\right.$

331.

x	a	0	0	0	0
$n(a-1)$	$x-1$	$2 a$	0	0	0
0	$(n-1)(a-1)$	$x-2$	$3 a$	0	0
0	0	0	0		$x-n$

332.

$$
\left|\begin{array}{cccc}
1^{n-1} & 2^{n-1} & \cdots & n^{n-1} \\
2^{n-1} & 3^{n-1} & \cdots & (n+1)^{n-1} \\
\cdots \cdots & \cdots \cdots & \cdots & \cdots \\
n^{n-1} & (n+1)^{n-1} & \cdots & (2 n-1)^{n-1}
\end{array}\right|
$$

333.

$$
\left.\left\lvert\, \begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right.\right) .
$$

334. Find the coefficient of the lowest power of x in the determinant

$$
\left.\left\lvert\, \begin{array}{cccc}
(1+x)^{a_{1} b_{1}} & (1+x)^{a_{1} b_{2}} & \cdots & (1+x)^{a_{1}{ }_{1}{ }_{n}} \\
(1+x)^{a_{2} b_{1}} & (1+x)^{a_{2} b_{2}} & \cdots & (1+x)^{a_{2}{ }_{2}} \\
\cdots \cdots & \cdots \cdots & \cdots & \cdots
\end{array}\right.\right) .
$$

CHAPTER 3
SYSTEMS
OF LINEAR
EQUATIONS

Sec. 1. Cramer's Theorem

Solve the following systems of equations:
335. $2 x_{1}-x_{2}-x_{3}=4$, $3 x_{1}+4 x_{2}-2 x_{3}=11$, $3 x_{1}-2 x_{2}+4 x_{3}=11$.
337. $3 x_{1}+2 x_{2}+x_{3}=5$, $2 x_{1}+3 x_{2}+x_{3}=1$, $2 x_{1}+x_{2}+3 x_{3}=11$.
336. $x_{1}+x_{2}+2 x_{3}=-1$,
$2 x_{1}-x_{2}+2 x_{3}=-4$,
$4 x_{1}+x_{2}+4 x_{3}=-2$.
338. $x_{1}+2 x_{2}+4 x_{3}=31$,
$5 x_{1}+x_{2}+2 x_{3}=29$, $3 x_{1}-x_{2}+x_{3}=10$.
339. $x_{1}+x_{2}+2 x_{3}+3 x_{4}=1$,
$3 x_{1}-x_{2}-x_{3}-2 x_{4}=-4$,
$2 x_{1}+3 x_{2}-x_{3}-x_{4}=-6$,
$x_{1}+2 x_{2}+3 x_{3}-x_{4}=-4$.
340. $x_{1}+2 x_{2}+3 x_{3}-2 x_{4}=6$,
$2 x_{1}-x_{2}-2 x_{3}-3 x_{4}=8$,
$3 x_{1}+2 x_{2}-x_{3}+2 x_{4}=4$,
$2 x_{1}-3 x_{2}+2 x_{3}+x_{4}=-8$.
341. $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=5$,
$2 x_{1}+x_{2}+2 x_{3}+3 x_{4}=1$,
$3 x_{1}+2 x_{2}+x_{3}+2 x_{4}=1$,
$4 x_{1}+3 x_{2}+2 x_{3}+x_{4}=-5$.
342.

$$
\begin{aligned}
x_{2}-3 x_{3}+4 x_{4} & =-5, \\
x_{1}-2 x_{3}+3 x_{4} & =-4, \\
3 x_{1}+2 x_{2}-5 x_{4} & =12, \\
4 x_{1}+3 x_{2}-5 x_{3} \quad & =5 .
\end{aligned}
$$

343. $2 x_{1}-x_{2}+3 x_{3}+2 x_{4}=4$,

$$
\begin{aligned}
& 3 x_{1}+3 x_{2}+3 x_{3}+2 x_{4}=6, \\
& 3 x_{1}-x_{2}-x_{3}+2 x_{4}=6, \\
& 3 x_{1}-x_{2}+3 x_{3}-x_{4}=6 .
\end{aligned}
$$

344. $x_{1}+x_{2}+x_{3}+x_{4}=0$, $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0$, $x_{1}+3 x_{2}+6 x_{3}+10 x_{4}=0$, $x_{1}+4 x_{2}+10 x_{3}+20 x_{4}=0$.
345. $x_{1}+3 x_{2}+5 x_{3}+7 x_{4}=12$,
$3 x_{1}+5 x_{2}+7 x_{3}+x_{4}=0$, $5 x_{1}+7 x_{2}+x_{3}+3 x_{4}=4$, $7 x_{1}+x_{2}+3 x_{3}+5 x_{4}=16$.
346. $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0$,
$x_{1}-x_{2}+2 x_{3}-2 x_{4}+3 x_{5}=0$,
$x_{1}+x_{2}+4 x_{3}+4 x_{4}+9 x_{5}=0$,
$x_{1}-x_{2}+8 x_{3}-8 x_{4}+27 x_{5}=0$,
$x_{1}+x_{2}+16 x_{3}+16 x_{4}+81 x_{5}=0$.
347. $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0$, $x_{1}+x_{2}+2 x_{3}+3 x_{4}=0$, $x_{1}+5 x_{2}+x_{3}+2 x_{4}=0$, $x_{1}+5 x_{2}+5 x_{3}+2 x_{4}=0$.
348. $x_{1}+x_{2}+x_{3}+x_{4}=0$,

$$
\begin{aligned}
x_{2}+x_{3}+x_{4}+x_{5} & =0, \\
x_{1}+2 x_{2}+3 x_{3} & =2, \\
x_{2}+2 x_{3}+3 x_{4} & =-2, \\
x_{3}+2 x_{4}+3 x_{5} & =2 .
\end{aligned}
$$

349. $x_{1}+4 x_{2}+6 x_{3}+4 x_{4}+x_{5}=0$,

$$
x_{1}+x_{2}+4 x_{3}+6 x_{4}+4 x_{5}=0
$$

$$
4 x_{1}+x_{2}+x_{3}+4 x_{4}+6 x_{5}=0
$$

$6 x_{1}+4 x_{2}+x_{3}+x_{4}+4 x_{5}=0$,
$4 x_{1}+6 x_{2}+4 x_{3}+x_{4}+x_{5}=0$.
350. $2 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=2$,

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}+x_{4}+x_{5}=0, \\
& x_{1}+x_{2}+3 x_{3}+x_{4}+x_{5}=3, \\
& x_{1}+x_{2}+x_{3}+4 x_{4}+x_{5}=-2, \\
& x_{1}+x_{2}+x_{3}+x_{4}+5 x_{5}=5 .
\end{aligned}
$$

351. $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=13$,

$$
2 x_{1}+x_{2}+2 x_{3}+3 x_{4}+4 x_{5}=10
$$

$$
2 x_{1}+2 x_{2}+x_{3}+2 x_{4}+3 x_{5}=11,
$$

$$
2 x_{1}+2 x_{2}+2 x_{3}+x_{4}+2 x_{5}=6,
$$

$$
2 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+x_{5}=3
$$

352. $x_{1}+2 x_{2}-3 x_{3}+4 x_{4}-x_{5}=-1$,

$$
2 x_{1}-x_{2}+3 x_{3}-4 x_{4}+2 x_{5}=8
$$

$$
3 x_{1}+x_{2}-x_{3}+2 x_{4}-x_{5}=3
$$

$$
4 x_{1}+3 x_{2}+4 x_{3}+2 x_{4}+2 x_{5}=-2
$$

$$
x_{1}-x_{2}-x_{3}+2 x_{4}-3 x_{5}=-3
$$

353. $2 x_{1}-3 x_{2}+4 x_{3}-3 x_{4}=0$,

$$
3 x_{1}-x_{2}+11 x_{3}-13 x_{4}=0
$$

$$
4 x_{1}+5 x_{2}-7 x_{3}-2 x_{4}=0
$$

$$
13 x_{1}-25 x_{2}+x_{3}+11 x_{4}=0
$$

Verify that the system has the solution $x_{1}=x_{2}=x_{3}=x_{4}=1$ and compute the determinant of the system.
354. Prove that the system

$$
\begin{aligned}
& a x+b y+c z+d t=0, \\
& b x-a y+d z-c t=0, \\
& c x-d y-a z+b t=0, \\
& d x+c y-b z-a t=0
\end{aligned}
$$

has a unique solution if a, b, c, d are real and not all zero.
Solve the following systems of equations:
355. $\alpha x_{1}+\alpha x_{2}+\ldots+\alpha x_{n-1}+\beta x_{n}=a_{n}$,

$$
\alpha x_{1}+\alpha x_{2}+\ldots+\beta x_{n-1}+\alpha x_{n}=a_{n-1},
$$

$$
\beta x_{1}+\alpha x_{2}+\ldots+\alpha x_{n-1}+\alpha x_{n}=a_{1}
$$

where $\alpha \neq \beta$.
356. $\frac{x_{1}}{b_{1}-\beta_{1}}+\frac{x_{2}}{b_{1}-\beta_{2}}+\cdots+\frac{x_{n}}{b_{1}-\beta_{n}}=1$,

$$
\begin{gathered}
\frac{x_{1}}{b_{2}-\beta_{1}}+\frac{x_{2}}{b_{2}-\beta_{2}}+\cdots+\frac{x_{n}}{b_{2}-\beta_{n}}=1, \\
\cdots \cdots \cdots \cdots+\frac{x_{n}}{b_{n}-\beta_{n}}=1,
\end{gathered}
$$

where $b_{1}, b_{2}, \ldots, b_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are all distinct.

$$
\text { 357. } \begin{array}{ll}
x_{1}+x_{2} \quad+\ldots+x_{n}=1, \\
x_{1} \alpha_{1}+x_{2} \alpha_{2}+\ldots+x_{n} \alpha_{n}=t, \\
\cdots \ldots+\cdots \\
x_{1} \alpha_{1}^{n-1}+x_{2} \alpha_{2}^{n-1}+\ldots+x_{n} \alpha_{n}^{n-1}=t^{n-1}
\end{array}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are all distinct.
358. $x_{1}+x_{2} \alpha_{1}+\cdots+x_{n} \alpha_{1}^{n-1}=u_{1}$,
$x_{1}+x_{2} \alpha_{2}+\cdots+x_{n} \alpha_{2}^{n-1}=u_{2}$,
$x_{1}+x_{2} \alpha_{n}+\cdots+x_{n} \alpha_{n}^{n-1}=u_{n}$
where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are all distinct.
359.

$$
\begin{array}{ll}
x_{1}+x_{2} \quad+\ldots+x_{n} & =u_{1}, \\
x_{1} \alpha_{1} & +x_{2} \alpha_{2}+\ldots+x_{n} \alpha_{n}= \\
\cdots \cdots \\
\cdots \cdots+\cdots+\cdots \\
x_{1} \alpha_{1}^{n-1}+x_{2} \alpha_{2}^{n-1}+\ldots+x_{n} \alpha_{n}^{n-1}= & =u_{n}
\end{array}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are all distinct.

$$
\text { 360. } \begin{aligned}
& 1+x_{1}+x_{2}+\ldots+x_{n}=0, \\
& 1+2 x_{1}+2^{2} x_{2}+\ldots+2^{n} x_{n}=0, \\
& \cdots \cdots \cdots+\ldots \\
& 1+n x_{1}+n^{2} x_{2}+\ldots+n^{n} x_{n}=0
\end{aligned}
$$

Sec. 2. Rank of a Matrix

361. How many k th-order determinants can be formed from a matrix with m rows and n columns?
362. Form a matrix with rank equal to (a) 2, (b) 3.
363. Prove that the rank of a matrix remains unaltered if:
(a) rows and columns are interchanged;
(b) the elements of a row or column are multiplied by a nonzero number;
(c) two rows or two columns are interchanged;
(d) multiples of the elements of one row (column) are added to elements of another row (column).
364. The sum of two matrices having the same number of rows and columns is a matrix whose elements are the sums of the corresponding elements of the matrices being added. Prove that the rank of the sum of two matrices does not exceed the sum of the ranks of the matrices added.
365. How is the rank of a matrix affected by adjoining (a) one column, (b) two columns?

Compute the rank of the following matrices:
366.
$\left(\begin{array}{rrrr}0 & 4 & 10 & 1 \\ 4 & 8 & 18 & 7 \\ 10 & 18 & 40 & 17 \\ 1 & 7 & 17 & 3\end{array}\right)$.

368.

$\left(\begin{array}{rrrr}2 & 1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6\end{array}\right)$.
370.
$\left(\begin{array}{rrrrr}1 & 0 & 0 & 1 & 4 \\ 0 & 1 & 0 & 2 & 5 \\ 0 & 0 & 1 & 3 & 6 \\ 1 & 2 & 3 & 14 & 32 \\ 4 & 5 & 6 & 32 & 77\end{array}\right)$.
372.
$\left(\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 5 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1\end{array}\right)$.
3. 1215
374.
$\left(\begin{array}{rrrr}2 & 1 & 3 & -1 \\ 3 & -1 & 2 & 0 \\ 1 & 3 & 4 & -2 \\ 4 & -3 & 1 & 1\end{array}\right)$.

$$
\left(\begin{array}{rrrrrr}
3 & 2 & -1 & 2 & 0 & 1 \\
4 & 1 & 0 & -3 & 0 & 2 \\
2 & -1 & -2 & 1 & 1 & -3 \\
3 & 1 & 3 & -9 & -1 & 6 \\
3 & -1 & -5 & 7 & 2 & -7
\end{array}\right)
$$

376.

$\left(\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 5 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6\end{array}\right)$.
378.
$\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1\end{array}\right)$.
379.
380.
$\left(\begin{array}{rrrrr}2 & -1 & 1 & 3 & 4 \\ 2 & -1 & 2 & 1 & -2 \\ 2 & -3 & 1 & 2 & -2 \\ 1 & 0 & 1 & -2 & -6 \\ 1 & 2 & 1 & -1 & 0 \\ 4 & -1 & 3 & -1 & -8\end{array}\right)$.

Sec. 3. Systems of Linear Forms

381. (a) Write two independent linear forms.
(b) Write three independent linear forms.
382. Form a system of four linear forms in five variables so that two of them are independent and the others are linear combinations of them.

Find the basic dependences between the forms of the system:
383. $y_{1}=2 x_{1}+2 x_{2}+7 x_{3}-x_{4}$,

$$
y_{2}=3 x_{1}-x_{2}+2 x_{3}+4 x_{4},
$$

$$
y_{3}=x_{1}+x_{2}+3 x_{3}+x_{4} .
$$

384. $y_{1}=3 x_{1}+2 x_{2}-5 x_{3}+4 x_{4}$, $y_{2}=3 x_{1}-x_{2}+3 x_{3}-3 x_{4}$, $y_{3}=3 x_{1}+5 x_{2}-13 x_{3}+11 x_{4}$.
385. $y_{1}=2 x_{1}+3 x_{2}-4 x_{3}-x_{4}$,

$$
\begin{aligned}
& y_{2}=x_{1}-2 x_{2}+x_{3}+3 x_{4}, \\
& y_{3}=5 x_{1}-3 x_{2}-x_{3}+8 x_{4}, \\
& y_{4}=3 x_{1}+8 x_{2}-9 x_{3}-5 x_{4} .
\end{aligned}
$$

386. $y_{1}=2 x_{1}+x_{2}-x_{3}+x_{4}$,

$$
y_{2}=x_{1}+2 x_{2}+x_{3}-x_{4},
$$

$$
y_{3}=x_{1}+x_{2}+2 x_{3}+x_{4} .
$$

387.

388.

$\begin{array}{ll}y_{1}=x_{1}+2 x_{2}+3 x_{3}+x_{4}, & y_{1}=2 x_{1}+x_{2}, \\ y_{2}=2 x_{1}+3 x_{2}+x_{3}+2 x_{4}, & y_{2}=3 x_{1}+2 x_{2}, \\ y_{3}=3 x_{1}+x_{2}+2 x_{3}-2 x_{4}, & y_{3}=x_{1}+x_{2}, \\ y_{4}=\quad 4 x_{2}+2 x_{3}+5 x_{4} . & y_{4}=2 x_{1}+3 x_{2} .\end{array}$
389.

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}, \\
& y_{2}=x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+x_{5}, \\
& y_{3}=x_{1}+3 x_{2}+6 x_{3}+10 x_{4}+x_{5}, \\
& y_{4}=x_{1}+4 x_{2}+10 x_{3}+20 x_{4}+x_{5} .
\end{aligned}
$$

390. 391.

$$
\begin{array}{ll}
y_{1}=x_{1}+2 x_{3}+3 x_{3}-4 x_{4}, & y_{1}=2 x_{1}+x_{2}-3 x_{3}, \\
y_{2}=2 x_{1}-x_{2}+2 x_{3}+5 x_{4}, & y_{2}=3 x_{1}+x_{2}-5 x_{3}, \\
y_{3}=2 x_{1}-x_{2}+5 x_{3}-4 x_{4}, & y_{3}=4 x_{1}+2 x_{2}-x_{3}, \\
y_{4}=2 x_{1}+3 x_{2}-4 x_{3}+x_{4} . & y_{4}=x_{1}
\end{array}
$$

392. $y_{1}=2 x_{1}+3 x_{2}+5 x_{3}-4 x_{4}+x_{5}$, $y_{2}=x_{1}-x_{2}+2 x_{3}+3 x_{4}+5 x_{5}$,
$y_{3}=3 x_{1}+7 x_{2}+8 x_{3}-11 x_{4}-3 x_{5}$,
$y_{4}=x_{1}-x_{2}+x_{3}-2 x_{4}+3 x_{5}$.
393. $y_{1}=2 x_{1}-x_{2}+3 x_{3}+4 x_{4}-x_{5}$, $y_{2}=x_{1}+2 x_{2}-3 x_{3}+x_{4}+2 x_{5}$, $y_{3}=5 x_{1}-5 x_{2}+12 x_{3}+11 x_{4}-5 x_{5}$, $y_{4}=x_{1}-3 x_{2}+6 x_{3}+3 x_{4}-3 x_{5}$.
394. $y_{1}=x_{1}+2 x_{2}+x_{3}-2 x_{4}+x_{5}$,
$y_{2}=2 x_{1}-x_{2}+x_{3}+3 x_{4}+2 x_{5}$,
$y_{3}=x_{1}-x_{2}+2 x_{3}-x_{4}+3 x_{5}$,
$y_{4}=2 x_{1}+x_{2}-3 x_{3}+x_{4}-2 x_{5}$,
$y_{5}=x_{1}-x_{2}+3 x_{3}-x_{4}+7 x_{5}$.
395. $y_{1}=4 x_{1}+3 x_{2}-x_{3}+x_{4}-x_{5}$, $y_{2}=2 x_{1}+x_{2}-3 x_{3}+2 x_{4}-5 x_{5}$,
$y_{3}=x_{1}-3 x_{2}+x_{4}-2 x_{5}$,
$y_{4}=x_{1}+5 x_{2}+2 x_{3}-2 x_{4}+6 x_{5}$.
396. $y_{1}=x_{1}+2 x_{2}-x_{3}+3 x_{4}-x_{5}+2 x_{6}$, $y_{2}=2 x_{1}-x_{2}+3 x_{3}-4 x_{4}+x_{5}-x_{6}$, $y_{3}=3 x_{1}+x_{2}-x_{3}+2 x_{4}+x_{5}+3 x_{6}$, $y_{4}=4 x_{1}-7 x_{2}+8 x_{3}-15 x_{4}+6 x_{5}-5 x_{6}$, $y_{5}=5 x_{1}+5 x_{2}-6 x_{3}+11 x_{4} \quad+9 x_{6}$.
397. $y_{1}=x_{1}+2 x_{2}+x_{3}-3 x_{4}+2 x_{5}$,
$y_{2}=2 x_{1}+x_{2}+x_{3}+x_{4}-3 x_{5}$,
$y_{3}=x_{1}+x_{2}+2 x_{3}+2 x_{4}-2 x_{5}$,
$y_{4}=2 x_{1}+3 x_{2}-5 x_{3}-17 x_{4}+\lambda x_{5}$.
Choose λ so that the fourth form is a linear combination of the other three.

Sec. 4. Systems of Linear Equations

398. Solve the system of equations

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}+x_{4}=1, \\
& x_{1}-2 x_{2}+x_{3}-x_{4}=-1, \\
& x_{1}-2 x_{2}+x_{3}+5 x_{4}=5
\end{aligned}
$$

399. Choose λ so that the following system of equations has a solution:

$$
\begin{array}{r}
2 x_{1}-x_{2}+x_{3}+x_{4}=1, \\
x_{1}+2 x_{2}-x_{3}+4 x_{4}=2, \\
x_{1}+7 x_{2}-4 x_{3}+11 x_{4}=\lambda .
\end{array}
$$

Solve the systems of equations:

400.

$$
401 .
$$

$$
\begin{aligned}
x_{1}+x_{2}-3 x_{3} & =-1, & 2 x_{1}+x_{2}+x_{3} & =2 \\
2 x_{1}+x_{2}-2 x_{3} & =1, & x_{1}+3 x_{2}+x_{3} & =5 \\
x_{1}+x_{2}+x_{3} & =3, & x_{1}+x_{2}+5 x_{3} & =-7 \\
x_{1}+2 x_{2}-3 x_{3} & =1, & 2 x_{1}+3 x_{2}-3 x_{3} & =14
\end{aligned}
$$

402.

$$
403 .
$$

$$
\begin{aligned}
2 x_{1}-x_{2}+3 x_{3} & =3, & x_{1}+3 x_{2}+2 x_{3} & =0, \\
3 x_{1}+x_{2}-5 x_{3} & =0, & 2 x_{1}-x_{2}+3 x_{3} & =0, \\
4 x_{1}-x_{2}+x_{3} & =3, & 3 x_{1}-5 x_{2}+4 x_{3} & =0, \\
x_{1}+3 x_{2}-13 x_{3} & =-6 . & x_{1}+17 x_{2}+4 x_{3} & =0 .
\end{aligned}
$$

404. $2 x_{1}+x_{2}-x_{3}+x_{4}=1$,

$$
3 x_{1}-2 x_{2}+2 x_{3}-3 x_{4}=2
$$

$$
5 x_{1}+x_{2}-x_{3}+2 x_{4}=-1
$$

$$
2 x_{1}-x_{2}+x_{3}-3 x_{4}=4
$$

405. $2 x_{1}-x_{2}+x_{3}-x_{4}=1$,

$$
\begin{aligned}
& 2 x_{1}-x_{2} \quad-3 x_{4}=2 \\
& 3 x_{1}-x_{3}+x_{4}=-3 \\
& 2 x_{1}+2 x_{2}-2 x_{3}+5 x_{4}=-6
\end{aligned}
$$

406.

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3}-4 x_{4} & =4, \\
x_{2}-x_{3}+x_{4} & =-3, \\
x_{1}+3 x_{2}-3 x_{4} & =1, \\
-7 x_{2}+3 x_{3}+x_{4} & =-3 .
\end{aligned}
$$

408.

$2 x_{1}+3 x_{2}-x_{3}+5 x_{4}=0$, $3 x_{1}-x_{2}+2 x_{3}-7 x_{4}=0$,
$4 x_{1}+x_{2}-3 x_{3}+6 x_{4}=0$, $x_{1}-2 x_{2}+4 x_{3}-7 x_{4}=0 . \quad 7 x_{1}-2 x_{2}+\quad x_{3}+3 x_{4}=0$.
410. $x_{1}+x_{2} \quad-3 x_{4}-x_{5}=0$,

$$
x_{1}-x_{2}+2 x_{3}-x_{4}=0
$$

$$
4 x_{1}-2 x_{2}+6 x_{3}+3 x_{4}-4 x_{5}=0
$$

$$
2 x_{1}+4 x_{2}-2 x_{3}+4 x_{4}-7 x_{5}=0 .
$$

411. $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=7$,
$3 x_{1}+2 x_{2}+x_{3}+x_{4}-3 x_{5}=-2$,

$$
x_{2}+2 x_{3}+2 x_{4}+6 x_{5}=23
$$

$5 x_{1}+4 x_{2}+3 x_{3}+3 x_{4}-x_{5}=12$.
412. $x_{1}-2 x_{2}+x_{3}-x_{4}+x_{5}=0$,
$2 x_{1}+x_{2}-x_{3}+2 x_{4}-3 x_{5}=0$, $3 x_{1}-2 x_{2}-x_{3}+x_{4}-2 x_{5}=0$, $2 x_{1}-5 x_{2}+x_{3}-2 x_{4}+2 x_{5}=0$.
413. $x_{1}-2 x_{2}+x_{3}+x_{4}-x_{5}=0$, $2 x_{1}+x_{2}-x_{3}-x_{4}+x_{5}=0$, $x_{1}+7 x_{2}-5 x_{3}-5 x_{4}+5 x_{5}=0$, $3 x_{1}-x_{2}-2 x_{3}+x_{4}-x_{5}=0$.
414. $2 x_{1}+x_{2}-x_{3}-x_{4}+x_{5}=1$,

$$
x_{1}-x_{2}+x_{3}+x_{4}-2 x_{5}=0
$$

$$
3 x_{1}+3 x_{2}-3 x_{3}-3 x_{4}+4 x_{5}=2
$$

$$
4 x_{1}+5 x_{2}-5 x_{3}-5 x_{4}+7 x_{5}=3
$$

415. $2 x_{1}-2 x_{2}+x_{3}-x_{4}+x_{5}=1$,

$$
x_{1}+2 x_{2}-x_{3}+x_{4}-2 x_{5}=1
$$

$$
4 x_{1}-10 x_{2}+5 x_{3}-5 x_{4}+7 x_{5}=1
$$

$$
2 x_{1}-14 x_{2}+7 x_{3}-7 x_{4}+11 x_{5}=-1 .
$$

416. $3 x_{1}+x_{2}-2 x_{3}+x_{4}-x_{5}=1$, $2 x_{1}-x_{2}+7 x_{3}-3 x_{4}+5 x_{5}=2$, $x_{1}+3 x_{2}-2 x_{3}+5 x_{4}-7 x_{5}=3$, $3 x_{1}-2 x_{2}+7 x_{3}-5 x_{4}+8 x_{5}=3$.
417. $x_{1}+2 x_{2} \quad-3 x_{4}+2 x_{5}=1$, $x_{1}-x_{2}-3 x_{3}+x_{4}-3 x_{5}=2$,
$2 x_{1}-3 x_{2}+4 x_{3}-5 x_{4}+2 x_{5}=7$,
$9 x_{1}-9 x_{2}+6 x_{3}-16 x_{4}+2 x_{5}=25$.
418. $x_{1}+3 x_{2}+5 x_{3}-4 x_{4}=1$, $x_{1}+3 x_{2}+2 x_{3}-2 x_{4}+x_{5}=-1$, $x_{1}-2 x_{2}+x_{3}-x_{4}-x_{5}=3$, $x_{1}-4 x_{2}+x_{3}+x_{4}-x_{5}=3$, $x_{1}+2 x_{2}+x_{3}-x_{4}+x_{5}=-1$.
419. $x_{1}+2 x_{2}+3 x_{3}-x_{4}=1$, $3 x_{1}+2 x_{2}+x_{3}-x_{4}=1$, $2 x_{1}+3 x_{2}+x_{3}+x_{4}=1$, $2 x_{1}+2 x_{2}+2 x_{3}-x_{4}=1$, $5 x_{1}+5 x_{2}+2 x_{3}=2$.
420. $x_{1}-2 x_{2}+3 x_{3}-4 x_{4}+2 x_{5}=-2$,

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3}-x_{5} & =-3, \\
x_{1}-x_{2}+2 x_{3}-3 x_{4} & =10, \\
x_{2}-x_{3}+x_{4}-2 x_{5} & =-5, \\
2 x_{1}+3 x_{2}-x_{3}+x_{4}+4 x_{5} & =1 .
\end{aligned}
$$

421. The system of equations

$$
\begin{aligned}
& a y+b x=c \\
& c x+a z=b \\
& b z+c y=a
\end{aligned}
$$

has a unique solution. Prove that $a b c \neq 0$ and find the solution. Solve the following systems of equations:
422. $\lambda x+y+z=1$,

$$
\begin{aligned}
& x+\lambda y+z=\lambda \\
& x+y+\lambda z=\lambda^{2}
\end{aligned}
$$

423. $\lambda x+y+z+t=1$,

$$
\begin{aligned}
x+\lambda y+z+t & =\lambda, \\
x+y+\lambda z+t & =\lambda^{2} \\
x+y+z+\lambda t & =\lambda^{3} .
\end{aligned}
$$

424. $x+a y+a^{2} z=a^{3}$, $x+b y+b^{2} z=b^{3}$, $x+c y+c^{2} z=c^{3}$.
425. $a x+y+z=4$,

$$
\begin{aligned}
x+b y+z & =3 \\
x+2 b y+z & =4
\end{aligned}
$$

425. $x+y+z=1$, $a x+b y+c z=d$, $a^{2} x+b^{2} y+c^{2} z=d^{2}$.
426. $a x+b y+z=1$,

$$
\begin{gathered}
x+a b y+z=b, \\
x+b y+a z=1 .
\end{gathered}
$$

428. $\alpha x+y+z=m$, $x+\alpha y+z=n$, $x+y+\alpha z=p$.
429. $x+a y+a^{2} z=1$, $x+a y+a b z=a$, $b x+a^{2} y+a^{2} b z=a^{2} b$.
430. $(\lambda+3) x+y+\quad 2 z=\lambda$,

$$
\begin{array}{cl}
\lambda x+(\lambda-1) y+ & z=2 \lambda, \\
3(\lambda+1) x+\quad \lambda y+(\lambda+3) & z=3 .
\end{array}
$$

431.

$$
\begin{aligned}
\lambda x+\lambda y+(\lambda+1) z & =\lambda, \\
\lambda x+\lambda y+(\lambda-1) z & =\lambda, \\
(\lambda+1) x+\lambda y+(2 \lambda+3) z & =1 .
\end{aligned}
$$

432.

$$
\begin{aligned}
3 k x+(2 k+1) y+(k+1) \quad z & =k, \\
(2 k-1) x+(2 k-1) y+(k-2) \quad z & =k+1, \\
(4 k-1) x+\quad 3 k y+\quad 2 k z & =1 .
\end{aligned}
$$

433. $a x+\quad b y+\quad 2 z=1$,

$$
\begin{array}{lrl}
a x+(2 b-1) y+ & 3 z & =1, \\
a x+\quad b y+(b+3) z & z=2 b-1 .
\end{array}
$$

434. (a) $3 m x+(3 m-7) y+(m-5) z=m-1$,

$$
\begin{aligned}
(2 m-1) x+(4 m-1) y+\quad 2 m z & =m+1 \\
4 m x+(5 m-7) y+(2 m-5) z & =0 .
\end{aligned}
$$

(b) $(2 m+1) x-\quad m y+(m+1) z=m-1$, $(m-2) x+(m-1) y+(m-2) z=m$, $(2 m-1) x+(m-1) \quad y+(2 m-1) z=m$.
(c) $(5 \lambda+1) x+\quad 2 \lambda y+(4 \lambda+1) z=1+\lambda$, $(4 \lambda-1) x+(\lambda-1) y+(4 \lambda-1) z=-1$,
$2(3 \lambda+1) x+\quad 2 \lambda y+(5 \lambda+2) z=2-\lambda$.
435. (a) $(2 c+1) x-c y-(c+1) z=2 c$,

$$
3 c x-(2 c-1) y-(3 c-1) z=c+1
$$

$$
(c+2) x-\quad y-\quad 2 c z=2
$$

(b) $2(\lambda+1) x+\quad 3 y+\quad \lambda z=\lambda+4$, $(4 \lambda-1) x+(\lambda+1) y+(2 \lambda-1) z=2 \lambda+2$, $(5 \lambda-4) x+(\lambda+1) y+(3 \lambda-4) z=\lambda-1$.
(c) $d x+(2 d-1) y+(d+2) z=1$,

$$
\begin{aligned}
(d-1) y+\quad(d-3) z & =1+d \\
d x+(3 d-2) y+(3 d+1) z & =2-d
\end{aligned}
$$

(d) $\begin{aligned}(3 a-1) x+\quad 2 a y+(3 a+1) z & =1, \\ 2 a x+\quad 2 a y+(3 a+1) z & =a, \\ (a+1) x+(a+1) y+2(a+1) z & =a^{2} .\end{aligned}$
436. Find the equation of a straight line passing through the points $M_{1}\left(x_{1}, y_{1}\right), M_{2}\left(x_{2}, y_{2}\right)$.
437. Under what condition do the three points $M_{1}\left(x_{1}, y_{1}\right)$, $M_{2}\left(x_{2}, y_{2}\right), M_{3}\left(x_{3}, y_{3}\right)$ lie on a straight line?
438. Under what condition do the three straight lines $a_{1} x+$ $+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0, \quad a_{3} x+b_{3} y+c_{3}=0$ pass through one point?
439. Under what condition do the four points $M_{0}\left(x_{0}, y_{0}\right)$, $M_{1}\left(x_{1}, y_{1}\right), M_{2}\left(x_{2}, y_{2}\right), M_{3}\left(x_{3}, y_{3}\right)$ lie on one circle?
440. Write the equation of a circle passing through the points $M_{1}(2,1), M_{2}(1,2), M_{3}(0,1)$.
441. Find the equation of a quadric curve passing through the points $M_{1}(0,0), M_{2}(1,0), M_{3}(-1,0), M_{4}(1,1)$ and $M_{5}(-1,1)$.
442. Find the equation of a third-degree parabola passing through the points $M_{1}(1,0), M_{2}(0,-1), M_{3}(-1,-2)$ and $M_{4}(2,7)$.
443. Form the equation of a parabola of degree $n y=a_{0} x^{n}+$ $+a_{1} x^{n-1}+\ldots+a_{n}$ passing through the $n+1$ points $M_{0}\left(x_{0}, y_{0}\right)$, $M_{1}\left(x_{1}, y_{1}\right), M_{2}\left(x_{2}, y_{2}\right), \ldots, M_{n}\left(x_{n}, y_{n}\right)$.
444. Under what condition do the four points $M_{1}\left(x_{1}, y_{1}, z_{1}\right)$, $M_{2}\left(x_{2}, y_{2}, z_{2}\right), M_{3}\left(x_{3}, y_{3}, z_{3}\right), M_{4}\left(x_{4}, y_{4}, z_{4}\right)$ lie in a single plane?
445. Form the equation of a sphere passing through the points $M_{1}(1,0,0), M_{2}(1,1,0), M_{3}(1,1,1), M_{4}(0,1,1)$.
446. Under what condition do the n points $M_{1}\left(x_{1}, y_{1}\right)$, $M_{2}\left(x_{2}, y_{2}\right), M_{3}\left(x_{3}, y_{3}\right), \ldots, M_{n}\left(x_{n}, y_{n}\right)$ lie on a single straight line?
447. Under what condition are the n straight lines $a_{1} x+b_{1} y+$ $+c_{1}=0, \quad a_{2} x+b_{2} y+c_{2}=0, \quad \ldots, a_{n} x+b_{n} y+c_{n}=0$ concurrent?
448. Under what condition do the n points $M_{1}\left(x_{1}, y_{1}, z_{1}\right)$, $M_{2}\left(x_{2}, y_{2}, z_{2}\right), \ldots, M_{n}\left(x_{n}, y_{n}, z_{n}\right)$ lie in one plane and under what condition do they lie on one straight line?
449. Under what condition do the n planes $A_{i} x+B_{i} y+C_{i} z+$ $+D_{i}=0(i=1,2, \ldots, n)$ pass through one point and under what condition do all these planes pass through a single straight line?
450. Eliminate $x_{1}, x_{2}, \ldots, x_{n-1}$ from the system of n equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1, n-1} x_{n-1}+a_{1 n}=0, \\
& a_{21} x_{1}+a_{28} x_{2}+\ldots+a_{2, n-1} x_{n-1}+a_{2 n}=0, \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n},{ }_{n-1} x_{n-1}+a_{n n}=0 .
\end{aligned}
$$

451. Let

$$
\left.\begin{array}{c}
x_{1}^{(1)}=\alpha_{11} ; \quad x_{2}^{(1)}=\alpha_{12} ; \quad \ldots ; x_{n}^{(1)}=\alpha_{1 n}, \tag{1}\\
x_{1}^{(2)}=\alpha_{21} ; \quad x_{2}^{(2)}=\alpha_{2 q} ; \ldots ; x_{n}^{(2)}=\alpha_{2 n}, \\
\cdots \cdots \cdots \cdots \cdots x_{n}^{(m)}=\alpha_{m n}
\end{array}\right\}
$$

be m solutions of some system of homogeneous linear equations. These solutions are termed linearly dependent if there exist constants $c_{1}, c_{2}, \ldots, c_{m}$ not all zero, such that

$$
\begin{gather*}
c_{1} \alpha_{1 i}+c_{2} \alpha_{2 i}+\ldots+c_{m} \alpha_{m i}=0 \tag{2}\\
(i=1,2, \ldots, n) .
\end{gather*}
$$

If the equations (2) are only possible when $c_{1}=c_{2}=\ldots=c_{m}=0$, then the solutions are termed linearly independent.

Let us agree to write the solutions as rows of a matrix.
Thus, the system of solutions of (1) is written in matrix form as

$$
\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1 n} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{m 1} & \alpha_{m 2} & \cdots & \alpha_{m n}
\end{array}\right)=A .
$$

Prove that if the rank of matrix A is r, then the system (1) has r linearly independent solutions and all other solutions of (1) are linear combinations of them.
452. Prove that if the rank of a system of m homogeneous linear equations in n unknowns is equal to r, then there exist $n-r$ linearly independent solutions of the system, and all other solutions of the system are linear combinations of them.

Such a system of $n-r$ solutions is termed a fundamental system of solutions.
453. Is $\left(\begin{array}{rrrrr}1 & -2 & 1 & 0 & 0 \\ 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 1 & -2 & 3 & -2 & 0\end{array}\right)$ a fundamental
system of solutions of the system of equations

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0 \\
3 x_{1}+2 x_{2}+x_{3}+x_{4}-3 x_{5}=0 \\
x_{2}+2 x_{3}+2 x_{4}+6 x_{5}=0 \\
5 x_{1}+4 x_{2}+3 x_{3}+3 x_{4}-x_{5}=0 ?
\end{array}
$$

454. Write a fundamental system of solutions of the system of equations of Problem 453.
455. Is $\left(\begin{array}{rrrrr}1 & -2 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 4 & 0 & 0 & -6 & 2\end{array}\right)$ a fundamental
system of solutions of the system of Problem 453?
456. Prove that if A is a rank r matrix that forms a fundamental system of solutions of a system of homogeneous linear equations, and B is an arbitrary nonsingular matrix of order r, then the matrix $B A$ also forms a fundamental system of solutions of the same system of equations.
457. Prove that if two matrices A and C of rank r form fundamental systems of solutions of some system of homogeneous linear equations, then one of them is the product of some nonsingular matrix B of order r by the other; that is, $A=B C$.
458. Let $\left(\begin{array}{cccc}\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\ \alpha_{21} & \alpha_{22} & \ldots & \alpha_{2 n} \\ \ldots & \ldots & \ldots & \alpha_{n} \\ \alpha_{r 1} & \alpha_{r 2} & \ldots & \alpha_{r n}\end{array}\right)$ be a fundamental system of so-
lutions of some system of homogeneous linear equations. Prove that

$$
\begin{aligned}
& x_{1}=c_{1} \alpha_{11}+c_{2} \alpha_{21}+\ldots+c_{r} \alpha_{r 1}, \\
& x_{2}=c_{1} \alpha_{12}+c_{2} \alpha_{22}+\ldots+c_{r} \alpha_{r 2}, \\
& \cdots \ldots \ldots \ldots . \ldots \\
& x_{n}=c_{1} \alpha_{1 n}+c_{2} \alpha_{2 n}+\ldots+c_{r} \alpha_{r n}
\end{aligned}
$$

is the general solution of this system of equations, i.e., that any solution of the system may be obtained from it for certain values of $c_{1}, c_{2}, \ldots, c_{r}$, and conversely.
459. Write the general solution to the system of Problem 453.
460. Verify that ($111-7$) is a fundamental system of solutions of the system of Problem 403, and write the general solution.
461. Write the general solutions of the systems of Problems 408, 409, 410, 412, 413.
462. Knowing the general solution of the system of Problem 453 (see the answer to Problem 459) and the fact that $x_{1}=-16$, $x_{2}=23, x_{3}=x_{4}=x_{5}=0$ is a particular solution of the system of Problem 411 , find the general solution of the system of 411 .
463. Write the general solutions of the systems of Problems 406, 414, 415.

CHAPTER 4 MATRICES

Sec. 1. Operations on Square Matrices

464. Multiply the matrices:
(a) $\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \cdot\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$,
(b) $\begin{gathered}\left(\begin{array}{l}3 \\ 6 \\ -1 \\ 1 \\ 1\end{array}\right),\end{gathered}$
(c) $\left(\begin{array}{lll}3 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3\end{array}\right) \cdot\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1\end{array}\right)$,
(d) $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right) \cdot\left(\begin{array}{rrr}-1 & -2 & -4 \\ -1 & -2 & -4 \\ 1 & 2 & 4\end{array}\right)$,
(e) $\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 1\end{array}\right) \cdot\left(\begin{array}{rrr}2 & 3 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & -1\end{array}\right) \cdot\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 1\end{array}\right)$,
(f) $\left(\begin{array}{lll}a & b & c \\ c & b & a \\ 1 & 1 & 1\end{array}\right) \cdot\left(\begin{array}{lll}1 & a & c \\ 1 & b & b \\ 1 & c & a\end{array}\right)$.
465. Perform the following operations:
(a) $\left(\begin{array}{lll}2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)^{2}, \quad$ (b) $\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)^{3}, \quad$ (c) $\left(\begin{array}{rr}3 & 2 \\ -4 & -2\end{array}\right)^{5}$,
(d) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{n}, \quad$ (e) $\left(\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right)^{n}$.
*466. Find $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}1 & \frac{\alpha}{n} \\ -\frac{\alpha}{n} & 1\end{array}\right)^{n}$, where α is a real number.
466. Prove that if $A B=B A$, then
(a) $(A+B)^{2}=A^{2}+2 A B+B^{2}$,
(b) $A^{2}-B^{2}=(A+B)(A-B)$,
(c) $(A+B)^{n}=A^{n}+\frac{n}{1} A^{n-1} B+\ldots+B^{n}$.
467. Compute $A B-B A$ if:
(a) $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3\end{array}\right), \quad B=\left(\begin{array}{rrr}4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1\end{array}\right)$;
(b) $A=\left(\begin{array}{rrr}2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1\end{array}\right), \quad B=\left(\begin{array}{rrr}3 & 1 & -2 \\ 3 & -2 & 4 \\ -3 & 5 & -1\end{array}\right)$.
468. Find all matrices that commute with the matrix A :
(a) $A=\left(\begin{array}{rr}1 & 2 \\ -1 & -1\end{array}\right)$,
(b) $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$,
(c) $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & 2\end{array}\right)$.
469. Find $f(A)$:
(a) $f(x)=x^{2}-x-1, \quad A=\left(\begin{array}{rrr}2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 0\end{array}\right)$;
(b) $f(x)=x^{2}-5 x+3, \quad A=\left(\begin{array}{rr}2 & -1 \\ -3 & 3\end{array}\right)$.
470. Prove that every second-order matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfies the equation

$$
x^{2}-(a+d) x+(a d-b c)=0 .
$$

472. Prove that for any given matrix A there is a polynomial $f(x)$ such that $f(A)=0$, and that all polynomials with this property are divisible by one of them.
*473. Prove that the equation $A B-B A=E$ is impossible.
473. Let $A^{k}=0$. Prove that $(E-A)^{-1}=E+A+A^{2}+\ldots+A^{k-1}$ 。
474. Find all second-order matrices whose squares are equal to the zero matrix.
475. Find all second-order matrices whose cubes are equal to the zero matrix.
476. Find all second-order matrices whose squares are equal to the unit matrix.
477. Solve and investigate the equation $X A=0$, where A is the given matrix and X is the second-order matrix sought.
478. Solve and investigate the equation $X^{2}=A$, where A is the given matrix and X is the desired second-order matrix.
479. Find the inverse of the matrix A :
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$,
(b) $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$,
(c) $A=\left(\begin{array}{rrr}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right), \quad$ (d) $A=\left(\begin{array}{rrrr}1 & 3 & -5 & 7 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$,
(e) $A=\left(\begin{array}{rrr}2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1\end{array}\right), \quad$ (f) $A=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$,
(g) $A=\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 1 & 1 & 3 & 4 \\ 2 & -1 & 2 & 3\end{array}\right), \quad$ (h) $A=\left(\begin{array}{lllll}0 & 1 & 1 & \ldots & 1 \\ 1 & 0 & 1 & \ldots & 1 \\ 1 & 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots & . \\ 1 & 1 & 1 & \ldots & 0\end{array}\right)$,
(i) $A=\left(\begin{array}{lllll}1 & 1 & 1 & \ldots & 1 \\ 1 & \varepsilon & \varepsilon^{2} & \ldots & \varepsilon^{n-1} \\ 1 & \varepsilon^{2} & \varepsilon^{4} & \ldots & \varepsilon^{2 n-2} \\ \cdots & \cdots & \cdots & \cdots & \ldots\end{array}\right)$,
where $\varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$,
(j) $A=\left(\begin{array}{rrrllr}2 & -1 & 0 & \ldots & & 0 \\ -1 & 2 & -1 & \ldots & & 0 \\ 0 & -1 & 2 & \ldots & & 0 \\ \ldots & \ldots & \ldots & \ldots & \cdots & \cdots \\ 0 & 0 & 0 & \ldots & -1 & 2\end{array}\right)$,
(k) $A=\left(\begin{array}{cccccc}1 & 3 & 5 & 7 & \ldots & 2 n-1 \\ 2 n-1 & 1 & 3 & 5 & \ldots & 2 n-3 \\ 2 n-3 & 2 n-1 & 1 & 3 & \ldots & 2 n-5 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 3 & 5 & 7 & 9 & \ldots & 1\end{array}\right)$,
(l) $A=\left(\begin{array}{cccccc}1 & 0 & 0 & \ldots & 0 & c_{1} \\ 0 & 1 & 0 & \ldots & 0 & c_{2} \\ 0 & 0 & 1 & \ldots & 0 & c_{3} \\ \ldots & \cdots & \ldots & \ldots & \ldots & . \\ 0 & 0 & 0 & \ldots & 1 & c_{n} \\ b_{1} & b_{2} & b_{3} & \ldots & b_{n} & a\end{array}\right)$,
(m) $A=\left(\begin{array}{lrrlr}1 & -x & 0 & \ldots & 0 \\ 0 & 1 & -x & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & 1\end{array}\right)$-x \quad,
(n) $A=\left(\begin{array}{ccccc}1+\frac{1}{\lambda_{1}} & 1 & 1 & & 1 \\ 1 & 1+\frac{1}{\lambda_{2}} & 1 & & 1 \\ 1 & 1 & 1+\frac{1}{\lambda_{3}} & \ldots & 1 \\ \ldots & \ldots & \ldots & \cdots & \ldots\end{array}\right)$.
(o) Knowing the matrix B^{-1}, find the inverse of the bordered matrix $\left(\begin{array}{ll}B & U \\ V & a\end{array}\right)$.
480. Find the desired matrix X from the equations:
(a) $\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right) \cdot X=\left(\begin{array}{rr}4 & -6 \\ 2 & 1\end{array}\right)$,
(b) $X \cdot\left(\begin{array}{rrr}1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1\end{array}\right)=\left(\begin{array}{rrr}1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5\end{array}\right)$,
(c) $\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 0 & 1 & 1 & \ldots & 1 \\ 0 & 0 & 1 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots & . \\ 0 & 0 & 0 & \ldots & 1\end{array}\right) \cdot X=\left(\begin{array}{ccccc}2 & 1 & 0 & \ldots & 0 \\ 1 & 2 & 1 & \ldots & 0 \\ 0 & 1 & 2 & \ldots & 0 \\ \ldots & \ldots & \ldots & . \\ 0 & 0 & 0 & \ldots & 2\end{array}\right)$,
(d) $\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \cdot X \cdot\left(\begin{array}{rr}-3 & 2 \\ 5 & -3\end{array}\right)=\left(\begin{array}{rr}-2 & 4 \\ 3 & -1\end{array}\right)$,
(e) $\left(\begin{array}{rrrlrr}1 & 1 & 1 & \ldots & 1 & 1 \\ -1 & 1 & 0 & \ldots & 0 & 0 \\ 0 & -1 & 1 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & . \\ 0 & 0 & 0 & \ldots & -1 & 1\end{array}\right) \cdot X \cdot\left(\begin{array}{rrrrr}1 & -1 & 0 & \ldots & 0 \\ 1 & 1 & -1 & \ldots & 0 \\ 1 & 0 & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & . \\ 1 & 0 & 0 & \ldots & 1\end{array}\right)$
$=\left(\begin{array}{rrrrrr}1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 2 & -1 & \ldots & 0 & 0 \\ 0 & -1 & 2 & \ldots & 0 & 0 \\ \ldots & \cdots & \ldots & \ldots & \cdots & \cdots\end{array}\right), ~$.
(f) $\left(\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right) \cdot X=\left(\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right) ; \quad$ (g) $X \cdot\left(\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
481. Prove that if $A B=B A$, then $A^{-1} B=B A^{-1}$.
482. Compute $\varphi(A)$, where $\varphi(x)=\frac{1+x}{1-x}, \quad A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
483. Find all the second-order real matrices whose cubes are equal to the unit matrix.
484. Find all the second-order real matrices whose fourth powers are equal to the unit matrix.
485. Establish that there is an isomorphism between the field of complex numbers and the set of matrices of the form $\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)$ for real a, b.
486. Establish that for real a, b, c, d, the matrices of the form $\left(\begin{array}{rr}a+b i & c+d i \\ -c+d i & a-b i\end{array}\right)$ constitute a ring without zero divisors.
487. Represent $\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}\right)$ as a sum of four squares of bilinear expressions.
488. Prove that the following operations involving matrices are accomplished by premultiplication of the matrix by certain nonsingular matrices:
(a) interchanging two rows,
(b) adding, to elements of one row, numbers proportional to the elements of another row,
(c) multiplying elements of a row by a nonzero scalar.

The same operations involving columns are performed via postmultiplication.
490. Prove that every matrix can be represented as $P R Q$, where P and Q are nonsingular matrices and R is a diagonal matrix of the form

*491. Prove that every matrix may be represented as a product of the matrices $E+\alpha e_{i k}$, where $e_{i k}$ is a matrix whose element of the i th row and k th column is unity, and all other elements are zero.
*492. Prove that the rank of a product of two square matrices of order n is not less than $r_{1}+r_{2}-n$, where r_{1} and r_{2} are the ranks of the factors.
493. Prove that every square matrix of rank 1 is of the form

$$
\left(\begin{array}{ccccc}
\lambda_{1} \mu_{1} & \lambda_{1} \mu_{2} & \ldots & \lambda_{1} \mu_{n} \\
\lambda_{2} \mu_{1} & \lambda_{2} \mu_{2} & \ldots & \lambda_{2} \mu_{n} \\
\cdots & \cdots & \cdots & \ldots & \cdots
\end{array}\right) .
$$

*494. Find all third-order matrices whose squares are 0.
*495. Find all third-order matrices whose squares are equal to the unit matrix.
*496. Let the rectangular matrices A and B have the same number of rows. By (A, B) denote the matrix obtained by adjoining to A all the columns of B. Piove that the rank of $(A, B) \leqslant \operatorname{rank}$ of $A+$ rank of B.
*497. Prove that if $A^{2}=E$, then the rank of $(E+A)+$ the rank of $(E-A)=n$, where n is the order of the matrix A.
*498. Prove that the matrix A with the property $A^{2}=E$ can be represented in the form $P B P^{-1}$, where P is a nonsingular matrix and B is a diagonal matrix, all elements of which are equal to ± 1.
499. Find the condition which a matrix with integral elements must satisfy so that all the elements of the inverse are also integral.
500. Prove that every nonsingular integral matrix can be represented as $P R$, where P is an integral unimodular matrix, and R is an integral triangular matrix all the elements of which below the principal diagonal are zero, the diagonal elements are positive, and the elements above the principal diagonal are nonnegative and less than the diagonal elements of that column.
*501. Combine into a single class all integral matrices which are obtained one from the other by premultiplication by integral unimodular matrices. Compute the number of classes of n th-order matrices with a given determinant k.
502. Prove that every integral matrix can be represented as $P R Q$, where P and Q are integral unimodular matrices and R is an integral diagonal matrix.
503. Prove that every integral unimodular matrix of second order with determinant 1 can be represented as a product of powers (positive and negative) of the matrices

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

504. Prove that every second-order integral unimodular matrix can be represented in the form of a product of the powers of the matrices

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

505. Prove that every third-order integral matrix, different from unit matrix, with positive determinant and satisfying the condition $A^{2}=E$ can be represented in the form $Q C Q^{-1}$, where Q is an integral unimodular matrix and C is one of the matrices

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Sec. 2. Rectangular Matrices. Some Inequalities

506. Multiply the matrices:
(a) $\left(\begin{array}{lll}2 & 1 & 1 \\ 3 & 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}3 & 1 \\ 2 & 1 \\ 1 & 0\end{array}\right)$;
(b) $\left(\begin{array}{lll}3 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$;
(c) $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ and ($\left.\begin{array}{lll}1 & 2 & 3\end{array}\right)$;
(d) $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)$.
507. Find the determinant of the product of the matrix $\left(\begin{array}{llll}3 & 2 & 1 & 2 \\ 4 & 1 & 1 & 3\end{array}\right)$ by its transpose.
508. Multiply the matrix $\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right)$ by its transpose and apply the theorem on the determinant of a product.
509. Express the m th-order minor of the product of two matrices in terms of the minors of the factors.
510. Prove that all the principal (diagonal) minors of the matrix $\bar{A} A$ are nonnegative. Here, A is a real matrix, and \bar{A} is the transpose of A.
511. Prove that if all the principal k th-order minors of the matrix $\bar{A} A$ are zero, then the ranks of the matrices $\bar{A} A$ and A are less than k. Here, A is a real matrix and \bar{A} is its transpose.
512. Prove that the sums of all diagonal minors of a given order k computed for the matrices $\bar{A} A$ and $A \bar{A}$ are the same.
513. Using multiplication of rectangular matrices, prove the identity

$$
\begin{aligned}
\left(a_{1}^{2}+a_{2}^{2}+\ldots+\right. & \left.a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right) \\
& -\left(a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right)^{2}=\sum_{i<k}\left(a_{i} b_{k}-a_{k} b_{i}\right)^{2} .
\end{aligned}
$$

514. Prove the identity

$$
\sum_{i=1}^{n}\left|a_{i}\right|^{2} \cdot \sum_{i=1}^{n}\left|b_{i}\right|^{2}-\left|\sum_{i=1}^{n} a_{i} b_{i}^{\prime}\right|^{2}=\sum_{i<k}\left|a_{i} b_{k}-a_{k} b_{i}\right|^{2} .
$$

Here, a_{i}, b_{i} are complex numbers and b_{i}^{\prime} are the conjugates of b_{i}.
515. Prove the Bunyakovsky inequality

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant \sum_{i=1}^{n} a_{i}^{2} \cdot \sum_{i=1}^{n} b_{i}^{2}
$$

for real a_{i}, b_{i} by proceeding from the identity of Problem 513.
516. Prove the inequality

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}^{\prime}\right|^{2} \leqslant \sum_{i=1}^{n}\left|a_{i}\right|^{2} \cdot \sum_{i=1}^{n} \mid b_{i}^{i 2}
$$

for complex a_{i}, b_{i}.
*517. Let B and C be two real rectangular matrices such that $(B, C)=A$ is a square matrix [the symbol (B, C) has the same meaning as in Problem 496]. Prove that $|A|^{2} \leqslant|\bar{B} B| \cdot|\bar{C} C|$.
*518. Let $A=(B, C)$ be a rectangular matrix with real elements. Prove that

$$
|\bar{A} A| \leqslant|\bar{B} B| \cdot|\bar{C} C| .
$$

519. Let A be the rectangular real matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \cdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

Prove that $|A \bar{A}| \leqslant \sum_{k=1}^{n} a_{1 k}^{2} \cdot \sum_{k=1}^{n} a_{2 k}^{2} \ldots \sum_{k=1}^{n} a_{m k}^{2}$.
520. Let A be a rectangular matrix with complex elements and A^{*} the transpose of the complex conjugate of A. Prove that the determinant of the matrix $A^{*} A$ is a nonnegative real number and that this determinant is zero if and only if the rank of A is less than the number of columns.
521. Let $A=(B, C)$ be a complex rectangular matrix. Prove that $\left|A^{*} A\right| \leqslant\left|B^{*} B\right| \cdot\left|C^{*} C\right|$.
522. Prove that if $\left|a_{i k}\right| \leqslant M$, then the modulus of the determinant

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \cdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

does not exceed $M^{n} n^{n / 2}$.
*523. Prove that if $a_{i k}$ are real and lie in the interval $0 \leqslant a_{i k} \leqslant$ $\leqslant M$, then the absolute value of the determinant made up of the numbers $a_{i k}$ does not exceed $M^{n} 2^{-n} \times(n+1)^{\frac{n+1}{2}}$.
524. Prove that for determinants with complex elements the estimate given in Problem 522 is exact and cannot be improved.
525. Prove that for determinants with real elements the estimate given in Problem 522 is exact for $n=2^{m}$.
526. Prove that the maximum of the absolute value of the determinants of order n having real elements which do not exceed 1 in absolute value is an integer divisible by 2^{n-1}.
*527. Find the maximum of the absolute value of the determinants of orders 3 and 5 made up of real numbers that do not exceed 1 in absolute value.
*528. The adjoint of the matrix A is a matrix whose elements are minors of order $n-1$ of the original matrix in the natural order. Prove that the adjoint of the adjoint is equal to the original matrix multiplied by its determinant to the power $n-2$.
*529. Prove that the m th-order minors of an adjoint matrix are equal to the complementary minors of the appropriate minors of the original matrix multiplied by Δ^{m-1}.
530. Prove that the adjoint of a product of two matrices is equal to the product of the adjoint matrices in that order.
531. Let all combinations of numbers $1,2, \ldots, n$ taken m at a time be labelled in some fashion.

Given an $n \times n$ matrix $A=\left(a_{i k}\right)$. Let $A_{\alpha \beta}$ be the m th-order minor of A, the row indices of which form a combination with the index α, the column indices, a combination with the index β. Then, using all such minors, we can construct a matrix $A_{m}^{\prime}=\left(A_{\alpha \beta}\right)$ of order C_{n}^{m}. In particular, $A_{1}^{\prime}=A, A_{n-1}^{\prime}$ is the adjoint of A.

Prove that $(A B)_{m}^{\prime}=A_{m}^{\prime} B_{m}^{\prime}, E_{m}^{\prime}=E,\left(A^{-1}\right)_{m}^{\prime}=\left(A_{m}^{\prime}\right)^{-1}$.
532. Prove that if A is a "triangular" matrix of the form

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
0 & a_{22} & \ldots & a_{2 n} \\
\cdots & \ldots & \cdots & \cdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

then under an appropriate labelling of the combinations, the matrix A_{m}^{\prime} will also be triangular.
533. Prove that the determinant of the matrix A_{m}^{\prime} is equal to $|A|^{C_{n-1}^{m-1}}$.
534. Let the pairs $(i, k), i=1,2, \ldots, n ; k=1,2, \ldots, m$, be labelled in some fashion. The Kronecker product of two square matrices A and B of orders n and m, respectively, is the matrix $C=$ $=A \times B$ of order $n m$ with elements $c_{\alpha_{1} \alpha_{2}}=a_{i_{1} i_{2}} b_{k_{1} k_{2}}$, where α_{1} is the index of the pair $\left(i_{1}, k_{1}\right), \alpha_{2}$ the index of the pair $\left(i_{2}, k_{2}\right)$. Prove that
(a) $\left(A_{1} \pm A_{2}\right) \times B=\left(A_{1} \times B\right) \pm\left(A_{2} \times B\right)$,
(b) $A \times\left(B_{1} \pm B_{2}\right)=\left(A \times B_{1}\right) \pm\left(A \times B_{2}\right)$,
(c) $\left(A^{\prime} \times B^{\prime}\right) \cdot\left(A^{\prime \prime} \times B^{\prime \prime}\right)=\left(A^{\prime} \cdot A^{\prime \prime}\right) \times\left(B^{\prime} \cdot B^{\prime \prime}\right)$.
*535. Prove that the determinant $A \times B$ is equal to $|A|^{m} \cdot|B|^{n}$.
536. Let the matrices A and B of order $m n$ be partitioned into n^{2} square submatrices so that they are of the form

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\ldots & \cdots & \ldots & \cdots \\
A_{n 1} & A_{n 2} & \ldots & A_{n n}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 n} \\
B_{21} & B_{22} & \ldots & B_{2 n} \\
\ldots & \ldots & \cdots & \cdots \\
B_{n 1} & B_{n 2} & \ldots & B_{n n}
\end{array}\right)
$$

where $A_{i k}$ and $B_{i k}$ are square matrices of order m. Let their product be C and let it be partitioned in the same way into submatrices $C_{i k}$. Prove that

$$
C_{i k}=A_{i 1} B_{1 k}+A_{i 2} B_{2 k}+\ldots+A_{i n} B_{n k}
$$

Thus, multiplication of submatrices is performed by the same formal rule as when numbers take the place of submatrices.
*537. Let the matrix C of order $m n$ be partitioned into n^{2} equal square submatrices. Let the matrices $A_{i k}$ formed from the elements of the separate submatrices commute in pairs under multiplication. Form the "determinant" $\sum \pm A_{1 \alpha_{1}} A_{2 \alpha_{2}} \ldots A_{n \alpha_{n}}=B$ from the matrices $A_{i k}$. This "determinant" is a certain matrix of order m. Prove that the determinant of the matrix C is equal to the determinant of the matrix B.

CHAPTER 5

POLYNOMIALS

AND RATIONAL FUNCTIONS
OF ONE VARIABLE

Sec. 1. Operations on Polynomials. Taylor's Formula. Multiple Roots

538. Multiply the polynomials:
(a) $\left(2 x^{4}-x^{3}+x^{2}+x+1\right)\left(x^{2}-3 x+1\right)$,
(b) $\left(x^{3}+x^{2}-x-1\right)\left(x^{2}-2 x-1\right)$.
539. Perform the division (with remainder):
(a) $2 x^{4}-3 x^{3}+4 x^{2}-5 x+6$ by $x^{2}-3 x+1$,
(b) $x^{3}-3 x^{2}-x-1$ by $3 x^{2}-2 x+1$.
540. Under what condition is the polynomial $x^{3}+p x+q$ divisible by a polynomial of the form $x^{2}+m x-1$?
541. Under what condition is the polynomial $x^{4}+p x^{2}+q$ divisible by a polynomial of the form $x^{2}+m x+1$?
542. Simplify the polynomial

$$
1-\frac{x}{1}+\frac{x(x-1)}{1 \cdot 2}-\ldots+(-1)^{n} \frac{x(x-1) \ldots(x-n+1)}{n!} .
$$

543. Perform the division (with remainder):
(a) $x^{4}-2 x^{3}+4 x^{2}-6 x+8$
by $x-1$,
(b) $2 x^{5}-5 x^{3}-8 x$
by $x+3$,
(c) $4 x^{3}+x^{2}$
by $x+1+i$,
(d) $x^{3}-x^{2}-x$
by $x-1+2 i$.
544. Using Horner's scheme, compute $f\left(x_{0}\right)$:
(a.) $f(x)=x^{4}-3 x^{3}+6 x^{2}-10 x+16, x_{0}=4$,
(b) $f(x)=x^{5}+(1+2 i) x^{4}-(1+3 i) x^{2}+7, x_{0}=-2-i$.
545. Use the Horner scheme to expand the polynomial $f(x)$ in powers of $x-x_{0}$:
(a) $f(x)=x^{4}+2 x^{3}-3 x^{2}-4 x+1$,
$x_{0}=-1 ;$
(b) $f(x)=x^{5}, \quad x_{0}=1$;
(c) $f(x)=x^{4}-8 x^{3}+24 x^{2}-50 x+90$,
$x_{0}=2$;
(d) $f(x)=x^{4}+2 i x^{3}-(1+i) x^{2}-3 x+7+i$,
$x_{0}=-i$;
(e) $f(x)=x^{4}+(3-8 i) x^{3}-(21+18 i) x^{2}$

$$
-(33-20 i) x+7+18 i, \quad x_{0}=-1+2 i .
$$

546. Use the Horner scheme to decompose into partial fractions:
(a) $\frac{x^{3}-x+1}{(x-2)^{5}}$,
(b) $\frac{x^{4}-2 x^{2}+3}{(x+1)^{5}}$.
*547. Use the Horner scheme to expand in powers of x :
(a) $f(x+3)$ where $f(x)=x^{4}-x^{3}+1$,
(b) $(x-2)^{4}+4(x-2)^{3}+6(x-2)^{2}+10(x-2)+20$.
547. Find the values of the polynomial $f(x)$ and its derivatives when $x=x_{0}$:
(a) $f(x)=x^{5}-4 x^{3}+6 x^{2}-8 x+10$,
$x_{0}=2$,
(b) $f(x)=x^{4}-3 i x^{3}-4 x^{2}+5 i x-1$,
$x_{0}=1+2 i$.
548. Give the multiplicity of the root:
(a) 2 for the polynomial $x^{5}-5 x^{4}+7 x^{3}-2 x^{2}+4 x-8$,
(b) -2 for the polynomial $x^{5}+7 x^{4}+16 x^{3}+8 x^{2}-16 x-16$.
549. Determine the coefficient a so that the polynomial $x^{5}-$ $-a x^{2}-a x+1$ has -1 for a root of multiplicity not lower than two.
550. Determine A and B so that the trinomial $A x^{4}+B x^{3}+1$ is divisible by $(x-1)^{2}$.
551. Determine A and B so that the trinomial $A x^{n+1}+B x^{n}+1$ is divisible by $(x-1)^{2}$.
*553. Prove that the following polynomials have 1 as a triple root:
(a) $x^{2 n}-n x^{n+1}+n x^{n-1}-1$,
(b) $x^{2 n+1}-(2 n+1) x^{n+1}+(2 n+1) x^{n}-1$,
(c) $(n-2 m) x^{n}-n x^{n-m}+n x^{m}-(n-2 m)$.
552. Prove that the polynomial

$$
\begin{aligned}
& x^{2 n+1}-\frac{n(n+1)(2 n+1)}{6} x^{n+2}+\frac{(n-1)(n+2)(2 n+1)}{2} x^{n+1} \\
& \quad-\frac{(n-1)(n+2)(2 n+1)}{2} x^{n}+\frac{n(n+1)(2 n+1)}{6} x^{n-1}-1
\end{aligned}
$$

is divisible by $(x-1)^{5}$ and is not divisible by $(x-1)^{6}$.
*555. Prove that $(x-1)^{k+1}$ divides the polynomial

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}
$$

if and only if

$$
\begin{aligned}
& a_{0}+a_{1}+a_{2}+\ldots+\quad a_{n}=0, \\
& a_{1}+2 a_{\mathrm{g}}+\ldots+n \quad a_{n}=0, \\
& a_{1}+4 a_{2}+\ldots+n^{2} a_{n}=0 \text {, } \\
& a_{1}+2^{k} a_{2}+\ldots+n^{k} a_{n}=0 .
\end{aligned}
$$

556. Determine the multiplicity of the root a of the polynomial

$$
\frac{x-a}{2}\left[f^{\prime}(x)+f^{\prime}(a)\right]-f(x)+f(a)
$$

where $f(x)$ is a polynomial.
557. Find the condition under which the polynomial $x^{5}+a x^{3}+b$ has a double root different from zero.
558. Find the condition under which the polynomial $x^{5}+10 a x^{3}$ $+5 b x+c$ has a triple root different from zero.
559. Prove that the trinomial $x^{n}+a x^{n-m}+b$ cannot have nonzero roots above multiplicity two.
560. Find the condition under which the trinomial $x^{n}+a x^{n-m}+b$ has a nonzero double root.
*561. Prove that the k-term polynomial

$$
a_{1} x^{p_{1}}+a_{2} x^{p_{2}}+\ldots+a_{k} x^{p_{k}}
$$

does not have nonzero roots above multiplicity $(k-1)$.
*562. Prove that every nonzero root of multiplicity $k-1$ of the polynomial

$$
a_{1} x^{p_{1}}+a_{2} x^{p_{3}}+\ldots+a_{k} x^{p_{k}}
$$

satisfies the equations

$$
a_{1} x^{p_{1}} \varphi^{\prime}\left(p_{1}\right)=a_{2} x^{p_{2}} \varphi^{\prime}\left(p_{2}\right)=\ldots=a_{k} x^{p} k \varphi^{\prime}\left(p_{k}\right)
$$

where

$$
\varphi(t)=\left(t-p_{1}\right)\left(t-p_{2}\right)\left(t-p_{3}\right) \ldots\left(t-p_{k}\right)
$$

and conversely.
*563. Prove that a polynomial is divisible by its derivative if and only if it is equal to $a_{0}\left(x-x_{0}\right)^{n}$.
564. Prove that the polynomial

$$
1+\frac{x}{1}+\frac{x^{2}}{1 \cdot 2}+\ldots+\frac{x^{n}}{n!}
$$

does not have multiple roots.
565. Prove that for x_{0} to be a root of multiplicity k of the numerator of the fractional rational function $f(x)=\frac{\varphi(x)}{w(x)}$, the denominator $w(x)$ of which does not vanish for $x=x_{0}$, it is necessary and sufficient that

$$
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=\ldots=f^{(k-1)}\left(x_{0}\right)=0, \quad f^{k}\left(x_{0}\right) \neq 0
$$

566. Prove that the fractional rational function $f(x)=\frac{\varphi(x)}{w(x)}$ can be represented in the form

$$
\begin{aligned}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1}\left(x-x_{0}\right)+\ldots+\frac{f^{(n)}\left(x_{0}\right)}{n!}(x & \left.-x_{0}\right)^{n} \\
& +\frac{F(x)}{w(x)}\left(x-x_{0}\right)^{n+1}
\end{aligned}
$$

where $F(x)$ is a polynomial. It is assumed that $w\left(x_{0}\right) \neq 0$ (Taylor's formula for a fractional rational function).
*567. Prove that if x_{0} is a root of multiplicity k of the polynomial $f_{1}(x) f_{2}^{\prime}(x)-f_{2}(x) f_{1}^{\prime}(x)$, then x_{0} is a root of multiplicity $k+1$ of the polynomial $f_{1}(x) f_{2}\left(x_{0}\right)-f_{2}(x) f_{1}\left(x_{0}\right)$ if this latter polynomial is not identically zero, and conversely.
*568. Prove that if $f(x)$ does not have multiple roots, then $\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)$ does not have roots of multiplicity higher than $n-1$, where n is the degree of $f(x)$.
*569. Construct a polynomial $f(x)$ of degree n, for which $\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)$ has a root x_{0} of multiplicity $n-1$, which is not a root of $f(x)$.

Sec. 2. Proof of the Fundamental Theorem
 of Higher Algebra and Allied Questions

570. Define δ so that for $|x|<\delta$ the polynomial

$$
x^{5}-4 x^{3}+2 x
$$

is less than 0.1 in absolute value.
571. Define δ so that $|f(x)-f(2)|<0.01$ for all x satisfying the inequality $|x-2|<\delta ; f(x)=x^{4}-3 x^{3}+4 x+5$.
572. Define M so that for $|x|>M$

$$
\left|x^{4}-4 x^{3}+4 x^{2}+2\right|>100
$$

573. Find x so that $|f(x)|<|f(0)|$ where
(a) $f(x)=x^{5}-3 i x^{3}+4$,
(b) $f(x)=x^{5}-3 x^{3}+4$.
574. Find x so that $|f(x)|<|f(1)|$ where
(a) $f(x)=x^{4}-4 x^{3}+2$,
(b) $f(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+5$,
(c) $f(x)=x^{4}-4 x+5$.
575. Prove that if $z-i=a(1-i), 0<a<\frac{1}{2}$, then

$$
|f(z)|<\sqrt{5}
$$

where

$$
\begin{aligned}
f(z)=(1+i) z^{5}+(3-5 i) z^{4}-(9+5 i) & z^{3} \\
& -7(1-i) z^{2}+2(1+3 i) z+4-i .
\end{aligned}
$$

*576. Prove that if $f(z)$ is a polynomial different from a constant, then, in arbitrarily small neighbourhood z_{0}, there is a z_{1} such that $\left|f\left(z_{1}\right)\right|>\left|f\left(z_{0}\right)\right|$.
577. Prove the d'Alembert lemma for a fractional rational function.
578. Prove that the modulus of a fractional rational function reaches its greatest lower bound as the independent variable varies in a closed rectangular domain.
579. It is obvious that the theorem on the existence of a root does not hold for a fractional rational function. Thus, the function $\frac{1}{z}$ has no root. What prevents 'proving' this theorem by the scheme of that for a polynomial?
*580. Let $f(x)$ be a polynomial or a fractional rational function. Prove that if a is a root of $f(z)-f(a)$ of multiplicity k and $f(a) \neq 0$, then for a sufficiently small ρ there will be, on the circle $|z-a|=\rho$, $2 k$ points at which $|f(z)|=|f(a)|$.
*581. Prove that if a is a root of $f(z)-f(a)$ of multiplicity k, then for a sufficiently small ρ there will be, on the circle $|z-a|=$ $=\rho, 2 k$ points at which $\operatorname{Re}(f(z))=\operatorname{Re}(f(a))$ and $2 k$ points at which $\operatorname{Im}(f(z))=\operatorname{Im}(f(a))$. Here, $f(z)$ is a polynomial or a fractional rational function.

Sec. 3. Factorization into Linear Factors. Factorization into Irreducible Factors in the Field of Reals. Relationships Between Coefficients and Roots

582. Factor the following polynomials into linear factors:
(a) $x^{3}-6 x^{2}+11 x-6$,
(b) $x^{4}+4$
(c) $x^{4}+4 x^{3}+4 x^{2}+1$,
(d) $x^{4}-10 x^{2}+1$.
*583. Factor the following polynomials into linear factors:
(a) $\cos (n$ arc $\cos x)$,
(b) $(x+\cos \Theta+i \sin \Theta)^{n}+(x+\cos \Theta-i \sin \Theta)^{n}$,
(c) $x^{m}-C_{2 m}^{2} x^{m-1}+C_{2 m}^{4} x^{m-2}-\ldots+(-1)^{m} C_{2 m}^{2 m}$.
583. Factor the following polynomials into irreducible real factors:
(a) $x^{4}+4$,
(b) $x^{6}+27$,
(c) $x^{4}+4 x^{3}+4 x^{2}+1$,
(d) $x^{2 n}-2 x^{n}+2$,
(e) $x^{4}-a x^{2}+1, \quad-2<a<2$,
(f) $x^{2 n}+x^{n}+1$.
584. Construct polynomials of lowest degree using the following roots:
(a) double root 1 , simple roots 2,3 , and $1+i$,
(b) triple root -1 , simple roots 3 and 4 ,
(c) double root i, simple root $-1-i$.
585. Find a polynomial of lowest degree whose roots are all roots of unity, the degrees of which do not exceed n.
586. Construct a polynomial of lowest degree with real coefficients, using the roots:
(a) double root 1 , simple roots 2,3 and $1+i$,
(b) triple root $2-3 i$,
(c) double root i, simple root $-1-i$.
587. Find the greatest common divisor of the polynomials:
(a) $(x-1)^{3}(x+2)^{2}(x-3)(x-4)$ and $(x-1)^{2}(x+2)(x+5)$,
(b) $(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)\left(x^{4}-1\right)$ and $(x+1)\left(x^{2}+1\right)\left(x^{3}+1\right)$. $\cdot\left(x^{4}+1\right)$,
(c) $\left(x^{3}-1\right)\left(x^{2}-2 x+1\right)$ and $\left(x^{2}-1\right)^{3}$.
*589. Find the greatest common divisor of the polynomials

$$
x^{m}-1 \text { and } x^{n}-1
$$

590. Find the greatest common divisor of the polynomials

$$
x^{m}+a^{m} \text { and } x^{n}+a^{n} .
$$

591. Find the greatest common divisor of the polynomial and its derivative:
(a) $f(x)=(x-1)^{3}(x+1)^{2}(x-3)$,
(b) $f(x)=(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)\left(x^{4}-1\right)$,
(c) $f(x)=x^{m+n}-x^{m}-x^{n}+1$.
592. The polynomial $f(x)$ has no multiple roots. Prove that if x_{0} is a root of multiplicity $k>1$ of the equation $f\left(\frac{u(x)}{v(x)}\right)=0$, then the equation $f\left(\frac{u^{\prime}(x)}{v^{\prime}(x)}\right)=0$ has x_{0} as a root of multiplicity $k-1$. It is assumed that $v\left(x_{0}\right) \neq 0, v^{\prime}\left(x_{0}\right) \neq 0$.
593. Prove that $x^{2}+x+1$ divides $x^{3 m}+x^{3 n+1}+x^{3 p+2}$.
594. When is $x^{3 m}-x^{3 n+1}+x^{3 p+2}$ divisible by $x^{2}-x+1$?
595. What condition is necessary for $x^{4}+x^{2}+1$ to divide $x^{3 m}+$ $+x^{3 n+1}+x^{3 p+2}$?
596. What condition is necessary for $x^{2}+x+1$ to divide $x^{2 m}+$ $+x^{m}+1$?
597. Prove that

$$
x^{k a_{1}}+x^{k a_{2}+1}+\ldots+x^{k a_{k}+k-1}
$$

is divisible by $x^{k-1}+x^{k-2}+\ldots+1$.
598. For what values of m does $x^{2}+x+1$ divide $(x+1)^{m i}-$ $-x^{m}-1$?
599. For what values of m does $x^{2}+x+1$ divide $(x+1)^{m}+$ $+x^{m}+1$?
600. For what values of m does $\left(x^{2}+x+1\right)^{2}$ divide $(x+1)^{m}-$ $-x^{m}-1$?
601. For what values of m does $\left(x^{2}+x+1\right)^{2}$ divide $(x+1)^{m}+$ $+x^{m}+1$?
602. Can $\left(x^{2}+x+1\right)^{3}$ divide the polynomials $(x+1)^{m}+x^{n t}+1$ and $(x+1)^{m}-x^{m}-1$?
603. Transform the polynomial

$$
1-\frac{x}{1}+\frac{x(x-1)}{1 \cdot 2}-\ldots+(-1)^{n} \frac{x(x-1) \ldots(x-n+1)}{1 \cdot 2 \ldots n}
$$

by assigning to x the values $1,2, \ldots, n$ in succession. (Compare with Problem 542.)
604. For what values of m does $X_{n}(x)$ divide $X_{n}\left(x^{m}\right)$? (X_{n} is a cyclotomic polynomial.)

Prove the following theorems:
605. If $f\left(x^{n}\right)$ is divisible by $x-1$, then it is also divisible by $x^{n}-1$.
606. If $f\left(x^{n}\right)$ is divisible by $(x-a)^{k}$, then it is also divisible by $\left(x^{n}-a^{n}\right)^{k}$ for $a \neq 0$.
607. If $F(x)=f_{1}\left(x^{3}\right)+x f_{2}\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then $f_{1}(x)$ and $f_{2}(x)$ are divisible by $x-1$.
*068. If the polynomial $f(x)$ with real coefficients satisfies the inequality $f(x) \geqslant 0$ for all real values of x, then $f(x)=\left[\varphi_{1}(x)\right]^{2}+$ $+\left[\varphi_{2}(x)\right]^{2}$ where $\varphi_{1}(x)$ and $\varphi_{2}(x)$ are polynomials with real coefficients.
609. The polynomial $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ has the roots x_{1}, \ldots, x_{n}. What roots do the following polynomials have:
(a) $a_{0} \cdot x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}-\ldots+(-1)^{n} a_{n}$,
(b) $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$,
(c) $f(a)+\frac{f^{\prime}(a)}{1} x+\frac{f^{\prime \prime}(a)}{1 \cdot 2} \lambda^{2}+\ldots+\frac{f^{(n)}(a)}{n!} \lambda^{n}$,
(d) $a_{0} x^{n}+a_{1} b x^{n-1}+a_{2} b^{2} x^{n-2}+\ldots+a_{n} b^{n}$?
610. Find a relationship between the coefficients of the cubic equation $x^{3}+p x^{2}+q x+r=0$ under which one root is equal to the sum of the other two.
611. Verify that one of the roots of the equation $36 x^{3}-12 x^{2}-$ $-5 x+1=0$ is equal to the sum of the other two, and solve the equation.
612. Find a relationship among the coefficients of the quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ under which the sum of two roots is equal to the sum of the other two.
613. Prove that the equation which satisfies the condition of Problem 612 can be reduced to a biquadratic equation by the substitution $x=y+\alpha$ for an appropriate choice of α.
614. Find a relationship among the coefficients of the quartic equation $x^{4}+a x^{3}+b x^{2}+c x+d=0$ under which the product of two roots is equal to the product of the other two.
615. Prove that the equation which satisfies the hypothesis of Problem 614 may be solved by dividing by x^{2} and substituting $y=x+\frac{c}{a x} \quad($ for $a \neq 0)$.
616. Using Problems 612 to 615 , solve the following equations:
(a) $x^{4}-4 x^{3}+5 x^{2}-2 x-6=0$,
(b) $x^{4}+2 x^{3}+2 x^{2}+10 x+25=0$,
(c) $x^{4}+2 x^{3}+3 x^{2}+2 x-3=0$,
(d) $x^{4}+x^{3}-10 x^{2}-2 x+4=0$.
617. Define λ so that one of the roots of the equation $x^{3}-7 x+$ $+\lambda=0$ is equal to twice the other root.
618. Define a, b, c so that they are roots of the equation

$$
x^{3}-a x^{2}+b x-c=0 .
$$

619. Define a, b, c so that they are roots of the equation

$$
x^{3}+a x^{2}+b x+c=0 .
$$

620. The sum of two roots of the equation

$$
2 x^{3}-x^{2}-7 x+\lambda=0
$$

is equal to 1 . Determine λ.
621. Determine the relationship between the coefficients of the equation $x^{3}+p x+q=0$ under which $x_{3}=\frac{1}{x_{1}}+\frac{1}{x_{2}}$.
622. Find the sum of the squares of the roots of the polynomial

$$
x^{n}+a_{1} x^{n-1}+\ldots+a_{n} .
$$

*623. Solve the equation

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}=0
$$

knowing the coefficients a_{1} and a_{2} and that its roots form an arithmetic progression.
624. Do the roots of the equations
(a) $8 x^{3}-12 x^{2}-2 x+3=0$,
(b) $2 x^{4}+8 x^{3}+7 x^{2}-2 x-2=0$
form arithmetic progressions?
625. Given the curve

$$
y=x^{4}+a x^{3}+b x^{2}+c x+d
$$

Find a straight line whose points $M_{1}, M_{2}, M_{3}, M_{4}$ of intersection with the curve intercept three equal segments $M_{1} M_{2}=M_{2} M_{3}=$ $=M_{3} M_{4}$. Under what condition does this problem have a solution?
*626. Form a quartic equation whose roots are $\alpha, \frac{1}{\alpha},-\alpha,-\frac{1}{\alpha}$. *627. Form a sextic equation with the roots

$$
\alpha, \frac{1}{\alpha}, 1-\alpha, \frac{1}{1-\alpha}, 1-\frac{1}{\alpha}, \frac{1}{1-\frac{1}{\alpha}} .
$$

628. Let $f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$.

Find $f^{\prime}\left(x_{i}\right), f^{\prime \prime}\left(x_{i}\right)$ and prove that

$$
\frac{\partial f^{\prime}\left(x_{i}\right)}{\partial x_{i}}=\frac{1}{2} f^{\prime \prime}\left(x_{i}\right) .
$$

629. Prove that if $f\left(x_{1}\right)=f^{\prime \prime}\left(x_{1}\right)=0$ but $f^{\prime}\left(x_{1}\right) \neq 0$, then

$$
\sum_{i=2}^{n} \frac{1}{x_{1}-x_{i}}=0
$$

630. The roots of the polynomial $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ form an arithmetic progression. Determine $f^{\prime}\left(x_{i}\right)$.

Sec. 4. Euclid's Algorithm

631. Determine the greatest common divisor of the following polynomials:
(a) $x^{4}+x^{3}-3 x^{2}-4 x-1$ and $x^{3}+x^{2}-x-1$;
(b) $x^{5}+x^{4}-x^{3}-2 x-1$ and $3 x^{4}+2 x^{3}+x^{2}+2 x-2$;
(c) $x^{6}-7 x^{4}+8 x^{3}-7 x+7$ and $3 x^{5}-7 x^{3}+3 x^{2}-7$;
(d) $x^{5}-2 x^{4}+x^{3}+7 x^{2}-12 x+10$
and $3 x^{4}-6 x^{3}+5 x^{2}+2 x-2$;
(e) $x^{6}+2 x^{4}-4 x^{3}-3 x^{2}+8 x-5$ and $x^{5}+x^{2}-x+1$;
(f) $x^{5}+3 x^{4}-12 x^{3}-52 x^{2}-52 x-12$
and $x^{4}+3 x^{3}-6 x^{2}-22 x-12$;
(g) $x^{5}+x^{4}-x^{3}-3 x^{2}-3 x-1$
and $x^{4}-2 x^{3}-x^{2}-2 x+1 ;$
(h) $x^{4}-10 x^{2}+1$ and $x^{4}-4 \sqrt{2} x^{3}+6 x^{2}+4 \sqrt{2} x+1$;
(i) $x^{4}+7 x^{3}+19 x^{2}+23 x+10$ and $x^{4}+7 x^{3}+18 x^{2}+22 x+12$
(j) $x^{4}-4 x^{3}+1$ and $x^{3}-3 x^{2}+1$;
(k) $2 x^{6}-5 x^{5}-14 x^{4}+36 x^{3}+86 x^{2}+12 x-31$
and $2 x^{5}-9 x^{4}+2 x^{3}+37 x^{2}+10 x-14 ;$
(1) $3 x^{6}-x^{5}-9 x^{4}-14 x^{3}-11 x^{2}-3 x-1$ and

$$
3 x^{5}+8 x^{4}+9 x^{3}+15 x^{2}+10 x+9
$$

632. Using Euclid's algorithm, choose polynomials $M_{1}(x)$ and $M_{2}(x)$ so that $f_{1}(x) M_{2}(x)+f_{2}(x) M_{1}(x)=\delta(x)$ where $\delta(x)$ is the greatest common divisor of $f_{1}(x)$ and $f_{2}(x)$:
(a) $f_{1}(x)=x^{4}+2 x^{3}-x^{2}-4 x-2$, $f_{2}(x)=x^{4}+x^{3}-x^{2}-2 x-2$;
(b) $f_{1}(x)=x^{5}+3 x^{4}+x^{3}+x^{2}+3 x+1$, $f_{2}(x)=x^{4}+2 x^{3}+x+2 ;$
(c) $f_{1}(x)=x^{6}-4 x^{5}+11 x^{4}-27 x^{3}+37 x^{2}-35 x+35$, $f_{2}(x)=x^{5}-3 x^{4}+7 x^{3}-20 x^{2}+10 x-25 ;$
(d) $f_{1}(x)=3 x^{7}+6 x^{6}-3 x^{5}+4 x^{4}+14 x^{3}-6 x^{2}-4 x+4$,
$f_{2}(x)=3 x^{6}-3 x^{4}+7 x^{3}-6 x+2 ;$
(e) $f_{1}(x)=3 x^{5}+5 x^{4}-16 x^{3}-6 x^{2}-5 x-6$,
$f_{2}(x)=3 x^{4}-4 x^{3}-x^{2}-x-2$;
(f) $f_{1}(x)=4 x^{4}-2 x^{3}-16 x^{2}+5 x+9$,
$f_{2}(x)=2 x^{3}-x^{2}-5 x+4$.
633. Using Euclid's algorithm, choose polynomials $M_{1}(x)$ and $M_{2}(x)$ so that $f_{1}(x) M_{2}(x)+f_{2}(x) M_{1}(x)=1$:
(a) $f_{1}(x)=3 x^{3}-2 x^{2}+x+2, \quad f_{2}(x)=x^{2}-x+1$;
(b) $f_{1}(x)=x^{4}-x^{3}-4 x^{2}+4 x+1, \quad f_{2}(x)=x^{2}-x-1$;
(c) $f_{1}(x)=x^{5}-5 x^{4}-2 x^{3}+12 x^{2}-2 x+12$,
$f_{2}(x)=x^{3}-5 x^{2}-3 x+17$;
(d) $f_{1}(x)=2 x^{4}+3 x^{3}-3 x^{2}-5 x+2$,
$f_{2}(x)=2 x^{3}+x^{2}-x-1 ;$
(e) $f_{1}(x)=3 x^{4}-5 x^{3}+4 x^{2}-2 x+1$,
$f_{2}(x)=3 x^{3}-2 x^{2}+x-1$;
(f) $f_{1}(x)=x^{5}+5 x^{4}+9 x^{3}+7 x^{2}+5 x+3$,
$f_{2}(x)=x^{4}+2 x^{3}+2 x^{2}+x+1$.
634. Use the method of undetermined coefficients to choose $M_{1}(x)$ and $M_{2}(x)$ so that $f_{1}(x) M_{2}(x)+f_{2}(x) M_{1}(x)=1$:
(a) $f_{1}(x)=x^{4}-4 x^{3}+1, \quad f_{2}(x)=x^{3}-3 x^{2}+1$;
(b) $f_{1}(x)=x^{3}$,
$f_{2}(x)=(1-x)^{2} ;$
(c) $f_{1}(x)=x^{4}$,
$f_{2}(x)=(1-x)^{4}$.
635. Choose polynomials of lowest degree, $M_{1}(x), M_{2}(x)$, so that
(a) $\left(x^{4}-2 x^{3}-4 x^{2}+6 x+1\right) M_{1}(x)$

$$
+\left(x^{3}-5 x-3\right) M_{2}(x)=x^{4} ;
$$

(b) $\left(x^{4}+2 x^{3}+x+1\right) M_{1}(x)$

$$
+\left(x^{4}+x^{3}-2 x^{2}+2 x-1\right) M_{2}(x)=x^{3}-2 x .
$$

636. Determine the polynomial of lowest degree that yields a remainder of:
(a) $2 x$ when divided by $(x-1)^{2}$ and $3 x$ when divided by $(x-2)^{3}$;
(b) $x^{2}+x+1$ when divided by $x^{4}-2 x^{3}-2 x^{2}+10 x-7$ and $2 x^{2}-$ -3 when divided by $x^{4}-2 x^{3}-3 x^{2}+13 x-10$.
*637. Find polynomials $M(x)$ and $N(x)$ such that

$$
x^{m} M(x)+(1-x)^{n} N(x)=1
$$

638. Let $f_{1}(x) M(x)+f_{2}(x) N(x)=\delta(x)$ where $\delta(x)$ is the greatest common divisor of $f_{1}(x)$ and $f_{2}(x)$. What is the greatest common divisor of $M(x)$ and $N(x)$?
639. Separate the multiple factors of the polynomials:
(a) $x^{6}-6 x^{4}-4 x^{3}+9 x^{2}+12 x+4$,
(b) $x^{5}-10 x^{3}-20 x^{2}-15 x-4$,
(c) $x^{6}-15 x^{4}+8 x^{3}+51 x^{2}-72 x+27$,
(d) $x^{5}-6 x^{4}+16 x^{3}-24 x^{2}+20 x-8$,
(e) $x^{6}-2 x^{5}-x^{4}-2 x^{3}+5 x^{2}+4 x+4$,
(f) $x^{7}-3 x^{6}+5 x^{5}-7 x^{4}+7 x^{3}-5 x^{2}+3 x-1$,
(g) $x^{8}+2 x^{7}+5 x^{6}+6 x^{5}+8 x^{4}+6 x^{3}+5 x^{2}+2 x+1$.

Sec. 5. The Interpolation Problem and Fractional Rational Functions

640. Use Newton's method to construct a polynomial of lowest degree by means of the given table of values:

(a) | x | 1 | 1234 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x) \mid 12$ | 1 | 346 | ;

(b) $\frac{x}{f(x)!}-1050329$;

(c)	x	1	$\frac{9}{4}$	$4 \frac{25}{4}$
$f(x)$	1	$\frac{3}{2}$	$2 \frac{5}{2}$,

(d) | $x \quad 1123$ |
| :--- |
| $f(x) \mid 561$ |
| 6 |-410.

641. Use Lagrange's formula to construct a polynomial by the given table of values:
(a) $\frac{x \mid 1234}{y \mid 2143}$,

(b) | x | 1 | 1 | i |
| :--- | :--- | :--- | :--- |
| y | 1 | -1 | $-i$ |
| 4 | | | |.

*642. Find $f(x)$ from the following table of values:

$$
\frac{x}{f(x) \mid 1} \frac{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n-1}}{2} \frac{3}{3} \ldots n=\quad \varepsilon_{k}=\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n} .
$$

643. A polynomial $f(x)$, whose degree does not exceed $n-1$, takes on values $y_{1}, y_{2}, \ldots, y_{n}$ in the nth roots of unity. Find $f(0)$.
*644. Prove the following theorem: so that

$$
f(x)=\frac{1}{n}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right]
$$

for any polynomial $f(x)$ whose degree does not exceed $n-1$ it is necessary and sufficient that the points $x_{1}, x_{2}, \ldots, x_{n}$ be located on a circle with centre at x_{0} and that they divide it into equal parts.
*645. Prove that if the roots $x_{1}, x_{2}, \ldots, x_{n}$ of a polynomial $\varphi(x)$ are all distinct, then

$$
\sum_{i=1}^{n} \frac{x_{i}^{s}}{\varphi^{\prime}\left(x_{i}\right)}=0 \quad \text { for } \quad 0 \leqslant s \leqslant n-2 .
$$

646. Find the sum $\sum_{i=1}^{n} \frac{x_{i}^{n-1}}{\varphi^{\prime}\left(x_{i}\right)}$ (notations are the same as in Problem 645).
647. Derive the Lagrange interpolation formula by solving the following system of equations:

$$
\begin{aligned}
& a_{0}+a_{1} x_{1}+\ldots+a_{n-1} x_{1}^{n-1}=y_{1}, \\
& a_{0}+a_{1} x_{2}+\ldots+a_{n-1} x_{2}^{n-1}=y_{2} \\
& \cdots \cdots+\ldots+\cdots \cdots+\cdots+a_{n-1} x_{n}^{n-1}=y_{n} .
\end{aligned}
$$

*648. Use the following table of values to construct a polynomial of lowest degree:

$$
\frac{x \mid 012 \ldots n}{y \mid 124 \ldots 2^{n}} .
$$

*649. Use the following table of values to construct a polynomial of lowest degree:

$$
\begin{array}{c:c:c}
x & 012 \ldots n \\
\hdashline y & 1 & a a^{2} \ldots a^{n}
\end{array} .
$$

*650. Find a polynomial of degree $2 n$ which upon division by $x(x-2) \ldots(x-2 n)$ yields a remainder of 1 , and upon division by $(x-1)(x-3) \ldots[x-(2 n-1)]$ yields a remainder of -1 .
*651. Construct a polynomial of lowest degree, using the table of values

$$
\begin{array}{c|ccccc}
x & 1 & 2 & 3 & \ldots & n \\
\hline y & 1 & \frac{1}{2} & \frac{1}{3} & \ldots & \frac{1}{n}
\end{array} .
$$

*652. Find a polynomial of degree not exceeding $n-1$ that satisfies the condition $f(x)=\frac{1}{x-a}$ at the points x_{1}, x_{2}, \ldots, $x_{n}, x_{i} \neq a, i=1,2, \ldots, n$.
*653. Prove that a polynomial of degree $k \leqslant n$ which assumes integral values for $n+1$ successive integral values of the independent variable, takes on integral values for all integral values of the independent variable.
*654. Prove that a polynomial of degree n, which takes on integral values for $x=0,1,4,9, \ldots, n^{2}$, assumes integral values for all squares of the natural numbers.
*655. Decompose into partial fractions of the first type:
(a) $\frac{x^{2}}{(x-1)(x+2)(x+3)}$,
(b) $\frac{1}{(x-1)(x-2)(x-3)(x-4)}$,
(c) $\frac{3+x}{(x-1)\left(x^{2}+1\right)}$,
(d) $\frac{x^{2}}{x^{4}-1}$,
(e) $\frac{1}{x^{3}-1}$,
(f) $\frac{1}{x^{4}+4}$,
(g) $\frac{1}{x^{n}-1}$,
(h) $\frac{1}{x^{n}+1}$,
(i) $\frac{n!}{x(x-1)(x-2) \ldots(x-n)}$,
(j) $\frac{(2 n)!}{x\left(x^{2}-1\right)\left(x^{2}-4\right) \cdots\left(x^{2}-n^{2}\right)}, \quad$ (k) $\frac{1}{\cos (n \operatorname{arc} \cos x)}$.
*656. Decompose into real partial fractions of the first and second types:
(a) $\frac{1}{x^{3}-1}$;
(b) $\frac{x^{2}}{x^{4}-16}$;
(c) $\frac{1}{x^{4}+4}$;
(d) $\frac{x^{2}}{x^{6}+27}$;
(e) $\frac{x^{m}}{x^{2 n+1}-1}, \quad m<2 n+1$;
(f) $\frac{x^{m}}{x^{2 n+1}+1}, \quad m<2 n+1$;
(g) $\frac{1}{x^{2 n}-1}$;
(h) $\frac{x^{2 m}}{x^{2 n}+1}, \quad m<n ;$
(i) $\frac{1}{x\left(x^{2}+1\right)\left(x^{2}+4\right) \ldots\left(x^{2}+n^{2}\right)}$.
*657. Decompose into partial fractions of the first type:
(a) $\frac{x}{\left(x^{2}-1\right)^{2}}$;
(b) $\frac{1}{\left(x^{2}-1\right)^{2}}$;
(c) $\frac{5 x^{2}+6 x-23}{(x-1)^{3}(x+1)^{2}(x-2)}$;
(d) $\frac{1}{\left(x^{n}-1\right)^{2}}$;
(e) $\frac{1}{x^{m}(1-x)^{n}}$;
(f) $\frac{1}{\left(x^{2}-a^{2}\right)^{n}}, \quad a \neq 0$;
(g) $\frac{1}{\left(x^{2}+a^{2}\right)^{n}}$;
(h) $\frac{g(x)}{[f(x)]^{2}}$
where $f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$ is a polynomial with no multiple roots and $g(x)$ is a polynomial of degree less than $2 n$.
658. Decompose into real partial fractions of the first and second type:
(a) $\frac{x}{(x+1)\left(x^{2}+1\right)^{2}}$,
(b) $\frac{2 x-1}{x(x+1)^{2}\left(x^{2}+x+1\right)^{2}}$,
(c) $\frac{1}{\left(x^{4}-1\right)^{2}}$,
(d) $\frac{1}{\left(x^{2 n}-1\right)^{2}}$.
659. Let $\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$.

Express the following sums in terms of $\varphi(x)$:
(a) $\sum \frac{1}{x-x_{i}}$;
(b) $\sum \frac{x_{i}}{x-x_{i}}$;
(c) $\sum \frac{1}{\left(x-x_{i}\right)^{2}}$.
*660. Compute the following sums, knowing that x_{1}, x_{2}, \ldots are roots of the polynomial $\varphi(x)$:
(a) $\frac{1}{2-x_{1}}+\frac{1}{2-x_{2}}+\frac{1}{2-x_{3}}, \quad \varphi(x)=x^{3}-3 x-1$;
(b) $\frac{1}{x_{1}^{2}-3 x_{1}+2}+\frac{1}{x_{2}^{2}-3 x_{2}+2}+\frac{1}{x_{3}^{2}-3 x_{3}+2}$,

$$
\varphi(x)=x^{3}+x^{2}-4 x+1 ;
$$

(c) $\frac{1}{x_{1}^{3}-2 x_{1}+1}+\frac{1}{x_{2}^{2}-2 x_{2}+1}+\frac{1}{x_{3}^{2}-2 x_{3}+1}$,

$$
\varphi(x)=x^{3}+x^{2}-1
$$

661. Determine the first-degree polynomial which approximately assumes the following table of values:

$$
\begin{array}{l|lllll}
x & 0 & 1 & 2 & 3 & 4 \\
\hline y & \mid & 2.1 & 2.5 & 3.0 & 3.6 \\
\hline
\end{array}
$$

so that the sum of the squares of the errors is a minimum.
662. Determine the second-degree polynomial which approximately assumes the table of values

$$
\begin{array}{l|llllll}
x & 0 & 1 & 2 & 3 & 4 \\
\hline y & 1 & 1.4 & 2 & 2.7 & 3.6
\end{array}
$$

so that the sum of the squares of the errors is a minimum.

Sec. 6. Rational Roots of Polynomials. Reducibility and Irreducibility over the Field of Rationals

663. Prove that if $\frac{p}{q}$ is a simplified rational fraction that is a root of the polynomial $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ with integral coefficients, then
(1) q is a divisor of a_{0},
(2) p is a divisor of a_{n},
(3) $p-m q$ is a divisor of $f(m)$ for any integral m. In particular, $p-q$ is a divisor of $f(1), p+q$ is a divisor of $f(-1)$.
664. Find the rational roots of the following polynomials:
(a) $x^{3}-6 x^{2}+15 x-14$,
(b) $x^{4}-2 x^{3}-8 x^{2}+13 x-24$,
(c) $x^{5}-7 x^{3}-12 x^{2}+6 x+36$,
(d) $6 x^{4}+19 x^{3}-7 x^{2}-26 x+12$,
(e) $24 x^{4}-42 x^{3}-77 x^{2}+56 x+60$,
(f) $x^{5}-2 x^{4}-4 x^{3}+4 x^{2}-5 x+6$,
(g) $24 x^{5}+10 x^{4}-x^{3}-19 x^{2}-5 x+6$,
(h) $10 x^{4}-13 x^{3}+15 x^{2}-18 x-24$,
(i) $x^{4}+2 x^{3}-13 x^{2}-38 x-24$,
(j) $2 x^{3}+3 x^{2}+6 x-4$, (k) $4 x^{4}-7 x^{2}-5 x-1$,
(l) $x^{4}+4 x^{3}-2 x^{2}-12 x+9$
(m) $x^{5}+x^{4}-6 x^{3}-14 x^{2}-11 x-3$,
(n) $x^{6}-6 x^{5}+11 x^{4}-x^{3}-18 x^{2}+20 x-8$.
*665. Prove that a polynomial $f(x)$ with integral coefficients has no integral roots if $f(0)$ and $f(1)$ are odd numbers.
*666. Prove that if a polynomial with integral coefficients assumes the values ± 1 for two integral values x_{1} and x_{2} of the independent variable, then it has no rational roots if $\left|x_{1}-x_{2}\right|>2$. However, if $\left|x_{1}-x_{2}\right| \leqslant 2$, then the only possible rational root is $\frac{1}{2}\left(x_{1}+x_{2}\right)$.
*667. Use the Eisenstein criterion to prove the irreducibility of the polynomials
(a) $x^{4}-8 x^{3}+12 x^{2}-6 x+2$,
(b) $x^{5}-12 x^{3}+36 x-12$, (c) $x^{4}-x^{3}+2 x+1$.
*668. Prove the irreducibility of the polynomial

$$
X_{p}(x)=\frac{x^{p}-1}{x-1}, \quad p \text { prime }
$$

*669. Prove the irreducibility of the polynomial

$$
X_{p}^{k}(x)=\frac{x^{p^{k}}-1}{x^{p^{k-1}}-1}, \quad p \text { prime }
$$

*670. Prove that the polynomial $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ with integral coefficients that has no rational roots is irreducible if there exists a prime number p such that a_{0} is not divisible by $p ; a_{2}, a_{3}, \ldots, a_{n}$ are divisible by p and a_{n} is not divisible by p^{2}.
*671. Let $f(x)$ be a polynomial with integral coefficients for which there is a prime number p such that a_{0} is not divisible by $p ; a_{k+1}, a_{k+2}, \ldots, a_{n}$ are divisible by p and a_{n} is not divisible by p^{2}. Prove that in that case $f(x)$ has an irreducible factor of degree $\geqslant n-k$.
672. Using the method of factorization into factors of the values of a polynomial with integral values of the variable, decompose the following polynomials into factors or prove their irreducibility:
(a) $x^{4}-3 x^{2}+1$, (b) $x^{4}+5 x^{3}-3 x^{2}-5 x+1$,
(c) $x^{4}+3 x^{3}-2 x^{2}-2 x+1$,
(d) $x^{4}-x^{3}-3 x^{2}+2 x+2$.
673. Prove that a polynomial of degree three is irreducible if it has no rational roots.
674. Prove that the fourth-degree polynomial $x^{4}+a x^{3}+b x^{2}+$ $+c x+d$ with integral coefficients is irreducible if it has no integral roots and is not divisible by any polynomial of the form

$$
x^{2}+\frac{c m-a m^{2}}{d-m^{2}} x+m
$$

where m are divisors of the number d. Polynomials with fractional coefficients may be disregarded. Polynomials like those of Problems 614, 615 are a possible exception.
675. Prove that the fifth-degree polynomial $x^{5}+a x^{4}+b x^{3}+$ $+c x^{2}+d x+e$ with integral coefficients is irreducible if it has no integral roots and is not divisible by any polynomials with integral coefficients of the following form:

$$
x^{2}+\frac{a m^{3}-c m^{2}-d n+b e}{m^{3}-n^{2}+a e-d m} x+m
$$

where m is a divisor of $e,\left[n=\frac{e}{m}\right.$.
676. Factor the following polynomials and prove their irreducibility using Problems 674, 675:
(a) $x^{4}-3 x^{3}+2 x^{2}+3 x-9$,
(b) $x^{4}-3 x^{3}+2 x^{2}+2 x-6$,
(c) $x^{4}+4 x^{3}-6 x^{2}-23 x-12$,
(d) $x^{5}+x^{4}-4 x^{3}+9 x^{2}-6 x+6$.
677. Find the necessary and sufficient conditions for reducibility of the polynomial $x^{4}+p x^{2}+q$ with rational (possibly fractional) coefficients.
678. Prove that, for the reducibility of a fourth-degree polynomial without rational roots, it is necessary (but not sufficient) that there exists a rational root of a cubic equation obtained in a solution by the Ferrari method.
*679. Prove the irreducibility of the polynomial $f(x)=$ $=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)-1 ; a_{1}, a_{2}, \ldots, a_{n}$ are distinct integers.
*680. Prove the irreducibility of the polynomial $f(x)=$ $=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+1$ for distinct integers $a_{1}, a_{2}, \ldots, a_{n}$ with the exception of

$$
\begin{aligned}
(x-a)(x-a-1)(x-a-2)(x-a-3) & +1 \\
= & {[(x-a-1)(x-a-2)-1]^{2} }
\end{aligned}
$$

and

$$
(x-a)(x-a-2)+1=(x-a-1)^{2}
$$

*681. Prove that if an n th-degree polynomial with integral coefficients assumes the values ± 1 for more than $2 m$ integral values of the variable ($n=2 m$ or $2 m+1$), then it is irreducible.
*682. Prove the irreducibility of the polynomial

$$
f(x)=\left(x-a_{1}\right)^{2}\left(x-a_{2}\right)^{2} \ldots\left(x-a_{n}\right)^{2}+1
$$

if $a_{1}, a_{2}, \ldots, a_{n}$ are distinct integers.
*683. Prove that the polynomial $f(x)$ with integral coefficients which takes on the value +1 for more than three integral values of the independent variable cannot assume the value -1 for integral values of the independent variable.
*684. Prove that an n th-degree polynomial with integral coefficients assuming the values ± 1 for more than $\frac{n}{2}$ integral values of the independent variable is irreducible for $n \geqslant 12$.

[^0]
Sec. 7. Bounds of the Roots of a Polynomial

686. Prove that the roots of the polynomial $a_{0} x^{n}+a_{1} x^{n-1}+$ $+\ldots+a_{n}$ with real or complex coefficients do not exceed, in absolute value,
(a) $1+\max \left|\frac{a_{k}}{a_{0}}\right|, k=1,2, \ldots, n$;
(b) $\rho+\max \left|\frac{a_{k}}{a_{0} \rho^{k-1}}\right|$,

$$
k=1,2, \ldots, n ; \rho \text { is any positive number; }
$$

k
(c) $2 \max \sqrt{\left|\frac{a_{k}}{a_{0}}\right|}, k=1,2, \ldots, n$;
(d)

$$
\left|\frac{a_{1}}{a_{0}}\right|+\max \sqrt[k-1]{\left.\sqrt{\frac{a_{k}}{a_{1}}} \right\rvert\,}, k=1,2, \ldots, n
$$

687. Prove that the moduli of the roots of the polynomial $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ do not exceed a unique positive root of the equation $b_{0} x^{n}-b_{1} x^{n-1}-b_{2} x^{n-2}-\ldots-b_{n}$, where $0<$ $<b_{0} \leqslant\left|a_{0}\right|, b_{1} \geqslant\left|a_{1}\right|, b_{2} \geqslant\left|a_{2}\right|, \ldots, b_{n} \geqslant\left|a_{n}\right|$.
688. Prove that the moduli of the roots of the polynomial $f(x)=a_{0} x^{n}+a_{r} x^{n-r}+\ldots+a_{n}, a_{r} \neq 0$, do not exceed
(a) $1+\sqrt[r]{\max \left|\frac{a_{k}}{a_{0}}\right|}, k=r, \ldots, n$;
(b) $\rho+\sqrt{\max \left|\frac{a_{k}}{a_{0} \rho^{k-r}}\right|}$,

$$
k=r, \ldots, n, \text { and } \rho \text { is any positive number }
$$

(c) $\sqrt[r]{\left|\frac{a_{r}}{a_{0}}\right|}+\max \sqrt[k-r]{\left|\frac{a_{k}}{a_{r}}\right|}, k=r, \ldots, n$.
689. Prove that the real roots of a polynomial with real coefficients do not exceed a unique nonnegative root of a polynomial obtainable from the given polynomial by deleting all terms (except the highest-degree one), the coefficients of which are of sign that coincides with the sign of the leading coefficient.

Prove the following theorems:
690. The real roots of the polynomial $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ with real coefficients (for $a_{0}>0$) do not exceed
(a) $\left.1+\sqrt{\max \mid} \frac{\overrightarrow{a_{k}}}{a_{0}} \right\rvert\,$ where r is the index of the first negative coefficient and a_{k} are negative coefficients of the polynomial;
(b) $\rho+\sqrt[r]{\max }\left|\frac{a_{k}}{a_{0} \rho^{k-r}}\right|$ where r is the index of the first negative coefficient, a_{k} are negative coefficients, and ρ is any positive number;
(c) $2 \max \sqrt[n]{\frac{\left|a_{k}\right|}{a_{0}}}, a_{k}$ are negative coefficients of the polynomial;
(d) $\sqrt[r]{\frac{\left|a_{r}\right|}{a_{0}}}+\max \sqrt[k-r]{\left|\frac{a_{k}}{a_{r}}\right|}, r$ is the index of the first negative coefficient, and a_{k} are negative coefficients.
691. If all the coefficients of the polynomial $f(x)$ are nonnegative, then the polynomial does not have positive roots.
692. If $f(a)>0, f^{\prime}(a) \geqslant 0, \ldots, f^{(n)}(a) \geqslant 0$, then all real roots of the polynomial do not exceed a.
693. Indicate the upper and lower bounds of the real roots of the polynomials:
(a) $x^{4}-4 x^{3}+7 x^{2}-8 x+3$,
(b) $x^{5}+7 x^{3}-3$,
(c) $x^{7}-108 x^{5}-445 x^{3}+900 x^{2}+801$,
(d) $x^{4}+4 x^{3}-8 x^{2}-10 x+14$.

Sec. 8. Sturm's Theorem

694. Form the Sturm polynomials and isolate the roots of the polynomials:
(a) $x^{3}-3 x-1$, (b) $x^{3}+x^{2}-2 x-1$,
(c) $x^{3}-7 x+7$,
(d) $x^{3}-x+5$,
(e) $x^{3}+3 x-5$.
695. Form the Sturm polynomials and isolate the roots of the polynomials:
(a) $x^{4}-12 x^{2}-16 x-4$,
(b) $x^{4}-x-1$,
(c) $2 x^{4}-8 x^{3}+8 x^{2}-1$,
(d) $x^{4}+x^{2}-1$,
(e) $x^{4}+4 x^{3}-12 x+9$.
696. Form the Sturm polynomials and isolate the roots of the following polynomials:
(a) $x^{4}-2 x^{3}-4 x^{2}+5 x+5$,
(b) $x^{4}-2 x^{3}+x^{2}-2 x+1$,
(c) $x^{4}-2 x^{3}-3 x^{2}+2 x+1$,
(d) $x^{4}-x^{3}+x^{2}-x-1$,
(e) $x^{4}-4 x^{3}-4 x^{2}+4 x+1$.
697. Form a Sturm sequence and isolate the roots of the following polynomials:
(a) $x^{4}-2 x^{3}-7 x^{2}+8 x+1$,
(b) $x^{4}-4 x^{2}+x+1$,
(c) $x^{4}-x^{3}-x^{2}-x+1$,
(d) $x^{4}-4 x^{3}+8 x^{2}-12 x+8$,
(e) $x^{4}-x^{3}-2 x+1$.
698. Form a Sturm sequence and isolate the roots of the following polynomials:
(a) $x^{4}-6 x^{2}-4 x+2$,
(b) $4 x^{4}-12 x^{2}+8 x-1$,
(c) $3 x^{4}+12 x^{3}+9 x^{2}-1$,
(d) $x^{4}-x^{3}-4 x^{2}+4 x+1$,
(e) $9 x^{4}-126 x^{2}-252 x-140$.
699. Form a Sturm sequence and isolate the roots of the following polynomials:
(a) $2 x^{5}-10 x^{3}+10 x-3$,
(b) $x^{6}-3 x^{5}-3 x^{4}+11 x^{3}-3 x^{2}-3 x+1$,
(c) $x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1$,
(d) $x^{5}-5 x^{3}-10 x^{2}+2$.
700. Form a Sturm sequence using the permission to divide the Sturm functions by positive quantities, and isolate the roots of the following polynomials:
(a) $x^{4}+4 x^{2}-1$, (b) $x^{4}-2 x^{3}+3 x^{2}-9 x+1$,
(c) $x^{4}-2 x^{3}+2 x^{2}-6 x+1$,
(d) $x^{5}+5 x^{4}+10 x^{2}-5 x-3$.
701. Use Sturm's theorem to determine the number of real roots of the equation $x^{3}+p x+q=0$ for p and q real.
*702. Determine the number of real roots of the equation

$$
x^{n}+p x+q=0 .
$$

703. Determine the number of real roots of the equation

$$
x^{5}-5 a x^{3}+5 a^{2} x+2 b=0
$$

704. Prove that if a Sturm sequence contains polynomials of all degrees from zero to n, then the number of variations of sign in the sequence of leading coefficients of Sturm polynomials is equal to the number of pairs of conjugate complex roots of the original polynomial.
705. Prove that if the polynomials $f(x), f_{1}(x), f_{2}(x), \ldots$, $f_{k}(x)$ have the following properties:
(1) $f(x) f_{1}(x)$ changes sign from plus to minus when passing through the root $f(x)$;
(2) two adjacent polynomials do not vanish simultaneously;
(3) if $f_{\lambda}\left(x_{0}\right)=0$, then $f_{\lambda-1}\left(x_{0}\right)$ and $f_{\lambda+1}\left(x_{0}\right)$ have opposite signs;
(4) the last polynomial $f_{k}(x)$ does not change sign in the interval (a, b),
then the number of roots of the polynomial $f(x)$ in the interval (a, b) is equal to the increment in the number of variations of sign in the sequence of values of the polynomials f, f_{1}, \ldots, f_{k} when going from a to b.
706. Let x_{0} be a real root of $f^{\prime}(x)$:

$$
f_{1}(x)=\frac{1}{x-x_{0}} f^{\prime}(x) ;
$$

$f_{2}(x)$ is the remainder, after division of $f(x)$ by $f_{1}(x)$, taken with reversed sign; $f_{3}(x)$ is the remainder, left after dividing $f_{1}(x)$ by $f_{2}(x)$, taken with reversed sign, and so on. It is assumed that $f(x)$ has no multiple roots. Relate the number of real roots of $f(x)$ to the number of variations in sign in the sequence of values of the polynomials constructed for $x=-\infty, x=x_{0}$, and $x=+\infty$.
*707. Construct a Sturm sequence for the Hermite polynomials

$$
P_{n}(x)=(-1)^{n} e^{\frac{x^{2}}{2}} \frac{d^{n} e^{-\frac{x^{2}}{2}}}{d x^{n}}
$$

and determine the number of real roots.
*708. Determine the number of real roots of the Laguerre polynomials

$$
P_{n}(x)=(-1)^{n} e^{x} \frac{d^{n}\left(e^{-x} x^{n}\right)}{d x^{n}} .
$$

Determine the number of real roots of the following polynomials:
*709. $E_{n}(x)=1+\frac{x}{1}+\frac{x^{2}}{1 \cdot 2}+\ldots+\frac{x^{n}}{n!}$.
*710. $P_{n}(x)=(-1)^{n+1} x^{2 n+2} e^{-\frac{1}{x}} \frac{d^{n+1}\left(e^{\frac{1}{x}}\right)}{d x^{n+1}}$.
*711. $P_{n}(x)=\frac{(-1)^{n}}{n!}\left(x^{2}+1\right)^{n+1} \frac{d^{n}}{d x^{n}}\left(\frac{1}{x^{2}+1}\right)$.
*712. $P_{n}(x)=(-1)^{n}\left(x^{2}+1\right)^{n+\frac{1}{2}} \frac{d^{n}}{d x^{n}}\left(\frac{1}{\sqrt{x^{2}+1}}\right)$.
*713. Let $f(x)$ be a third-degree polynomial without multiple roots. Show that the polynomial $F(x)=2 f(x) f^{\prime \prime}(x)-\left[f^{\prime}(x)\right]^{2}$ has two and only two real roots. Investigate the case when $f(x)$ has a double or a triple root.
714. Prove that if all roots of the polynomial $f(x)$ are real and distinct, then all roots of each of the polynomials of the Sturm sequence constructed by the Euclidean algorithm are real and distinct.

Sec. 9. Theorems on the Distribution of Roots of a Polynomial

Prove the following theorems:
715. All roots of the Legendre polynomial $P_{n}(x)=\frac{d^{n}\left(x^{2}-1\right)^{n}}{d x^{n}}$ are real, distinct and are in the interval $(-1,+1)$.
716. If all the roots of the polynomial $f(x)$ are real, then all the roots of the polynomial $\lambda f(x)+f^{\prime}(x)$ are real for arbitrary real λ.
*717. If all the roots of the polynomial $f(x)$ are real and all the roots of the polynomial $g(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ are real, then all the roots of the polynomial

$$
F(x)=a_{0} f(x)+a_{1} f^{\prime}(x)+\ldots+a_{n} f^{(n)}(x)
$$

are real.
*718. If all the roots of the polynomial $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+$ $+\ldots+a_{n}$ are real, then all the roots of the polynomial

$$
\begin{aligned}
a_{0} x^{n}+a_{1} m x^{n-1}+a_{2} m & (m-1) x^{n-2} \\
& +\ldots+a_{n} m(m-1) \ldots(m-n+1)
\end{aligned}
$$

are real for arbitrary positive integral m.
*719. If all the roots of the polynomial $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+$ $+\ldots+a_{n}$ are real, then all the roots of the polynomial

$$
G(x)=a_{0} x^{n}+C_{n}^{1} a_{1} x^{n-1}+C_{n}^{2} a_{2} x^{n-2}+\ldots+a_{n}
$$

are real.
720. Prove that all the roots of the following polynomial are real:

$$
x^{n}+\left(\frac{n}{1}\right)^{2} x^{n-1}+\left(\frac{n(n-1)}{1 \cdot 2}\right)^{2} x^{n-2}+\ldots+1
$$

*721. Determine the number of real roots of the polynomial

$$
n x^{n}-x^{n-1}-x^{n-2}-\ldots-1
$$

722. Determine the number of real roots of the polynomial

$$
x^{2 n_{1}+1}+x^{2 n_{2}+1}+\ldots+x^{2 n_{k}+1}+a
$$

723. Determine the number of real roots of the polynomial $f(x)=(x-a)(x-b)(x-c)-A^{2}(x-a)-B^{2}(x-b)-C^{2}(x-c)$ for a, b, c, A, B, C.
724. Prove that

$$
\varphi(x)=\frac{A_{1}^{2}}{x-a_{1}}+\frac{A_{2}^{2}}{x-a_{2}}+\ldots+\frac{A_{n}^{2}}{x-a_{n}}+B
$$

does not have imaginary roots for real $a_{1}, a_{2}, \ldots, a_{n}, A_{1}, A_{2}$, \ldots, A_{n}, B.

Prove the following theorems:
725. If the polynomial $f(x)$ has real and distinct roots, then [$\left.f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)$ does not have real roots.
726. If the roots of the polynomials $f(x)$ and $\varphi(x)$ are all real, prime and can be separated, that is, between any two roots of $f(x)$ there is a root of $\varphi(x)$ and between any two roots of $\varphi(x)$ there is a root of $f(x)$, then all roots of the equation $\lambda f(x)+\mu \varphi(x)=$ $=0$ are real for arbitrary real λ and μ.
*727. If all the roots of the polynomials $F(x)=\lambda f(x)+\mu \varphi(x)$ are real for arbitrary real λ and μ, then the roots of the polynomials $f(x)$ and $\varphi(x)$ can be separated.
*728. If all the roots of $f^{\prime}(x)$ are real and distinct and $f(x)$ does not have multiple roots, then the number of real roots of the polynomial $\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)$ is equal to the number of imaginary roots of the polynomial $f(x)$.
*729. If the roots of the polynomials $f_{1}(x)$ and $f_{2}(x)$ are all real and separable, then the roots of their derivatives can be separated.
*730. If all the roots of the polynomial $f(x)$ are real, then all the roots of the polynomial $F(x)=\gamma f(x)+(\lambda+x) f^{\prime}(x)$ are real for $\gamma>0$ or $\gamma<-n$ and for arbitrary real λ as well.
*731. If the polynomial

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

has only real roots, and the polynomial

$$
\varphi(x)=b_{0}+b_{1} x+\ldots+b_{k} x^{k}
$$

has real roots that do not lie in the interval $(0, n)$, then all the roots of the polynomial

$$
a_{0} \varphi(0)+a_{1} \varphi(1) x+a_{2} \varphi(2) x^{2}+\ldots+a_{n} \varphi(n) x^{n}
$$

are real.
*732. If all the roots of the polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ are real, then all the roots of the polynomial $a_{0}+a_{1} \gamma x+a_{2} \gamma(\gamma-$ $-1) x^{2}+\ldots+a_{n} \gamma(\gamma-1) \ldots(\gamma-n+1) x^{n}$ are real for $\gamma>n-1$.
*733. If all the roots of the polynomial $f(x)=a_{0}+a_{1} x+\ldots$ $\ldots+a_{n} x^{n}$ are real, then also real are the roots of the polynomial $a_{0}+\frac{\gamma}{\alpha} a_{1} x+\frac{\gamma(\gamma-1)}{\alpha(\alpha+1)} a_{2} x^{2}+\ldots+\frac{\gamma(\gamma-1) \ldots(\gamma-n+1)}{\alpha(\alpha+1) \ldots(\alpha+n-1)} a_{n} x^{n}$ for $\gamma>n-1, \alpha>0$.
*734. If all the roots of the polynomial $f(x)=a_{0}+a_{1} x+\ldots$ $\ldots+a_{n} x^{n}$ are real, then all the roots of the polynomial

$$
a_{0}+a_{1} w x+a_{2} w^{4} x^{2}+\ldots+a_{n} w^{n^{2}} x^{n}
$$

are real for $0<w \leqslant 1$.
*735. If all the roots of the polynomial $a_{0}+a_{1} x+a_{2} x^{2}+$ $+\ldots+a_{n} x^{n}$ are real and of the same sign, then all the roots of the polynomial $a_{0} \cos \varphi+a_{1} \cos (\varphi+\theta) x+a_{2} \cos (\varphi+2 \theta) x^{2}+\ldots+a_{n}$ $\cos (\varphi+n \theta) x^{n}$ are real.
*736. If all the roots of the polynomial

$$
\left(a_{0}+i b_{0}\right)+\left(a_{1}+i b_{1}\right) x+\ldots+\left(a_{n}+i b_{n}\right) x^{n}
$$

lie in the upper half-plane, then all the roots of the polynomial

$$
a_{0}+a_{1} x+\ldots+a_{n} x^{n} \text { and } b_{0}+b_{1} x+\ldots+b_{n} x^{n}
$$

are real and separable (the numbers $a_{0}, a_{1}, \ldots, a_{n}, b_{0}, b_{1}, \ldots, b_{n}$ are real).
*737. If all the roots of the polynomials $\varphi(x)$ and $\psi(x)$ are real and separable, then the imaginary parts of the roots $\varphi(x)+$ $+i \psi(x)$ have the same signs.
*738. If all the roots of the polynomial $f(x)$ lie in the upper half-plane, then all the roots of its derivative likewise lie in the upper half-plane.
*739. If all the roots of the polynomial $f(x)$ are located in some half-plane, then all the roots of the derivative are located in the same half-plane.
*740. The roots of the derivative of the polynomial $f(x)$ lie within an arbitrary convex contour which contains all the roots of the polynomial $f(x)$.
*741. If $f(x)$ is a polynomial of degree n with real roots, then all the roots of the equation $[f(x)]^{2}+k^{2}+\left[f^{\prime}(x)\right]^{2}=0$ have an imaginary part less than $k n$ in absolute value.
742. If all the roots of the polynomials $f(x)-a$ and $f(x)-b$ are real, then all the roots of the polynomial $f(x)-\lambda$ are real if λ lies between a and b.
*743. For the real parts of all the roots of the polynomial $x^{n}+$ $+a_{1} x^{n-1}+\ldots+a_{n}$ with real coefficients to be of the same sign, it is necessary and sufficient that the roots of the polynomials

$$
x^{n}-a_{2} x^{n-2}+a_{4} x^{n-4}-\ldots
$$

and

$$
a_{1} x^{n-1}-a_{3} x^{n-3}+\ldots
$$

be real and separable.
*744. Find the necessary and sufficient conditions for the real parts of all the roots of the equation $x^{3}+a x^{2}+b x+c=0$ with real coefficients to be negative.
*745. Find the necessary and sufficient conditions for the negativity of the real parts of all the roots of the equation $x^{4}+a x^{3}+$ $+b x^{2}+c x+d=0$ with real coefficients.
*746. Find the necessary and sufficient conditions for all the roots of the equation $x^{3}+a x^{2}+b x+c=0$ with real coefficients not to exceed unity in absolute value.
*747. Prove that if $a_{0} \geqslant a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \geqslant 0$, then all the roots of the polynomial $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ do not exceed unity in absolute value.

Sec. 10. Approximating Roots of a Polynomial

748. Compute to within 0.0001 the root of the equation $x^{3}-$ $-3 x^{2}-13 x-7=0$ which lies in the interval $(-1,0)$.
749. Compute the real root of the equation $x^{3}-2 x-5=0$ with an accuracy of 0.000001 .
750. Compute the real roots of the following equations to within 0.0001 :
(a) $x^{3}-10 x-5=0$,
(b) $x^{3}+2 x-30=0$,
(c) $x^{3}-3 x^{2}-4 x+1=0$,
(d) $x^{3}-3 x^{2}-x+2=0$.
751. Divide a hemisphere of radius 1 into two equal parts by a plane parallel to the base.
752. Evaluate the positive root of the equation $x^{3}-5 x-3=0$ to within 0.0001 .
753. Compute to within 0.0001 the root of the equation:
(a) $x^{4}+3 x^{3}-9 x-9=0 \quad$ lying in the interval $(1,2)$;
(b) $x^{4}-4 x^{3}+4 x^{2}-4=0 \quad$ lying in the interval $(-1,0)$;
(c) $x^{4}+3 x^{3}+4 x^{2}+x-3=0 \quad$ lying in the interval $(0,1)$;
(d) $x^{4}-10 x^{2}-16 x+5=0 \quad$ lying in the interval $(0,1)$;
(e) $x^{4}-x^{3}-9 x^{2}+10 x-10=0$ lying in the interval $(-4,-3)$;
(f) $x^{4}-6 x^{2}+12 x-8=0 \quad$ lying in the interval $(1,2)$;
(g) $x^{4}-3 x^{2}+4 x-3=0 \quad$ lying in the interval $(-3,-2)$;
(h) $x^{4}-x^{3}-7 x^{2}-8 x-6=0$ lying in the interval $(3,4)$;
(i) $x^{4}-3 x^{3}+3 x^{2}-2=0 \quad$ lying in the interval $(1,2)$.
754. Compute to within 0.0001 the real roots of the following equations:
(a) $x^{4}+3 x^{3}-4 x-1=0$,
(b) $x^{4}+3 x^{3}-x^{2}-3 x+1=0$,
(c) $x^{4}-6 x^{3}+13 x^{2}-10 x+1=0$,
(d) $x^{4}-8 x^{3}-2 x^{2}+16 x-3=0$,
(e) $x^{4}-5 x^{3}+9 x^{2}-5 x-1=0$,
(f) $x^{4}-2 x^{3}-6 x^{2}+4 x+4=0$,
(g) $x^{4}+2 x^{3}+3 x^{2}+2 x-2=0$,
(h) $x^{4}+4 x^{3}-4 x^{2}-16 x-8=0$.

CHAPTER 6
 SYMMETRIC
 FUNCTIONS

> Sec. 1. Expressing Symmetric Functions in Terms of Elementary Symmetric Functions. Computing Symmetric Functions of the Roots of an Algebraic Equation
755. Express the following in terms of the elementary symmetric polynomials:
(a) $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3 x_{1} x_{2} x_{3}$,
(b) $x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$,
(c) $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-2 x_{1}^{2} x_{2}^{2}-2 x_{2}^{2} x_{3}^{2}-2 x_{3}^{2} x_{1}^{2}$,
(d) $x_{1}^{5} x_{2}^{2}+x_{1}^{2} x_{2}^{5}+x_{1}^{5} x_{3}^{2}+x_{1}^{2} x_{3}^{5}+x_{2}^{5} x_{3}^{2}+x_{2}^{2} x_{3}^{5}$,
(e) $\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)$,
(f) $\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}^{2}+x_{3}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}\right)$,
(g) $\left(2 x_{1}-x_{2}-x_{3}\right)\left(2 x_{2}-x_{1}-x_{3}\right)\left(2 x_{3}-x_{1}-x_{2}\right)$,
(h) $\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}$.
756. Represent the following in terms of the elementary symmetric polynomials:
(a) $\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\left(x_{2}+x_{4}\right)\left(x_{3}+x_{4}\right)$,
(b) $\left(x_{1} x_{2}+x_{3} x_{4}\right)\left(x_{1} x_{3}+x_{2} x_{4}\right)\left(x_{1} x_{4}+x_{2} x_{3}\right)$,
(c) $\left(x_{1}+x_{2}-x_{3}-x_{4}\right)\left(x_{1}-x_{2}+x_{3}-x_{4}\right)\left(x_{1}-x_{2}-x_{3}+x_{4}\right)$.
757. Represent the following monogenic polynomials in terms of the elementary symmetric polynomials:
(a) $x_{1}^{2}+\cdots$,
(g) $x_{1}^{2} x_{2}^{2} x_{3}+\cdots$,
(n) $x_{1}^{3} x_{2} x_{3} x_{4}+\ldots$,
(b) $x_{1}^{3}+$
(h) $x_{1}^{3} x_{2} x_{3}+\cdots$,
(o) $x_{1}^{3} x_{2}^{2} x_{3}+\cdots$,
(c) $x_{1}^{2} x_{2} x_{3}+\cdots$,
(i) $x_{1}^{3} x_{2}^{2}+$
(p) $x_{1}^{3} x_{2}^{3}+$
(d) $x_{1}^{2} x_{2}^{2}+$
(j) $x_{1}^{4} x_{2}+\cdots$,
(q) $x_{1}^{4} x_{2} x_{3}+\cdots$,
(e) $x_{1}^{3} x_{2}+$
(k) $x_{1}^{5}+\cdots$,
(r) $x_{1}^{4} x_{2}^{2}+\cdots$,
(f) $x_{1}^{4}+\cdots$,
(1) $x_{1}^{2} x_{2}^{2} x_{3} x_{4}+\ldots$,
(s) $x_{1}^{5} x_{2}+\cdots$,
(m) $x_{1}^{2} x_{2}^{2} x_{3}^{2}+\cdots$,
(t) $x_{1}^{9}+$
758. Express the following in terms of the elementary symmetric polynomials:
(a) $\left(-x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right)^{2}+\left(x_{1}-x_{2}+x^{3}\right.$

$$
\begin{aligned}
\left.+\ldots+x_{n}\right)^{2}+\left(x_{1}+x_{2}-x_{3}+\ldots\right. & \left.+x_{n}\right)^{2} \\
& +\ldots+\left(x_{1}+x_{2}+x_{3}+\ldots-x_{n}\right)^{2}
\end{aligned}
$$

(b) $\left(-x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right)\left(x_{1}-x_{2}+x_{3}\right.$

$$
\left.+\ldots+x_{n}\right) \ldots\left(x_{1}+x_{2}+\ldots-x_{n}\right) .
$$

759. Express the following in terms of the elementary symmetric polynomials:
(a) $\sum_{i>k}\left(x_{i}-x_{k}\right)^{2}$,
(b) $\sum_{i>k}\left(x_{i}+x_{k}\right)^{3}$,
(c) $\sum_{i>k}\left(x_{i}-x_{k}\right)^{4}$,
(d) $\sum_{i>k}\left(x_{i}+x_{k}-x_{j}\right)^{2}$. $j \neq i ; j \neq k$
760. Express the following monogenic polynomial in terms of the elementary symmetric polynomials:

$$
x_{1}^{2} x_{2}^{2} \cdots x_{k}^{2}+\cdots
$$

761. Express the following in terms of the elementary symmetric polynomials:

$$
\sum\left(a_{1} x_{i_{1}}+a_{2} x_{i_{2}}+\cdots+a_{n} x_{i_{n}}\right)^{2} .
$$

The sum is extended over all possible permutations $i_{1}, i_{2}, \ldots, i_{n}$ of the numbers $1,2, \ldots, n$.
762. Express the following in terms of the elementary symmetric polynomials:
(a) $\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\frac{x_{3}}{x_{1}}+\frac{x_{2}}{x_{1}}+\frac{x_{3}}{x_{2}}+\frac{x_{1}}{x_{3}}$,
(b) $\frac{\left(x_{1}-x_{2}\right)^{2}}{x_{1}+x_{2}}+\frac{\left(x_{2}-x_{3}\right)^{2}}{x_{2}+x_{3}}+\frac{\left(x_{3}-x_{1}\right)^{2}}{x_{3}+x_{1}}$,
(c) $\left(\frac{x_{2}}{x_{1}}+\frac{x_{3}}{x_{2}}+\frac{x_{1}}{x_{3}}\right)\left(\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\frac{x_{3}}{x_{1}}\right)$.
763. Express the following in terms of the elementary symmetric polynomials:
(a) $\frac{x_{1} x_{2}}{x_{3} x_{4}}+\frac{x_{1} x_{3}}{x_{2} x_{4}}+\frac{x_{1} x_{4}}{x_{2} x_{3}}+\frac{x_{2} x_{3}}{x_{1} x_{4}}+\frac{x_{2} x_{4}}{x_{1} x_{3}}+\frac{x_{3} x_{4}}{x_{1} x_{2}}$,
(b) $\frac{x_{1}+x_{4}}{x_{3}+x_{4}}+\frac{x_{1}+x_{3}}{x_{2}+x_{4}}+\frac{x_{1}+x_{4}}{x_{2}+x_{3}}+\frac{x_{2}+x_{3}}{x_{1}+x_{4}}+\frac{x_{2}+x_{4}}{x_{1}+x_{3}}+\frac{x_{3}+x_{4}}{x_{1}+x_{2}}$.
764. Express the following in terms of the elementary symmetric polynomials:
(a) $\sum \frac{1}{x_{i}}$,
(b) $\sum \frac{1}{x_{i}^{2}}$,
(c) $\sum_{i \neq j} \frac{x_{i}}{x_{j}}$,
(d) $\sum_{i \neq j} \frac{x_{i}^{2}}{x_{j}}$,
(e) $\sum_{i \neq j} \frac{x_{i}^{2}}{x_{j}}$,
(f) $\sum_{\substack{i \neq j \\ i \neq k \\ j>k}} \frac{x_{j} x_{k}}{x_{i}}$.
765. Compute the sum of the squares of the roots of the equation

$$
x^{3}+2 x-3=0
$$

766. Compute $x_{1}^{3} x_{2}+x_{1} x_{2}^{3}+x_{2}^{3} x_{3}+x_{2} x_{3}^{3}+x_{3}^{3} x_{1}+x_{3} x_{1}^{3}$ of the roots of the equation $x^{3}-x^{2}-4 x+1=0$.
767. Determine the value of the monogenic symmetric function

$$
x_{1}^{3} x_{2} x_{3}+\ldots
$$

of the roots of the equation

$$
x^{4}+x^{3}-2 x^{2}-3 x+1=0
$$

768. Let x_{1}, x_{2}, x_{3} be the roots of the equation $x^{3}+p x+q=0$. Compute:
(a) $\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\frac{x_{3}}{x_{1}}+\frac{x_{2}}{x_{1}}+\frac{x_{3}}{x_{3}}+\frac{x_{1}}{x_{3}}$,
(b) $x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}+x_{2}^{4} x_{3}^{2}+x_{2}^{2} x_{3}^{4}+x_{3}^{4} x_{1}^{2}+x_{3}^{2} x_{1}^{4}$,
(c) $\left(x_{1}^{2}-x_{2} x_{3}\right)\left(x_{2}^{2}-x_{1} x_{3}\right)\left(x_{3}^{2}-x_{2} x_{1}\right)$,
(d) $\left(x_{1}+x_{2}\right)^{4}\left(x_{1}+x_{3}\right)^{4}\left(x_{2}+x_{3}\right)^{4}$,
(e) $\frac{x_{1}^{2}}{\left(x_{2}+1\right)\left(x_{3}+1\right)}+\frac{x_{2}^{2}}{\left(x_{1}+1\right)\left(x_{3}+1\right)}+\frac{x_{3}^{2}}{\left(x_{1}+1\right)\left(x_{2}+1\right)}$,
(f) $\frac{x_{1}^{2}}{\left(x_{1}+1\right)^{2}}+\frac{x_{2}^{2}}{\left(x_{2}+1\right)^{2}}+\frac{x_{3}^{2}}{\left(x_{3}+1\right)^{2}}$.
769. What relationship is there between the coefficients of the cubic equation

$$
x^{3}+a x^{2}+b x+c=0
$$

if the square of one of the roots is equal to the sum of the squares of the other two?
1870. Prove the following theorem: for all roots of the cubic equation $x^{3}+a x^{2}+b x+c=0$ to have negative real parts, it is necessary and sufficient that the following conditions hold:

$$
a>0, a b-c>0, c>0
$$

771. Find the area and the radius of a circle circumscribed about a triangle whose sides are equal to the roots of the cubic equation

$$
x^{3}-a x^{2}+b x-c=0
$$

*772. Find the relationship among the coefficients of an equation whose roots are equal to the sines of the angles of a triangle.
773. Compute the value of a symmetric function of the roots of the equation $f(x)=0$:
(a) $x_{1}^{4} x_{2}+\ldots, \quad f(x)=3 x^{3}-5 x^{2}+1$;
(b) $x_{1}^{3} x_{2}^{3}+\ldots, f(x)=3 x^{4}-2 x^{3}+2 x^{2}+x-1$;
(c) $\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right)\left(x_{3}^{2}+x_{3} x_{1}+x_{1}^{2}\right)$,

$$
f(x)=5 x^{3}-6 x^{2}+7 x-8
$$

774. Express in terms of the coefficients of the equation

$$
a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3}=0
$$

the following symmetric functions:
(a) $a_{0}^{4}\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}$,
(b) $a_{0}^{4}\left(x_{1}^{2}-x_{2} x_{3}\right)\left(x_{2}^{2}-x_{1} x_{3}\right)\left(x_{3}^{2}-x_{1} x_{2}\right)$,
(c) $\frac{\left(x_{1}-x_{2}\right)^{2}}{x_{1} x_{2}}+\frac{\left(x_{1}-x_{3}\right)^{2}}{x_{1} x_{3}}+\frac{\left(x_{2}-x_{3}\right)^{2}}{x_{2} x_{3}}$,
(d) $a_{0}^{4}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right)\left(x_{3}^{2}+x_{3} x_{1}+x_{1}^{2}\right)$.
775. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots of the polynomial

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n} .
$$

Prove that the symmetric polynomial in $x_{2}, x_{3}, \ldots, x_{n}$ can be represented in the form of a polynomial in x_{1}.
776. Using the result of Problem 775, solve Problems 755(e), 755 (g), 774 (b), 774 (d).
777. Find $\sum_{i=1}^{n} \frac{\partial f_{k}}{\partial x_{i}}$ where f_{k} is the k th elementary symmetric function of $x_{1}, x_{2}, \ldots, x_{n}$.
778. Let the expression of the symmetric function $F\left(x_{1}, x_{2}, \ldots\right.$, x_{n}) in terms of the elementary symmetric functions be known. Find the expression of $\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}$ in terms of the elementary symmetric functions.

Prove the theorems:
779. If $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a symmetric function having the property

$$
F\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and if $\Phi\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is its expression in terms of the elementary symmetric functions, then

$$
n \frac{\partial \Phi}{\partial f_{1}}+(n-1) f_{1} \frac{\partial \Phi}{\partial f_{2}}+\cdots+f_{n-1} \frac{\partial \Phi}{\partial f_{n}}=0
$$

and conversely.
780. Every homogeneous symmetric polynomial of degree two having the property of Problem 779 is equal to $\alpha \sum_{i<k}\left(x_{i}-x_{k}\right)^{2}$ where α is a constant.
781. Find the general form of homogeneous symmetric polynomials of degree three having the property of Problem 779.
782. Using the result of Problem 779, express the following in terms of the elementary symmetric polynomials:

$$
\sum_{i<j<k}\left(x_{i}-x_{j}\right)^{2}\left(x_{i}-x_{k}\right)^{2}\left(x_{j}-x_{k}\right)^{2}
$$

783. Prove that among the symmetric polynomials $F\left(x_{1}, x_{2}\right.$, \ldots, x_{n}) having the property

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)
$$

there are $n-1$ "elementary polynomials" $\varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}$ such that each polynomial of the class under consideration can be expressed in the form of a polynomial in $\varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}$.
784. Express the following symmetric functions in terms of the polynomials φ_{2}, φ_{3} of Problems 783:
(a) $\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}$,
(b) $\left(x_{1}-x_{2}\right)^{4}+\left(x_{1}-x_{3}\right)^{4}+\left(x_{2}-x_{3}\right)^{4}$.
785. Express the following symmetric functions in terms of the polynomials $\varphi_{2}, \varphi_{3}, \varphi_{4}$ of Problem 783:
(a) $\left(x_{1}+x_{2}-x_{3}-x_{4}\right)\left(x_{1}-x_{2}+x_{3}-x_{4}\right)\left(x_{1}-x_{2}-x_{3}+x_{4}\right)$,
(b) $\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{1}-x_{4}\right)^{2}\left(x_{2}-x_{3}\right)^{2}\left(x_{2}-x_{4}\right)^{2}\left(x_{3}-x_{4}\right)^{2}$.

Sec. 2. Power Sums

786. Find an expression for $s_{2}, s_{y}, s_{4}, s_{5}, s_{6}$ in terms of the elementary symmetric polynomials, using Newton's formulas.
787. Express $f_{2}, f_{\varepsilon}, f_{4}, f_{5}, f_{6}$ in terms of the power sums s_{1}, s_{2}, ... , using Newton's formulas.
788. Find the sum of the fifth powers of the roots of the equation

$$
x^{6}-4 x^{5}+3 x^{3}-4 x^{2}+x+1=0 .
$$

789. Find the sum of the eighth powers of the roots of the equation

$$
x^{4}-x^{3}-1=0
$$

790. Find the sum of the tenth powers of the roots of the equation

$$
x^{3}-3 x+1=0
$$

791. Find $s_{1}, s_{2}, \ldots, s_{n}$ of the roots of the equation

$$
x^{n}+\frac{x^{n-1}}{1}+\frac{x^{n-2}}{1 \cdot 2}+\cdots+\frac{1}{n!}=0 .
$$

792. Prove that

$$
\begin{aligned}
& a^{k}\left(x_{1}^{k}+x_{2}^{k}\right)=(-1)^{k}\left[b^{k}-\frac{k}{1} b^{k-2} a c+\frac{k(k-3)}{1 \cdot 2} b^{k-4} a^{2} c^{2}\right. \\
&\left.\quad-\frac{k(k-4)(k-5)}{1 \cdot 2 \cdot 3} b^{k-6} a^{3} c^{3}+\cdots\right]
\end{aligned}
$$

if x_{1}, x_{2} are the roots of the quadratic equation $a x^{2}+b x+c=0$.
793. Prove that for any cubic equation

$$
\frac{s_{1}^{5}-s_{5}}{s_{1}^{3}-s_{3}}=\frac{5}{3}\left(f_{1}^{2}-f_{2}\right) .
$$

794. Prove that if the sum of the roots of a quartic equation is equal to zero, then

$$
\frac{s_{5}}{5}=\frac{s_{3}}{3} \cdot \frac{s_{2}}{2} .
$$

795. Prove that if $s_{1}=s_{3}=0$ for a sextic equation, then

$$
\frac{s_{7}}{7}=\frac{s_{5}}{5} \cdot \frac{s_{2}}{2} .
$$

796. Find n th-degree equations for which

$$
s_{1}=s_{2}=\ldots=s_{n-1}=0
$$

797. Find n th-degree equations for which

$$
s_{2}=s_{3}=\ldots=s_{n}=0 .
$$

798. Find an n th-degree equation for which

$$
s_{2}=1, s_{3}=s_{4}=\ldots=s_{n}=s_{n+1}=0
$$

799. Express $\sum_{i<j} x_{i}^{k} x_{j}^{k}$ in terms of power sums.
*800. Express $\sum_{i<j}\left(x_{i}+x_{j}\right)^{k}$ in terms of power sums.
*801. Express $\sum_{i<j}\left(x_{i}-x_{j}\right)^{2 k}$ in terms of power sums.
800. Prove that $s_{k}=\left|\begin{array}{ccccc}f_{1} & 1 & 0 & \cdots & 0 \\ 2 f_{2} & f_{1} & 1 & \cdots & 0 \\ 3 f_{3} & f_{2} & f_{1} & \cdots & 0 \\ \cdots & h_{1} & \cdots & \cdots & \cdots \\ k f_{k} & f_{k-1} & f_{k-2} & \cdots & f_{1}\end{array}\right|$.
801. Prove that $f_{k}=\frac{1}{k!}\left|\begin{array}{cccccc}s_{2} & s_{1} & 2 & \ldots & 0 \\ s_{3} & s_{2} & s_{1} & 3 & \ldots & 0 \\ \ldots & y_{k} & \cdots & \ldots & \cdots & { }^{2} \\ s_{k} & s_{k-1} & s_{k-2} & \cdots & s_{1}\end{array}\right|$.
802. Compute the determinant $\left|\begin{array}{ccccc}x^{n} & x^{n-1} & x^{n-2} & \cdots & 1 \\ s_{1} & 1 & 0 & \cdots & 0 \\ s_{2} & s_{1} & 2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \\ s_{n} & s_{n-1} & s_{n-2} & \cdots & n\end{array}\right|$.
*805. Find s_{m} of the roots of the equation

$$
X_{n}(x)=0 .
$$

*806. Prove that f_{2}, f_{3} and f_{4} of the roots of the equation $X_{n}(x)=$ $=0$ can only take on values 0 and ± 1.
*807. Solve the system of equations

$$
\begin{aligned}
& x_{1}+x_{2}+\cdots+x_{n}=a \\
& x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=a \\
& \cdots \cdots \cdots+\cdots \\
& x_{1}^{n}+x_{2}^{n}+\cdots \cdots+x_{n}^{n}=a
\end{aligned}
$$

and find $x_{1}^{n+1}+x_{2}^{n+1}+\cdots+x_{n}^{n+1}$,
*808. Compute the power sums $s_{1}, s_{2}, \ldots, s_{n}$ of the roots of the equation

$$
\begin{aligned}
x^{n}+(a+b) x^{n-1}+\left(a^{2}+a b\right. & \left.+b^{2}\right) x^{n-2} \\
& +\cdots+\left(a^{n}+a^{n-1} b+\cdots+b^{n}\right)=0
\end{aligned}
$$

*809. Compute the power sums $s_{1}, s_{2}, \ldots, s_{n}$ of the roots of the equation

$$
x^{n}+(a+b) x^{n-1}+\left(a^{2}+b^{2}\right) x^{n-2}+\cdots+\left(a^{n}+b^{n}\right)=0
$$

Sec. 3. Transformation of Equations

810. Find equations whose roots are:
(a) $x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{1}$;
(b) $\left(x_{1}-x_{2}\right)^{2},\left(x_{2}-x_{3}\right)^{2},\left(x_{3}-x_{1}\right)^{2}$;
(c) $x_{1}^{2}-x_{2} x_{3}, x_{2}^{2}-x_{3} x_{1}, x_{3}^{2}-x_{1} x_{2}$;
(d) $\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right),\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right),\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)$;
(e) $x_{1}^{2}, x_{2}^{2}, x_{3}^{2} ; ~(f) x_{1}^{3}, x_{2}^{3}, x_{3}^{3}$
where x_{1}, x_{2}, x_{3} are the roots of the equation $x^{3}+a x^{2}+b x+c=0$.
811. Find an equation whose roots are

$$
\left(x_{1}+x_{2} \varepsilon+x_{3} \varepsilon^{2}\right)^{3} \text { and }\left(x_{1}+x_{2} \varepsilon^{2}+x_{3} \varepsilon\right)^{3}
$$

where $\varepsilon=-\frac{1}{2}+i \frac{\sqrt{3}}{2} ; x_{1}, x_{2}, x_{3}$ are the roots of the equation

$$
x^{3}+a x^{2}+b x+c=0
$$

812. Find an equation of lowest degree, one of the roots of which is $\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\frac{x_{3}}{x_{1}}$, where x_{1}, x_{2}, x_{3} are the roots of the cubic equation $x^{3}+a x^{2}+b x+c=0$, and the coefficients of which are expressed rationally in terms of the coefficients of the given equation.
813. Find an equation of lowest degree, one of the roots of which is $\frac{x_{1}}{x_{2}}$ where x_{1}, x_{2}, x_{3} are the roots of the equation $x^{3}+$ $+a x^{2}+b x+c=0$, and the coefficients of which are expressed in terms of the coefficients of the given equation.
814. Find an equation of lowest degree with coefficients expressed rationally in terms of the coefficients of a given equation
$x^{4}+a x^{3}+b x^{2}+c x+d=0$, one of the roots of the desired equation being:
(a) $x_{1} x_{2}+x_{3} x_{4}$,
(b) $\left(x_{1}+x_{2}-x_{3}-x_{4}\right)^{2}$,
(c) $x_{1} x_{2}$,
(d) $x_{1}+x_{2}$,
(e) $\left(x_{1}-x_{2}\right)^{2}$.
815. Using the results of Problems 814 (a) and 814 (b), express the roots of a quartic equation in terms of roots of the auxiliary cubic equation of Problem 814 (a).
[816. Write a formula for the solution of equation

$$
x^{4}-6 a x^{2}+b x-3 a^{2}=0
$$

817. Write an equation, one of the roots of which is

$$
\begin{aligned}
& \left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} x_{1}\right) \\
& \\
& \quad \times\left(x_{1} x_{3}+x_{3} x_{5}+x_{5} x_{2}+x_{2} x_{4}+x_{4} x_{1}\right)
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are roots of the equation

$$
x^{5}+a x+b=0
$$

Sec. 4. Resultant and Discriminant

〔*818. Prove that the resultant of the polynomials

$$
f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \text { and } \varphi(x)=b_{0} x^{m}+\ldots+b_{m}
$$

is equal to a determinant made up of the coefficients of the remainders left after dividing $\varphi(x), x \varphi(x), \ldots, x^{n-1} \varphi(x)$ by $f(x)$. It is assumed that the remainders are arranged in order of increasing powers of x (Hermite's method).

Remark. The remainder $r_{k}(x)$ left after dividing $x^{k-1} \varphi(x)$ by $f(x)$ is equal to the remainder obtained upon division of $x r_{k-1}(x)$ by $f(x)$.
f^{*} 819. Prove that the resultant of the polynomials

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}
$$

and

$$
\varphi(x)=b_{0} x^{n}+b_{1} x^{n-1}+\ldots+b_{n}
$$

is equal to a determinant composed of the coefficients of polynomials of degree $n-1$ (or lower)
$\psi_{k}(x)=\left(a_{0} x^{k-1}+a_{1} x^{k-2}+\cdots+a_{k-1}\right) \varphi(x)$

$$
-\left(b_{0} x^{k-1}+b_{1} x^{k-2}+\cdots+b_{k-1}\right) f(x)
$$

$k=1, \ldots, n$ (Bézout's method).

Remark. $\psi_{1}=a_{0} \varphi-b_{0} f$,

$$
\psi_{k}=x \psi_{k-1}+a_{k-1} \varphi-b_{k-1} f
$$

*820. Prove that the resultant of the polynomials
and

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

$$
\varphi(x)=b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{m}
$$

is equal, for $n>m$, to a determinant made up of the coefficients of polynomials $\chi_{k}(x)$ of degree not exceeding $n-1$ determined from the formulas

$$
\begin{aligned}
& \chi_{k}(x)=x^{k-1} \varphi(x) \text { for } 1 \leqslant k \leqslant n-m, \\
& \chi_{k}(x)=\left(a_{0} x^{k-n+m-1}+a_{1} x^{k-n+m-2}\right. \\
& \left.+\cdots+a_{k-n+m-1}\right) x^{n-m} \varphi(x)-\left(b_{0} x^{k-n+m-1}\right. \\
& \left.+b_{1} x^{k-n+m-2}+\cdots+b_{k-n+m-1}\right) f(x)
\end{aligned}
$$

(the polynomials χ_{k} are arranged in order of increasing powers of x).

Remark. $\chi_{n-m+1}=a_{0} x^{n-m} \varphi(x)-b_{0} f(x)$,

$$
\chi_{k}=x \chi_{k-1}+a_{k-n+m-1} x^{n-m} \varphi(x)-b_{k-n+m-1} f(x)
$$

for $k>n-m+1$.
821. Compute the resultant of the polynomials:
(a) $x^{3}-3 x^{2}+2 x+1$ and $2 x^{2}-x-1$;
(b) $2 x^{3}-3 x^{2}+2 x+1$ and $x^{2}+x+3$;
(c) $2 x^{3}-3 x^{2}-x+2$ and $x^{4}-2 x^{2}-3 x+4$;
(d) $3 x^{3}+2 x^{2}+x+1$ and $2 x^{3}+x^{2}-x-1$;
(e) $2 x^{4}-x^{3}+3$ and $3 x^{3}-x^{2}+4$;
(f) $a_{0} x^{2}+a_{1} x+a_{2}$ and $b_{0} x^{2}+b_{1} x+b_{2}$.
822. For what value of λ do the following polynomials have a common root:
(a) $x^{3}-\lambda x+2$ and $x^{2}+\lambda x+2$;
(b) $x^{3}-2 \lambda x+\lambda^{3}$ and $x^{2}+\lambda^{2}-2$;
(c) $x^{3}+\lambda x^{2}-9$ and $x^{3}+\lambda x-3$?
823. Eliminate x from the following systems of equations:
(a) $x^{2}-x y+y^{2}=3$,

$$
x^{2} y+x y^{2}=6 ;
$$

(b) $x^{3}-x y-y^{3}+y=0, \quad x^{2}+x-y^{2}-1=0$;
(c) $y=x^{3}-2 x^{2}-6 x+8, \quad y=2 x^{3}-8 x^{2}+5 x+2$.
824. Solve the following systems:
(a) $y^{2}-7 x y+4 x^{2}+13 x-2 y-3=0$,

$$
y^{2}-14 x y+9 x^{2}+28 x-4 y-5=0
$$

(b) $y^{2}+x^{2}-y-3 x=0$,
$y^{2}-6 x y-x^{2}+11 y+7 x-12=0 ;$
(c) $5 y^{2}-6 x y+5 x^{2}-16=0$,

$$
y^{2}-x y+2 x^{2}-y-x-4=0 ;
$$

(d) $y^{2}+(x-4) y+x^{2}-2 x+3=0$,

$$
y^{3}-5 y^{2}+(x+7) y+x^{3}-x^{2}-5 x-3=0
$$

(e) $2 y^{3}-4 x y^{2}-\left(2 x^{2}-12 x+8\right) y+x^{3}+6 x^{2}-16 x=0$,
$4 y^{3}-(3 x+10) y^{2}-\left(4 x^{2}-24 x+16\right) y-3 x^{3}$

$$
+2 x^{2}-12 x+40=0
$$

825. Determine the resultant of the polynomials
and

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

$$
a_{0} x^{n-1}+a_{1} x^{n-2}+\cdots+a_{n-1} .
$$

826. Prove that $\mathfrak{R}\left(f, \varphi_{1} \cdot \varphi_{2}\right)=\Re\left(f, \varphi_{1}\right) \cdot \Re\left(f, \varphi_{2}\right)$.
*827. Find the resultant of the polynomials

$$
X_{n} \text { and } x^{m}-1
$$

*828. Find the resultant of the polynomials X_{m} and X_{n}. 829. Compute the discriminant of the polynomial:
(a) $x^{3}-x^{2}-2 x+1$,
(b) $x^{3}+2 x^{2}+4 x+1$,
(c) $3 x^{3}+3 x^{2}+5 x+2$,
(d) $x^{4}-x^{3}-3 x^{2}+x+1$,
(e) $2 x^{4}-x^{3}-4 x^{2}+x+1$.
830. Compute the discriminant of the polynomial:
(a) $x^{5}-5 a x^{3}+5 a^{2} x-b$,
(b) $\left(x^{2}-x+1\right)^{3}-\lambda\left(x^{2}-x\right)^{2}$,
(c) $a x^{3}-b x^{2}+(b-3 a) x+a$,
(d) $x^{4}-\lambda x^{3}+3(\lambda-4) x^{2}-2(\lambda-8) x-4$.
831. For what value of λ does the polynomial have multiple roots:
(a) $x^{3}-3 x+\lambda$; (b) $x^{4}-4 x+\lambda$,
(c) $x^{3}-8 x^{2}+(13-\lambda) x-(6+2 \lambda)$,
(d) $x^{4}-4 x^{3}+(2-\lambda) x^{2}+2 x-2$?
832. Characterize the number of real roots of a polynomial with real coefficients by the sign of the discriminant:
(a) for a third-degree polynomial;
(b) for a fourth-degree polynomial;
(c) in the general case.
833. Compute the discriminant of the polynomial $x^{n}+a$.
*834. Compute the discriminant of the polynomial $x^{n}+p x+q$.
*835. Compute the discriminant of the polynomial

$$
a_{0} x^{\prime n+n}+a_{1} x^{m}+a_{2}
$$

836. Knowing the discriminant of the polynomial

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

find the discriminant of the polynomial

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

837. Prove that the discriminant of a fourth-degree polynomial is equal to the discriminant of its Ferrari resolvent (Problem 814(a) and Problem 80).
838. Prove that

$$
D((x-a) f(x))=D(f(x))[f(a)]^{2} .
$$

*839. Compute the discriminant of the polynomial

$$
x^{n-1}+x^{n-2}+\cdots+1 .
$$

*840. Compute the discriminant of the polynomial

$$
x^{n}+a x^{n-1}+a x^{n-2}+\cdots+a
$$

841. Prove that the discriminant of a product of two polynomials is equal to the product of the discriminants multiplied by the square of their resultant.
842. Find the discriminant of the polynomial

$$
X_{p^{m}}=\frac{x^{p^{m}}-1}{x^{p^{m-1}}-1}
$$

*843. Find the discriminant of the cyclotomic polynomial X_{n}.
*844. Compute the discriminant of the polynomial

$$
E_{n}=n!\left(1+\frac{x}{1}+\frac{x^{2}}{1 \cdot 2}+\cdots+\frac{x^{n}}{n!}\right) .
$$

*845. Compute the discriminant of the polynomial

$$
F_{n}=x^{n}+\frac{a}{1} x^{n-1}+\frac{a(a-1)}{1 \cdot 2} x^{n-2}+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n!} .
$$

*846. Compute the discriminant of the Hermite polynomial

$$
P_{n}(x)=(-1)^{n} e^{\frac{x^{2}}{2}} \frac{d^{n} e^{-\frac{x^{2}}{2}}}{d x^{n}}
$$

*847. Compute the discriminant of the Laguerre polynomial

$$
P_{n}(x)=(-1)^{n} \frac{d^{n}\left(x^{n} e^{-x}\right)}{d x^{n}}
$$

*848. Compute the discriminant of the Chebyshev polynomial

$$
2 \cos \left(n \arccos \frac{x}{2}\right)
$$

*849. Compute the discriminant of the polynomial

$$
P_{n}(x)=\frac{(-1)^{n}}{n!}\left(1+x^{2}\right)^{n+1} \frac{d^{n}\left(\frac{1}{1+x^{2}}\right)}{d x^{n}}
$$

*850. Compute the discriminant of the polynomial

$$
P_{n}(x)=(-1)^{n}\left(1+x^{2}\right)^{n+\frac{1}{2}} \frac{d^{n} \frac{1}{\sqrt{1+x^{2}}}}{d x^{n}} .
$$

*851. Compute the discriminant of the polynomial

$$
P_{n}(x)=(-1)^{n} x^{2 n+2} e^{-\frac{1}{x}} \frac{d^{n+1}\left(e^{\frac{1}{x}}\right)}{d x^{n+1}}
$$

*852. Find the maximum of the discriminant of the polynomial

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

all the roots of which are real and connected by the relation

$$
x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=n(n-1) R^{2} .
$$

853. Knowing the discriminant of $f(x)$, find the discriminant of $f\left(x^{2}\right)$.
854. Knowing the discriminant of $f(x)$, find the discriminant of $f\left(x^{m}\right)$.
855. Prove that the discriminant of $F(x)=f(\varphi(x))$ is equal to

$$
[D(f)]^{m} \prod_{i=1}^{n} D\left(\varphi(x)-x_{i}\right)
$$

where m is the degree of $\varphi(x) ; x_{1}, x_{2}, \ldots, x_{n}$ are roots of $f(x)$. The leading coefficients of f and φ are taken equal to unity.

Sec. 5. The Tschirnhausen Transformation and Rationalization of the Denominator

856. Transform the equation $(x-1)(x-3)(x+4)=0$ by the substitution $y=x^{2}-x-1$.
857. Transform the following equations:
(a) $x^{3}-3 x-4=0 \quad$ by the substitution $y=x^{2}+x+1$;
(b) $x^{3}+2 x^{2}+2=0 \quad$ by the substitution $y=x^{2}+1$;
(c) $x^{4}-x-2=0 \quad$ by the substitution $y=x^{3}-2$;
(d) $x^{4}-x^{3}-x^{2}+1=0$ by the substitution $y=x^{3}+x^{2}+x+1$.
858. Transform the following equations by the Tschirnhausen transformation and find the inverse transformations:
(a) $x^{3}-x+2=0$,
$y=x^{2}+x ;$
(b) $x^{4}-3 x+1=0$,
$y=x^{3}+x ;$
(c) $x^{4}+5 x^{3}+6 x^{2}-1=0, y=x^{3}+4 x^{2}+3 x-1$.
859. Transform the equation $x^{3}-x^{2}-2 x+1=0$ by the substitution $y=2-x^{2}$ and interpret the result.
860. Prove that for the roots of a cubic equation with rational coefficients to be expressed rationally with rational coefficients in terms of one another, it is necessary and sufficient that the discriminant be the square of a rational number.
861. Rationalize the denominators:
(a) $\frac{1}{1+\sqrt{2}-\sqrt{3}}$,
(b) $\frac{1}{3}$,
$1+\sqrt{2}+2 \sqrt{4}$
(c)
$-\frac{7}{4}-$
$1-\sqrt{2}+\sqrt{2}$
862. Rationalize the denominators:
(a) $\frac{\alpha}{\alpha+1}$,
$\alpha^{3}-3 \alpha+1=0 ;$
(b) $\frac{\alpha^{2}-3 \alpha-1}{\alpha^{2}+2 \alpha+1}$,

$$
\alpha^{3}+\alpha^{2}+3 \alpha+4=0
$$

(c)
(d) $\frac{1}{\alpha^{3}+3 \alpha^{2}+3 x+2}, \quad \alpha^{4}+\alpha^{3}-4 \alpha^{2}-3 \alpha+2=0$.
863. Prove that every rational function of a root x_{1} of the cubic equation $x^{3}+a x^{2}+b x+c=0$ can be represented as $\frac{A x_{1}+B}{C x_{1}+D}$ with coefficients A, B, C, D, which can be expressed rationally in terms of the coefficients of the original expression and in terms of the coefficients a, b, c.
864. Let the discriminant of a cubic equation that has rational coefficients and is irreducible over the field of rationals be the square of a rational number. It is then possible to establish the relation $x_{2}=\frac{\alpha x_{1}+\beta}{\gamma x_{1}+\delta}$ among the roots. What condition do the coefficients $\alpha, \beta, \gamma, \delta$ have to satisfy?
865. Make the transformation $y=x^{2}$ in the equation

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

866. Make the transformation $y=x^{3}$ in the equation

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

*867. Prove that if all the roots x_{i} of the polynomial

$$
f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}, \quad a_{n} \neq 0
$$

with integral coefficients satisfy the condition $\left|x_{i}\right| \leqslant 1$, then they are all roots of unity.

> Sec. 6. Polynomials that Remain Unchanged under Eyen Permutations of the Variables. Polynomials that Remain Unchanged under Circular Permutations of the Variables
868. Prove that if a polynomial remains unchanged under even permutations and changes sign under odd permutations, then it is divisible by the Vandermonde determinant made up of the variables, and the quotient is a symmetric polynomial.
869. Prove that every polynomial that remains unchanged under even permutations of the variables can be represented as

$$
F_{1}+F_{2} \Delta
$$

where F_{1} and F_{2} are symmetric polynomials and Δ is the Vandermonde determinant made up of the variables.
870. Evaluate

$$
\left|\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-2} & x_{1}^{n+1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-2} & x_{2}^{n+1} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-2} & x_{n}^{n+1}
\end{array}\right| .
$$

871. Form an equation whose roots are $\alpha x_{1}+\beta x_{2}+\gamma x_{3}, \alpha x_{2}+$ $+\beta x_{3}+\gamma x_{1}$ and $\alpha x_{3}+\beta x_{1}+\gamma x_{2}$ where x_{1}, x_{2}, x_{3} are the roots of the equation $x^{3}+a x^{2}+b x+c=0$.
872. Form an equation whose roots are $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$, $x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}, x_{1} y_{3}+x_{2} y_{1}+x_{3} y_{2}$ where x_{1}, x_{2}, x_{3} are the roots of the equation $x^{3}+p x+q+0$, and y_{1}, y_{2}, y_{3} are the roots of the equation $y^{3}+p^{\prime} y+q^{\prime}=0$.
873. For the following equations with rational coefficients

$$
\begin{aligned}
& x^{3}+p x+q=0 \\
& y^{3}+p^{\prime} y+q^{\prime}=0
\end{aligned}
$$

to be connected by a rational Tschirnhausen transformation, it is necessary and sufficient that the ratio of their discriminants Δ and Δ^{\prime} be the square of a rational number and that one of the equations

$$
u^{3}=3 p p^{\prime} u+\frac{27 q q^{\prime} \pm \sqrt{\Delta \Delta^{\prime}}}{2}
$$

have a rational root. Prove this.
874. Prove that every polynomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ which remains unchanged under circular permutations of the variables may be represented as

$$
\sum A f_{1}^{\alpha_{0}} \eta_{1}^{\alpha_{1}} \eta_{2}^{\alpha_{2}} \cdots \eta_{n-1}^{\alpha_{n-1}}
$$

where $\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$ are linear forms:

$$
\begin{aligned}
& \eta_{1}=x_{1} \varepsilon+x_{2} \varepsilon^{2}+\cdots+x_{n} \\
& \eta_{2}=x_{1} \varepsilon^{2}+x_{2} \varepsilon^{4}+\cdots+x_{n} \\
& \cdots \cdots \cdots \\
& \eta_{n-1}=x_{1} \varepsilon^{n-1}+x_{2} \varepsilon^{2 n-2}+\cdots \cdots+x_{n} \\
& \varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n} .
\end{aligned}
$$

The exponents $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$ satisfy the condition: n divides $\alpha_{1}+2 \alpha_{2}+\ldots+(n-1) \alpha_{n-1}$.
875. For rational functions that do not change under circular permutations of the variables, indicate n elementary ones (frac.
tional and with nonrational coefficients) in terms of which all of them can be expressed rationally.
876. For rational functions of three variables unaltered under circular permutations, indicate three elementary functions with rational coefficients.
877. For rational functions of four variables that remain unchanged under circular permutations, indicate four elementary functions with rational coefficients.
878. For rational functions of five variables that remain fixed under circular permutations, indicate five elementary functions with rational coefficients.

CHAPTER 7

LINEAR ALGEBRA

In this chapter we adhere to the following terminology and notations. The term space is used to denote a vector space over the field of real numbers, unless otherwise stated. This term is used both for the space as a whole and for any part of a larger space (the term subspace will be used only when it is necessary to specify that a given space is part of a larger space). A linear manifold is a set of vectors of the form $X_{0}+X$, where X_{0} is some fixed vector and X runs through the set of all vectors of some subspace.

The equation $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ means that X has coordinates $x_{1}, x_{2}, \ldots, x_{n}$ in some fixed basis of the space; when we deal with Euclidean space, the basis is assumed to be orthogonally normalized.

Vectors are sometimes called points, one-dimensional manifolds are called straight lines, and two-dimensional manifolds are called planes.

Sec. 1. Subspaces and Linear Manifolds. Transformation of Coordinates

879. Given a vector space spanned by the vectors X_{1}, X_{2}, \ldots, X_{m}. Determine the basis and dimension:
(a) $X_{1}=(2,1,3,1)$,

$$
X_{2}=(1,2,0,1)
$$

$$
X_{3}=(-1,1,-3,0) ;
$$

(b) $X_{1}=(2,0,1,3,-1), \quad X_{2}=(1,1,0,-1,1)$, $X_{3}=(0,-2,1,5,-3), X_{4}=(1,-3,2,9,-5) ;$
(c) $X_{1}=(2,1,3,-1), \quad X_{2}=(-1,1,-3,1)$, $X_{3}=(4,5,3,-1), \quad X_{4}=(1,5,-3,1)$.
880. Determine the basis and dimension of the union and intersection of spaces spanned by the vectors X_{1}, \ldots, X_{k} and Y_{1}, ..., Y_{m} :
(a) X

$$
Y_{\mathbf{1}}=(2,-1,0,1)
$$

$$
X_{2}=(-1,1,1,1), \quad Y_{2}=(1,-1,3,7) ;
$$

(b) $X_{1}=(1,2,-1,-2)$,
$Y_{1}=(2,5,-6,-5)$,
$X_{2}=(3,1,1,1)$,
$Y_{2}=(-1,2,-7,-3)$,
$X_{3}=(-1,0,1,-1)$;
(c) $X_{1}=(1,1,0,0)$,
$Y_{1}=(0,0,1,1)$,
$X_{2}=(1,0,1,1)$,
$Y_{2}=(0,1, I, 0)$.
881. Find the coordinates of the vector X in the basis E_{I}, E_{2}, E_{3}, E_{4} :
(a) $X=(1,2,1,1), \quad E_{1}=(1,1,1,1)$,

$$
E_{2}=(1,1,-1,-1),
$$

$$
E_{3}=(1,-1,1,-1), \quad E_{4}=(1,-1,-1,1) ;
$$

(b) $X=(0,0,0,1), \quad E_{1}=(1,1,0,1), \quad E_{2}=(2,1,3,1)$,
$E_{3}=(1,1,0,0), \quad E_{4}=(0,1,-1,-1)$.
882. Develop formulas for the transformation of coordinates from the basis $E_{1}, E_{2}, E_{3}, E_{4}$ to the basis $E_{1}^{\prime}, E_{2}^{\prime}, E_{3}^{\prime}, E_{4}^{\prime}$:
(a) $E_{1}=(1,0,0,0), E_{2}=(0,1,0,0), E_{3}=(0,0,1,0)$,
$E_{4}=(0,0,0,1), E_{1}^{\prime}=(1,1,0,0), E_{2}^{\prime}=(1,0,1,0)$,
$E_{3}^{\prime}=(1,0,0,1), E_{4}^{\prime}=(1,1,1,1)$;
(b) $E_{1}=(1,2,-1,0), E_{2}=(1,-1,1,1)$,
$E_{3}=(-1,2,1,1), \quad E_{4}=(-1,-1,0,1)$,
$E_{1}^{\prime}=(2,1,0,1)$,
$E_{2}^{\prime}=(0,1,2,2), E_{3}^{\prime}=(-2,1,1,2)$,
$E_{4}^{\prime}=(1,3,1,2)$.
883. The equation of a "surface" with respect to some basis E_{1}, \ldots, E_{4} has the form $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=1$. Find the equation of this surface relative to the basis

$$
\begin{aligned}
& E_{1}^{\prime}=(1,1,1,1), E_{3}^{\prime}=(1,-1,1,-1), \\
& E_{2}^{\prime}=(1,1,-1,-1), E_{4}^{\prime}=(1,-1,-1,1)
\end{aligned}
$$

(the coordinates are given in the same basis E_{1}, \ldots, E_{4}).
*884. In the space of polynomials in $\cos x$ of degree not exceeding n, write the formulas for transformation of coordinates from the basis $1, \cos x, \ldots, \cos ^{n} x$ to the basis $1, \cos x, \ldots, \cos n x$, and conversely.
885. Find a straight line in four-dimensional space that passes through the origin of coordinates and intersects the straight lines:

$$
x_{1}=2+3 t, x_{2}=1-t, x_{3}=-1+2 t, x_{4}=3-2 t
$$

and

$$
x_{1}=7 t, x_{2}=1, x_{3}=1+t, x_{4}=-1+2 t .
$$

Find the points of intersection of this straight line with the given straight lines.
886. Prove that any two straight lines in n-dimensional space can be embedded in a three-dimensional linear manifold.
887. Investigate, in general form, the condition for solvability of Problem 885 for two straight lines in n-dimensional space.
888. Prove that any two planes in n-dimensional space can be embedded in a five-dimensional linear manifold.
889. Give a description of all possible cases of the mutual location of two planes in n-dimensional space.
890. Prove that a linear manifold can be characterized as a set of vectors containing the linear combinations $\alpha X_{1}+(1-\alpha) X_{2}$ of any two vectors X_{1}, X_{2} for arbitrary α.

Sec. 2. Elementary Geometry of n-Dimensional Euclidean Space
891. Determine the scalar product of the vectors X and Y :
(a) $X=(2,1,-1,2), Y=(3,-1,-2,1)$;
(b) $X=(1,2,1,-1), \quad Y=(-2,3,-5,-1)$.
892. Determine the angle between the vectors X and Y :
(a) $X=(2,1,3,2), \quad Y=(1,2,-2,1)$;
(b) $X=(1,2,2,3), Y=(3,1,5,1)$;
(c) $X=(1,1,1,2), \quad \mathrm{Y}=(3,1,-1,0)$.
893. Determine the cosines of the angles between the straight line $x_{1}=x_{2}=\ldots=x_{n}$ and the axes of coordinates.
894. Determine the cosines of the interior angles of a triangle $A B C$ which is specified by the coordinates of the vertices:

$$
A=(1,2,1,2), B=(3,1,-1,0), C=(1,1,0,1) .
$$

895. Find the lengths of the diagonals of an n-dimensional cube with side unity.
896. Find the number of diagonals of an n-dimensional cube which are orthogonal to a given diagonal.
897. In n-dimensional space, find n points with nonnegative coordinates such that the distances between the points and from the origin are unity. Place the first of these points on the first axis, the second, in the plane spanned by the first two axes, etc. Together with the coordinate origin, these points form the vertices of a regular simplex with unit edge.
898. Determine the coordinates of the centre and radius of a sphere circumscribed about the simplex of Problem 897.
899. Normalize the vector ($3,1,2,1$).
900. Find the normalized vector orthogonal to the vectors $(1,1,1,1) ;(1,-1,-1,1) ;(2,1,1,3)$.
901. Construct an orthonormal basis of a space, taking for two vectors of this basis the vectors

$$
\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \text { and }\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{2},-\frac{5}{6}\right) .
$$

902. By means of the orthogonalization process, find the orthogonal basis of a space generated by the vectors ($1,2,1,3$); (4, 1, 1, 1); (3, 1, 1, 0).
903. Adjoin to the matrix

$$
\left(\begin{array}{rrrrr}
1 & 1 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 & -2 \\
2 & 1 & -1 & 0 & 2
\end{array}\right)
$$

two mutualiy orthogonal rows that are orthogonal to the first three rows.
904. Interpret the system of homogeneous linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=0 \\
& \cdots \cdots \cdots \cdots+\cdots+\cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=0
\end{aligned}
$$

and its fundamental system of solutions in a space of n dimensions, taking the coefficients of each equation for the coordinates, of a vector.
905. Find an orthogonal and normalized fundamental system of solutions for the system of equations

$$
\begin{array}{r}
3 x_{1}-x_{2}-x_{3}+x_{4}=0, \\
x_{1}+2 x_{2}-x_{3}-x_{4}=0 .
\end{array}
$$

906. Decompose the vector X into a sum of two vectors, one of which lies in a space spanned by the vectors $A_{1}, A_{2}, \ldots, A_{m}$ and the other is orthogonal to this space (the orthogonal projection and the orthogonal component of the vector X):
(a) $X=(5,2,-2,2), A_{1}=(2,1,1,-1)$,

$$
A_{2}=(1,1,3,0) ;
$$

(b) $X=(-3,5,9,3), A_{1}=(1,1,1,1)$, $A_{2}=(2,-1,1,1), A_{3}=(2,-7,-1,-1)$.
907. Assuming the vectors $A_{1}, A_{2}, \ldots, A_{m}$ to be linearly independent, give formulas for computing the lengths of the components of the vector in Problem 906 when posed in general form.
908. Prove that of all vectors of a given space P, the smallest angle with a given vector X is formed by the orthogonal projection of the vector X on the space P.
909. Find the smallest angle between the vectors of the space P (spanned by the vectors A_{1}, \ldots, A_{m}) and the vector X :
(a) $X=(1,3,-1,3), A_{1}=(1,-1,1,1)$,
$A_{2}=(5,1,-3,3)$;
(b) $X=(2,2,-1,1), A_{1}=(1,-1,1,1)$,
$A_{2}=(-1,2,3,1), A_{3}=(1,0,5,3)$.
910. Find the smallest angle formed by the vector ($1,1, \ldots, 1$) with the vectors of some m-dimensional coordinate space.
911. Prove that of all vectors $X-Y$, where X is a given vector and Y runs through a given space P, the vector $X-X^{\prime}$, where X^{\prime} is the orthogonal projection of X on P, is of smallest length. (This smallest length is called the distance from the point X to the space P.)
912. Determine the distance from the point X to the linear manifold $A_{0}+t_{1} A_{1}+\ldots+t_{m} A_{m}$:
(a) $X=(1,2,-1,1), A_{0}=(0,-1,1,1)$,

$$
A_{1}=(0,-3,-1,5), \quad A_{2}=(4,-1,-3,3) ;
$$

(b) $X=(0,0,0,0), A_{0}=(1,1,1,1), A_{1}=(1,2,3,4)$.
913. Consider a space of polynomials of degree not exceeding n. The scalar product of polynomials f_{1}, f_{2} is defined as $\int_{0}^{1} f_{1}(x) f_{2}(x) d x$. Find the distance from the origin to the linear manifold consisting of the polynomials $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$.
914. Indicate a method for determining the shortest distance between the points of the two linear manifolds $X_{0}+P$ and $Y_{0}+Q$.
915. The vertices of a regular n-dimensional simplex (see Problem 897), the length of an edge of which is unity, are partitioned into two sets of $m+1$ and $n-m$ vertices. Linear manifolds of smallest dimension are passed through these sets of vertices. Determine the shortest distance between the points of these manifolds and determine the points for which it is realized.
*916. Given, in a four-dimensional space, two planes spanned by the vectors A_{1}, A_{2} and B_{1}, B_{2}. Find the smallest of the angles formed by the vectors of the first plane with the vectors of the second plane:
(a) $A_{1}=(1,0,0,0), A_{2}=(0,1,0,0), B_{1}=(1,1,1,1)$,

$$
B_{2}=(2,-2,5,2) ;
$$

(b) $A_{1}=(1,0,0,0), A_{2}=(0,1,0,0), B_{1}=(1,1,1,1)$,

$$
B_{2}=(1,-1,1,-1) .
$$

*917. A four-dimensional cube is cut by a three-dimensional "plane" passing through the centre of the cube and orthogonal to a diagonal. Determine the shape of the solid obtained in the intersection.
*918. Given a system of linearly independent vectors B_{1}, B_{2}, \ldots, B_{m}. The set of points made up of the endpoints of the vectors $t_{1} B_{1}+t_{2} B_{2}+\ldots+t_{m} B_{m}, 0 \leqslant t_{1} \leqslant 1, \ldots, 0 \leqslant t_{m} \leqslant 1$, is called a parallelepiped constructed on the vectors $B_{1}, B_{2}, \ldots, B_{m}$. Determine the volume of the parallelepiped inductively as the volume of the "base" $\left[B_{1}, B_{2}, \ldots, B_{m-1}\right]$ multiplied by the "altitude" equal to the distance from the endpoint of vector B_{m} to the space spanned by the base. The "volume" of the one-dimensional "parallelepiped" $\left[B_{1}\right]$ is considered equal to the length of the vector B_{1}.
(a) Develop a formula for computing the square of the volume and assure yourself that the volume does not depend on the numbering of the vertices.
(b) Prove that $V\left[c B_{1}, B_{2}, \ldots, B_{m}\right]=\left\{c \mid \cdot V\left[B_{1}, B_{2}, \ldots, B_{m}\right]\right.$.
(c) Prove that $V\left[B_{1}^{\prime}+B_{1}^{\prime \prime}, B_{2}, \ldots, B_{m}\right] \leqslant V\left[B_{1}^{\prime}, B_{2}, \ldots, B_{m}\right]+$ $+V\left[B_{1}^{\prime \prime}, B_{2}, \ldots, B_{m}\right]$ and determine when the equal sign holds true.
919. Prove that the volume of an n-dimensional parallelepiped in n-dimensional space is equal to the absolute value of the determinant made up of the coordinates of the generating vectors.
*920. Let $C_{1}, C_{2}, \ldots, C_{m}$ be the orthogonal projections of the vectors $B_{1}, B_{2}, \ldots, B_{m}$ on some space. Prove that

$$
V\left[C_{1}, C_{2}, \ldots, C_{m}\right] \leqslant V\left[B_{1}, B_{2}, \ldots, B_{m}\right] .
$$

*921. Prove that
$V\left[A_{1}, A_{2}, \ldots, A_{m}, B_{1}, \ldots, B_{k}\right] \leqslant V\left[A_{1}, \ldots, A_{m}\right] \cdot V\left[B_{1}, \ldots, B_{k}\right]$ (cf. Problem 518).
922. Prove that

$$
V\left[A_{1}, A_{2}, \ldots, A_{m}\right] \leqslant\left|A_{1}\right| \cdot\left|A_{2}\right| \ldots\left|A_{m}\right|
$$

(cf. Problem 519).
923. Find the volume of an n-dimensional sphere using Cavalieri's principle.
924. Consider the space of polynomials whose degree does not exceed n. For the scalar product we take $\int f_{1}(x) f_{2}(x) d x$. Find the volume of the parallelepiped formed by the vectors of the basis relative to which the coefficients of the polynomial are its coordinates.

Sec. 3. Eigenvalues and Eigenvectors of a Matrix

925. Find the eigenvalues and eigenvectors of the following matrices:
(a) $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$,
(b) $\left(\begin{array}{ll}3 & 4 \\ 5 & 2\end{array}\right)$,
(c) $\left(\begin{array}{rr}0 & a \\ -a & 0\end{array}\right)$,
(d) $\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$,
(e) $\left(\begin{array}{rrr}5 & 6 & -3 \\ -1 & 0 & 1 \\ 1 & 2 & -1\end{array}\right)$,
(f) $\left(\begin{array}{rrr}2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2\end{array}\right)$,
(g) $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$,
(h) $\left(\begin{array}{rrr}0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0\end{array}\right)$
(i) $\left(\begin{array}{rrr}3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2\end{array}\right)$,
(j) $\left(\begin{array}{lll}2 & 5 & -6 \\ 4 & 6 & -9 \\ 3 & 6 & -8\end{array}\right)$.
926. Knowing the eigenvalues of the matrix A, find the eigenvalues of the matrix A^{-1}.
927. Knowing the eigenvalues of the matrix A, find the eigenvalues of the matrix A^{2}.
928. Knowing the eigenvalues of the matrix A, find the eigenvalues of the matrix A^{m}.
929. Knowing the characteristic polynomial $F(\lambda)$ of the matrix A (of order n), find the determinant of the matrix $f(A)$, where $f(x)=b_{0}\left(x-\xi_{1}\right)\left(x-\xi_{2}\right) \ldots\left(x-\xi_{m}\right)$.
930. Knowing the eigenvalues of the matrix A, find the determinant of the matrix $f(A)$, where $f(x)$ is a polynomial.
931. Knowing the eigenvalues of the matrix A, find the eigenvalues of the matrix $f(A)$.
932. Prove that all the eigenvectors of the matrix A are eigenvectors of the matrix $f(A)$.
*933. Find the eigenvalues of the matrix

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \varepsilon & \varepsilon^{2} & \ldots & \varepsilon^{n-1} \\
1 & \varepsilon^{2} & \varepsilon^{4} & \ldots & \varepsilon^{2(n-1)} \\
\cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right)
$$

where $\varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}, n$ an odd number.
*934. Find the sum

$$
1+\varepsilon+\varepsilon^{4}+\ldots+\varepsilon^{(n-1)^{2}}
$$

935. Find the eigenvalues of the matrices:

$$
\text { (a) }\left(\begin{array}{ccccc}
0 & x & x & \ldots & x \\
y & 0 & x & \ldots & x \\
y & y & 0 & \ldots & x \\
\ldots & y & \ldots & \ldots & x \\
y & y & y & \ldots & 0
\end{array}\right), \quad \text { (b) }\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
a_{n} & a_{1} & \ldots & a_{n-1} \\
\ldots & \ldots & \ldots & \ldots \\
a_{2} & a_{3} & \ldots & a_{1}
\end{array}\right) \text {, }
$$

(c) $\left(\begin{array}{rrrrr}0 & 1 & & & \\ -1 & 0 & 1 & & \\ & -1 & 0 & & \\ & & & \cdot & \\ & & & 0 & 1 \\ & & & -1 & 0\end{array}\right)$.
*936. K nowing the eigenvalues of the matrices A and B, find the eigenvalues of their Kronecker product.
937. Prove that the characteristic polynomials of the matrices $A B$ and $B A$ coincide for arbitrary square matrices A and B.
938. Prove that the characteristic polynomials of the matrices $A B$ and $B A$ differ solely in the factor $(-\lambda)^{n-m}$. Here, A is a rectangular matrix with m rows and n columns, and B is an n-by- m matrix, $n>m$.

Sec. 4. Quadratic Forms and Symmetric Matrices

939. Transform the following quadratic forms to a sum of squares:
(a) $x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+4 x_{2} x_{3}+5 x_{3}^{2}$,
(b) $x_{1}^{2}-4 x_{1} x_{2}+2 x_{1} x_{3}+4 x_{2}^{2}+x_{3}^{2}$,
(c) $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$,
(d) $x_{1}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{1} x_{4}+x_{2}^{2}+2 x_{2} x_{3}-4 x_{2} x_{4}+x_{3}^{2}-2 x_{4}^{2}$,
(e) $x_{1}^{2}+x_{1} x_{2}+x_{3} x_{4}$.
940. Transform the quadratic form

$$
\sum_{i=1}^{n} x_{i}^{2}+\sum_{i<k} x_{i} x_{k}
$$

to diagonal form.
941. Transform the quadratic form

$$
\sum_{i<k} x_{i} x_{k}
$$

to diagonal form.
942. Prove that all the principal minors of the positive quadratic form are positive.
*943. Let the quadratic form

$$
\begin{aligned}
& f=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+\ldots+a_{1 n} x_{1} x_{n} \\
& +a_{21} x_{2} x_{1}+a_{22} x_{2}^{2}+\ldots+a_{2 n} x_{2} x_{n} \\
& \quad \cdots \cdots \cdots \cdots \cdots \cdots+a_{n n} x_{n}^{2}
\end{aligned}
$$

be reducible to the diagonal form $\alpha_{1} x_{1}^{\prime 2}+\alpha_{2} x_{2}^{\prime 2}+\ldots+\alpha_{n} x_{n}^{\prime 2}$ by the "triangular" transformation

$$
\begin{array}{rr}
x_{1}^{\prime}=x_{1}+b_{12} x_{2}+\ldots+b_{1 n} x_{n} \\
x_{2}^{\prime}= & x_{2}+\ldots+b_{2 n} x_{n} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
x_{n}^{\prime}= & x .+
\end{array}
$$

It is required to:
(a) express the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ in terms of the coefficients $a_{i k}$;
(b) express the discriminants of the forms $f_{k}\left(x_{k+1}, \ldots, x_{n}\right)=$ $=f-\alpha_{1} x_{1}^{\prime 2}-\ldots-\alpha_{k} x_{k}^{\prime 2}$ in terms of the coefficients $a_{i k}$.

Find the condition under which a triangular transformation of the indicated type is possible.
944. Prove that the necessary and sufficient condition for positivity of the quadratic form

$$
\begin{aligned}
& f=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+\ldots+a_{1 n} x_{1} x_{n} \\
& +a_{21} x_{2} x_{1}+a_{22} x_{2}^{2}+\ldots+a_{2 n} x_{2} x_{n} \\
& \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots+a_{n n} x_{n}^{2}
\end{aligned}
$$

is fulfilment of the inequalities

$$
a_{11}>0 ; \quad\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|>0 ; \ldots ;\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \cdots & \ldots & a_{n} \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|>0
$$

(Sylvester's condition).
*945. Prove that if to a positive quadratic form we add the square of a linear form, the discriminant of the former increases.
*946. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{11} x_{1}^{2}+\ldots$ be a positive quadratic form,

$$
\varphi\left(x_{2}, \ldots, x_{n}\right)=f\left(0, x_{2}, \ldots, x_{n}\right)
$$

D_{f} and D_{φ} their discriminants. Prove that

$$
D_{f} \leqslant a_{11} D_{\varphi}
$$

947. Let
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=l_{1}^{2}+l_{\underline{2}}^{2}+\ldots+l_{p}^{2}-l_{p+1}^{2}-l_{p+2}^{2}-\ldots-l_{p+q}^{2}$
where $l_{1}, l_{2}, \ldots, l_{p}, l_{p+1}, l_{p+2}, \ldots, l_{p+q}$ are real linear forms in x_{1}, x_{2}, \ldots, x_{n}. Prove that the number of positive squares in a canonical representation of the form f does not exceed p, and the number of negative squares does not exceed q.
*948. Let s_{0}, s_{1}, \ldots be power sums of the roots of the equation $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ with real coefficients. Prove that the number of negative squares in a canonical representation of the quadratic form $\sum_{i, k=1}^{n} s_{i+k+2} x_{i} x_{k}$ is equal to the number of pairs of conjugate complex roots of the given equation.

Prove the following theorems:
949. Fulfillment of the following inequalities is a necessary and sufficient condition for all the roots of an equation with real coefficients to be real and distinct:

$$
\begin{array}{ll}
s_{0} & s_{1} \\
s_{1} & s_{2}
\end{array}\left|>0 ;\left|\begin{array}{ccc}
s_{0} & s_{1} & s_{2} \\
s_{1} & s_{2} & s_{3} \\
s_{2} & s_{3} & s_{4}
\end{array}\right|>0 ; \ldots ; \Delta=\left|\begin{array}{cccc}
s_{0} & s_{1} & \ldots & s_{n-1} \\
s_{1} & s_{2} & \ldots & s_{n} \\
\ldots & \ldots & \ldots & .
\end{array}\right|>0 .\right.
$$

*950. If the quadratic forms

$$
\begin{aligned}
f=a_{11} x_{1}^{2}+a_{12} & x_{1} x_{2}+\ldots+a_{1 n} x_{1} x_{n} \\
& +a_{21} x_{2} x_{1}+a_{22} x_{2}^{2}+\ldots+a_{\text {2n }} x_{2} x_{n} \\
& \ldots \ldots \ldots \ldots \ldots+a_{n n} x_{n}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
q=b_{11} x_{1}^{2}+b_{12} & x_{1} x_{2}+\ldots+b_{1 n} x_{1} x_{n} \\
& +b_{21} x_{2} x_{1}+b_{23} x_{2}^{2}+\ldots+b_{2 n} x_{2} x_{n} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots+b_{n n} x_{n}^{2}
\end{aligned}
$$

are nonnegative, then the form

$$
\begin{aligned}
& (f, \varphi)=a_{11} b_{11} x_{1}^{2}+a_{12} b_{12} x_{1} x_{2}+\ldots+a_{1 n} b_{1 n} x_{1} x_{n} \\
& \quad+a_{21} b_{21} x_{2} x_{1}+a_{22} b_{22} x_{2}^{2}+\ldots+a_{2 n} b_{2 n} x_{2} x_{n} \\
& \quad \ldots \ldots \ldots \ldots \ldots \ldots+\cdots+\cdots+a_{n n} b_{n n} x_{n}^{2}
\end{aligned}
$$

is nonnegative.
951. Transform the following quadratic forms to canonical form by an orthogonal transformation:
(a) $2 x_{1}^{2}+x_{2}^{2}-4 x_{1} x_{2}-4 x_{2} x_{3}$,
(b) $x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-4 x_{2} x_{3}$,
(c) $3 x_{1}^{2}+4 x_{2}^{2}+5 x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}$,
(d) $2 x_{1}^{2}+5 x_{2}^{2}+5 x_{3}^{2}+4 x_{1} x_{2}-4 x_{1} x_{3}-8 x_{2} x_{3}$,
(e) $x_{1}^{2}-2 x_{2}^{2}-2 x_{3}^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}+8 x_{2} x_{3}$,
(f) $5 x_{1}^{2}+6 x_{2}^{2}+4 x_{3}^{2}-4 x_{1} x_{2}-4 x_{1} x_{3}$,
(g) $3 x_{1}^{2}+6 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-8 x_{1} x_{3}-4 x_{2} x_{3}$,
(h) $7 x_{1}^{2}+5 x_{2}^{2}+3 x_{3}^{2}-8 x_{1} x_{2}+8 x_{2} x_{3}$,
(i) $2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2}-4 x_{1} x_{2}+2 x_{1} x_{4}+2 x_{2} x_{3}-4 x_{3} x_{4}$,
(j) $2 x_{1} x_{2}+2 x_{3} x_{4}$,
(k) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+2 x_{1} x_{2}-2 x_{1} x_{4}-2 x_{2} x_{3}+2 x_{3} x_{4}$,
(l) $2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{1} x_{4}-2 x_{2} x_{3}+2 x_{2} x_{4}+2 x_{3} x_{4}$,
(m) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-2 x_{1} x_{2}+6 x_{1} x_{3}-4 x_{1} x_{4}$

$$
-4 x_{2} x_{3}+6 x_{2} x_{4}-2 x_{3} x_{4},
$$

(n) $8 x_{1} x_{3}+2 x_{1} x_{4}+2 x_{2} x_{3}+8 x_{2} x_{4}$.
952. Transform the following quadratic forms to canonical form by an orthogonal transformation:
(a) $\sum_{i=1}^{n} x_{i}^{2}+\sum_{i<k} x_{i} x_{k}$,
(b) $\sum_{i<k} x_{i} x_{k}$.
953. Transform the form

$$
x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n-1} x_{n}
$$

to canonical form by an orthogonal transformation.
954. Prove that if all the eigenvalues of a real symmetric matrix A lie in the interval $[a, b]$, then the quadratic form with mat-
rix $A-\lambda E$ is negative for $\lambda>b$ and positive for $\lambda<a$. The converse holds true as well.
955. Prove that if all the eigenvalues of a real symmetric matrix A lie in the interval $[a, c]$ and all the eigenvalues of a real symmetric matrix B lie in the interval $[b, d]$ then all the eigenvalues of the matrix $A+B$ lie in the interval $[a+b, c+d]$.
956. Let us call the positive square root of the largest eigenvalues of the matrix $\bar{A} A$ (A is a real square matrix, \bar{A} is its transpose) the norm of the matrix A and denote it by $\|A\|$. Prove that
(a) $\|A\|=\|\tilde{A}\|$,
(b) $|A X| \leqslant\|A\| \cdot|X|$; the equality holds for some vector X_{0},
(c) $\|A+B\| \leqslant\|A\|+\|B\|$,
(d) $\|A B\| \leqslant\|A\| \cdot\|B\|$,
(e) the moduli of all eigenvalues of the matrix A do not exceed $\|A\|$.
957. Prove that any real nonsingular matrix can be represented as a product of an orthogonal matrix and a triangular matrix of the form

$$
\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
& b_{22} & \ldots & b_{2 n} \\
& \ddots & \vdots
\end{array}\right)
$$

with positive diagonal elements $b_{i i}$ and that this representation is unique.
958. Prove that any real nonsingular matrix is representable in the form of a product of an orthogonal matrix and a symmetric matrix corresponding to some positive quadratic form.
959. Let there be a quadric surface in n-dimensional space given by the equation

$$
\begin{aligned}
& a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+\ldots+a_{1 n} x_{1} x_{n} \\
& +a_{21} x_{2} x_{1}+a_{22} x_{2}^{2}+\ldots+a_{2 n} x_{2} x_{n} \\
& +a_{n 1} x_{n} x_{1}+a_{n 2} x_{n} x_{2}+\ldots+a_{n n} x_{n}^{2} \\
& +2 b_{1} x_{1}+2 b_{2} x_{2}+\ldots+2 b_{n} x_{n}+c=0
\end{aligned}
$$

or, in abbreviated notation, $A X \cdot X+2 B \cdot X+c=0$. Prove that for the centre of the surface to exist it is necessary and sufficient that the rank of the matrix A be equal to the rank of the matrix (A, B).
960. Prove that the equation of a central quadric surface may be reduced to canonical form

$$
\alpha_{1} x_{1}^{2}+\ldots+\alpha_{r} x_{r}^{2}+\gamma=0
$$

by a translation of the origin and by an orthogonal transformation.
961. Prove that the equation of a noncentral quadric surface may be reduced to canonical form

$$
\alpha_{1} x_{1}^{2}+\ldots+\alpha_{r} x_{r}^{2}=2 x_{r+1}
$$

by a translation of the origin and by an orthogonal transformation.

Sec. 5. Linear Transformations. Jordan Canonical Form

962. Establish that the dimension of a subspace into which the entire space is mapped under a linear transformation is equal to the rank of the matrix of this linear transformation.
963. Let Q be a subspace of dimension q of the space R of dimension n, and let Q^{\prime} be the image of Q under a linear transformation of rank r of the space R. Prove that the dimension q^{\prime} of space Q^{\prime} satisfies the inequalities

$$
q+r-n \leqslant q^{\prime} \leqslant \min (q, r) .
$$

964. Using the result of Problem 963, establish that the rank ρ of the product of two matrices of ranks r_{1} and r_{2} satisfies the inequalities

$$
r_{1}+r_{2}-n \leqslant \rho \leqslant \min \left(r_{1}, r_{2}\right) .
$$

*965. Let P and Q be any complementary subspaces of the space R. Then any vector $X \in R$ decomposes uniquely into a sum of the vectors $Y \in P$ and $Z \in Q$. The transformation consisting in going from vector X to its component Y is called projection on P parallel to Q. Prove that projection is a linear transformation and its matrix A (in any basis) satisfies the condition $A^{2}=A$. Conversely, any linear transformation whose matrix satisfies the condition $A^{2}=A$ is a projection.
*966. The projection is termed orthogonal if $P \perp Q$. Prove that in any orthonormal basis, the matrix of orthogonal projection is symmetric. Conversely, any symmetric idempotent matrix of the same degree is a matrix of orthogonal projection.
*967. Prove that all nonzero eigenvalues of a skew-symmetric matrix are pure imaginaries, and the real and imaginary parts of the corresponding eigenvectors are equal in length and orthogonal.
*968. Prove that for a skew-symmetric matrix A it is possible to find an orthogonal matrix P such that
(all elements not indicated are zero; $a_{1}, a_{2}, \ldots, a_{k}$ are real numbers).
969. Prove the theorem: if A is a skew-symmetric matrix, then the matrix $(E-A)(E+A)^{-1}$ is an orthogonal matrix without -1 as eigenvalue. Conversely, every orthogonal matrix that does not have -1 as an eigenvalue can be represented in this form.
*970. Prove that the moduli of all eigenvalues of an orthogonal matrix are equal to 1 .
*971. Prove that eigenvectors of an orthogonal matrix which belong to a complex eigenvalue are of the form $X+i Y$, where X, Y are real vectors equal in length and orthogonal.
*972. Prove that every orthogonal matrix can be represented as

$$
Q^{-1} T Q
$$

where Q is an orthogonal matrix and T is of the form

(all other elements being equal to zero).
973. Reduce the following matrices to the Jordan normal form:
(a) $\left(\begin{array}{rrr}1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & -1\end{array}\right)$,
(b) $\left(\begin{array}{rrr}4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1\end{array}\right)$,
(c) $\left(\begin{array}{rrr}13 & 16 & 16 \\ -5 & -7 & -6 \\ -6 & -8 & -7\end{array}\right)$,
(d) $\left(\begin{array}{rrr}3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5\end{array}\right)$,
(e) $\left(\begin{array}{rrr}-4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7\end{array}\right)$,
(f) $\left(\begin{array}{rrr}7 & -12 & -2 \\ 3 & -4 & 0 \\ -2 & 0 & -2\end{array}\right)$,
(g) $\left(\begin{array}{rrr}-2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4\end{array}\right)$,
(h) $\left(\begin{array}{rrr}0 & 3 & 3 \\ -1 & 8 & 6 \\ 2 & -14 & -10\end{array}\right)$,
(i) $\left(\begin{array}{rrr}-1 & 1 & 1 \\ -5 & 21 & 17 \\ 6 & -26 & -21\end{array}\right)$,
(j) $\left(\begin{array}{rrr}8 & 30 & -14 \\ -6 & -19 & 9 \\ -6 & -23 & 11\end{array}\right)$,
(k) $\left(\begin{array}{rrr}4 & 5 & -2 \\ -2 & -2 & 1 \\ -1 & -1 & 1\end{array}\right)$,
(1) $\left(\begin{array}{rrr}3 & 7 & -3 \\ -2 & -5 & 2 \\ -4 & -10 & 3\end{array}\right)$,
(m) $\left(\begin{array}{rrr}9 & 22 & -6 \\ -1 & -4 & 1 \\ 8 & 16 & -5\end{array}\right)$,
(n) $\left(\begin{array}{lll}1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4\end{array}\right)$,
(o) $\left(\begin{array}{rrr}1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2\end{array}\right)$.
974. Reduce the following matrices to the Jordan normal form:
(a) $\left(\begin{array}{rrrr}3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & -6 & -1 & 0\end{array}\right)$, (b) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$,
(c) $\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & 0 \\ 0 & 0 & 0 & \ldots & 1 \\ 1 & 0 & 0 & \ldots & 0\end{array}\right)$.
*975. Prove that any periodic matrix A (satisfying the condition $A^{m}=E$ for some natural m) is reducible to the diagonal canonical form.
*976. Knowing the eigenvalues of the matrix A, find the eigenvalues of the matrix $\boldsymbol{A}_{m}^{\prime}$ composed of appropriately arranged m th-order minors of the matrix A (see Problem 531).
977. Prove that any matrix A can be transformed into its transpose.
*978. Prove that any matrix can be represented as a product of two symmetric matrices, one of which is nonsingular.
979. Starting with a given matrix A of order n, construct a sequence of matrices via the following process:

$$
\begin{aligned}
& A_{1}=A, \quad \operatorname{tr} A_{1}=p_{1}, \quad A_{1}-p_{1} E=B_{1}, \\
& B_{1} A=A_{2}, \quad \frac{1}{2} \operatorname{tr} A_{2}=p_{2}, \quad A_{2}-p_{2} E=B_{2}, \\
& B_{2} A=A_{i}, \quad \frac{1}{3}\left\{\mathrm{r} A_{3}=p_{3}, \quad A_{3}-p_{3} E=B_{3},\right. \\
& B_{n-1} A=A_{n}, \quad \frac{1}{n} \operatorname{tr} A_{n}=p_{n}, \quad A_{n}-p_{n} E=B_{n}
\end{aligned}
$$

where $\operatorname{tr} A_{i}$ is the trace of matrix A_{i} (the sum of the diagonal elements). Prove that $p_{1}, p_{2}, \ldots, p_{n}$ are the coefficients of the characteristic polynomial of the matrix A written in the form $(-1)^{n}\left[\lambda^{n}-p_{1} \lambda^{n-1}-p_{2} \lambda^{n-2}-\ldots-p_{n}\right]$; matrix B_{n} is a zero matrix; finally, if A is nonsingular, then $\frac{1}{p_{n}} B_{n-1}=A^{-1}$.
*980. For the equation $X Y-Y X=C$ to be solvable in terms of square matrices X, Y, it is necessary and sufficient that the trace of the matrix C be zero. Prove this.

PART II. HINTS TO SOLUTIONS

CHAPTER 1
 COMPLEX NUMBERS

11. See Problem 10.
12. Demonstrate the validity of the theorem for each of the four operations on the two numbers and take advantage of the method of mathematical induction.
13. Use the fact that the left members are easily represented as a sum of two squares.
14. Set $x=a+b i, y=c+d i$.
15. Set $z=\cos \varphi+i \sin \varphi$.
16. Set $z=t^{2}, z^{\prime}=t^{\prime 2}$. Use Problem 27.
17. Go over to the trigonometric form.
18. $1+\omega=-\omega^{2}$.
19. Pass to the half-angle.
20. Convince yourself that $z=\cos \theta \pm i \sin \theta ; \frac{1}{z}=\cos \theta \mp i \sin \theta$. Take advantage of De Moivre's formula.
21. Set $\alpha=\cos x+i \sin x$. Then $\cos ^{2 m} x=\left(\frac{\alpha+\alpha^{-1}}{2}\right)^{2 m}$, etc.
22. Show that the coefficient of $(2 \cos x)^{m-2 p}$ is equal to $(-1)^{\prime}$, $C_{m-p}^{p}+$ $+C_{m-p-1}^{p-1}$). Take advantage of the method of mathematical induction.
23. This is similar to Problem 52.
24. Make use of the binomial expansion of $(1+i)^{n}$.
25. Use Problem 54.
26. Expand $\left(1+i-\frac{\sqrt{3}}{3}\right)^{n}$ using Newton's binomial formula.
27. Show that the problem reduces to computing the linit of the sum $1+\alpha+\alpha^{2}+\ldots$, where $\alpha=\frac{-1+i}{2}$.
28. Take advantage of the fact that $\sin ^{2} \alpha=\frac{1}{2}-\frac{\cos 2 \alpha}{2}$.
29. Use the fact that

$$
\cos ^{2} \alpha=\frac{\cos 3 \alpha}{4}+\frac{3 \cos \alpha}{4}, \quad \sin ^{3} \alpha=\frac{3 \sin \alpha}{4}-\frac{\sin 3 \alpha}{4} .
$$

72. In computing sums of the type $1+2 a+3 a^{2}+\ldots+n a^{n-1}$ and $1+$ $+2^{2} a+3^{2} a^{2}+\ldots+n^{2} a^{n-1}$ it is useful first to multiply them by $1-a$.
73. $x_{1}=\alpha+\beta, x_{2}=\alpha \omega+\beta \omega^{2}, x_{3}=\alpha \omega^{3}+\beta \omega, \alpha^{3}+\beta^{3}=-q, 3 \alpha \beta=-p$.
74. Multiply by -27 and regard the left member as the discriminant of some cubic equation.
75. Set $x=\alpha+\beta$.
76. Show that $\varepsilon^{n}=-1$.
77. If $\varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$, then the desired sum can be written as $I+\varepsilon+$ $+\varepsilon^{2}+\ldots+\varepsilon^{n-1}$.
78. Consider two cases: (1) k is divisible by n; (2) k is not divisible by n.
79. 92. Multiply by $1-\varepsilon$.
1. (a) Subtract from the sum of all 15 th roots of 1 the sum of the roots belonging to the exponents 1,3 , and 5 .
2. The length of a side of a regular 14 -sided polygon of radius unity is equal to $2 \sin \frac{\pi}{14}$. Use the fact that $\cos \frac{4 \pi}{7}+i \sin \frac{4 \pi}{7}$ satisfies the equation $x^{6}+$ $+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$.
3. (1) If $x_{1}, x_{2}, \ldots, x_{n}$ are roots of the equation $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$, then $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=a_{0}\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$.
(2) If ε is an nth root of 1 , then $\bar{\varepsilon}$, the conjugate of ε, is also an nth root of 1 .
4. In the identities obtained from Problem 98 set $x=1$.
5. Take advantage of the factorization of $x^{n}-1$ into linear factors.
6. In the factorization of $x^{n}-1$ into linear factors set: (1) $x=\cos \theta+$ $+i \sin \theta$, (2) $x=\cos \theta-i \sin \theta$.
7. Take advantage of the fact that the moduli of conjugate complex numbers are equal.
8. (a) Reduce the equation to the form $\left(\frac{x+1}{x-1}\right)^{m}=1$.
9. Let

$$
\begin{aligned}
& S=\cos \varphi+C_{n}^{1} \cos (\varphi+\alpha) x+\ldots+\cos (\varphi+n \alpha) x^{n} \\
& T=\sin \varphi+C_{n}^{1} \sin (\varphi+\alpha) x+\ldots+\sin (\varphi+n \alpha) x^{n} .
\end{aligned}
$$

Compute $S+T i$ and $S-T i$ and determine S from the resulting equations.
113. First prove that $\varphi\left(p^{o}\right)=p^{\alpha}\left(1-\frac{1}{p}\right)$, if p is a prime number. To do this, count the numbers not exceeding p^{α} that are divisible by p.
116. Prove that all roots of $x^{p^{m-1}}-1$ and only such roots are not primitive roots of $x^{p^{m}}-1$.
117. Show that if n is odd, then to obtain all the primitive roots of degree $2 n$ of unity it is sufficient to multiply all primitive nth roots by -1 .
119. Use Problem 118.
120. Use Problems $115,116,111$ and show that $(1) \mu(p)=-1$ if p is prime; (2) that $\mu\left(p^{\alpha}\right)=0$ if p is prime, $\alpha>1$, (3) $\mu(a b)=\mu(a) \mu(b)$ if a and b are relative prime.
122. Show that if $\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$ belongs to the exponent n_{1}, then $x-\varepsilon_{k}$ will enter the right member of the equation being proved to the power $\Sigma \mu\left(d_{1}\right)$, where d_{1} runs through all divisors $\frac{n}{n_{1}}$.
123. Consider the cases: (1) n is the power of a prim. (2) n is the product of powers of distinct primes. For Case (1) use Problem 11 for (2) use Problems 119 and 122.
124. Consider the cases: (1) n is odd and exceeds 1 ; (2) $n=2^{k}$; (3) $n=2 n_{1}$, n_{1} is odd and exceeds 1 ; (4) $n=2^{k} n_{1}$, where $k>1, n_{1}$ is odd and exceeds 1 .
125. Use the identity

$$
\begin{aligned}
& x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{n-1} x_{n} \\
&=\frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}-\left(x^{1}+x_{2}+\ldots+x_{n}^{2}\right)}{2}
\end{aligned}
$$

Consider the cases: (1) n is odd; (2) $n=2 n_{1}, n_{1}$ is odd; (3) $n=2^{k} n_{1}$, where $k>1$, n_{1} is odd.
126. Multiply the sum S by its conjugate and take into account that $\varepsilon^{x^{4}}$ does not change when $x+n$ is substituted for x.

CHAPTER 2

EVALUATION OF DETERMINANTS

132. Bear in mind that each pair of elements of a permutation constitutes an inversion.
133. The number of inversions in the second permutation is equal to the number of orders in the first.
134. Show that each term has 0 for a factor.

149, 150. Replace rows by columns.
153. Find out how the determinant will change if its columns are permuted in some fashion.
154. (a) Note that when $x=a_{i}$, the determinant has two identical rows.
155. To the last column add the first multiplied by 100 and the second multiplied by 10 .
156. First subtract the first column from each column.
163. Subtract the first column from the second.
179. Add the first row to all other rows.

180-182. Subtract the first row from all other rows.
183. Subtract the second row from all other rows.
184. Add the first row to the second.
185. Add all columns to the first.

186, 187. From the first column subtract the second, add the third, etc.
188. Expand by elements of the first column or add to the last row the first multiplied by x^{n}, the second multiplied by x^{n-1}, etc.
189. Add to the last column the first multiplied by x^{n-1}, the second multiplied by x^{n-2}, etc,
190. Construct a determinant equal to $f(x+1)-f(x)$. In the resulting determinant subtract from the last column the first, the second multiplied by x, the third multiplied by x^{2}, etc.
191. Multiply the last column by $a_{1}, a_{2}, \ldots, a_{n}$ and subtract, respectively, from the first, second, ..., nth column.
192. Add all columns to the first.
194. Add all columns to the last one.
195. Take a_{1} out of the first column, a_{2} out of the second, etc. Add to the last column all the preceding columns.
196. Take h out of the first column; add the first column to the second.
197. Multiply the first row and the first column by x.
198. Subtract from each row the first multiplied successively by a_{1}, a_{2}, \ldots, a_{n} : From each column subtract the first multiplied successively by $a_{1}, a_{2}, \ldots, a_{n}$.
199. Add all columns to the first.
200. Add to the first column all the others.
201. From each column, beginning with the last, subtract the preceding, column multiplied by a.
202. From each row, beginning with the last, subtract the preceding row. Then to each column add the first.
203. Multiply the first row by b_{0}, the second by b_{1}, etc. To the first row add all succeeding rows.
204. Take a out of the first row and subtract the first row from the second.
205. Expand by elements of the first row.
206. Represent as a sum of two determinants.
208. Add a zero to each off-diagonal element and represent the determinant as a sum of 2^{n} determinants. Use Problem 206 or 207.
211. Multiply the first column by x^{n-1}, the second by x^{n-2}, etc.
212. Expand by elements of the last column and show that $\Delta_{n}=x_{n} \Delta_{n-1}+$ $+a_{n} x_{1} x \ldots x_{n-1}\left(\Delta_{n}\right.$ denotes a determinant of crder n). Use mathematical induction in computing the determinant.
213. Expand by elements of the last column and show that $\Delta_{n+1}=x_{n} \Delta_{n}+$ $+a_{n} y_{1} y_{2} \ldots y_{n}$.
214. Take a_{1} out of the second column, a_{2} out of the third, \ldots, and a_{n} out of the ($n+1$)th. Reverse the sign of the first column and add all columns to the first.
215. Expand in terms of elements of the first row.
216. Expand in terms of elements of the first row and show that $\Delta_{n}=a_{1} a_{2} \ldots a_{n-1}-\Delta_{n-1}$.
219. Use the result of Problem 217.
221. Expand by elements of the first row and show that $\Delta_{n}=x \Delta_{n-1}-\Delta_{n-2}$.
222. From the last row subtract the second last multiplied by $\frac{y_{n}}{y_{n-1}}$. Show that $\Delta_{n}=\frac{y_{n}}{y_{n-1}}\left(x_{n} y_{n-1}-x_{n-1} y_{n}\right) \Delta_{n-1}$.
223. Represent as a sum of two determinants and show that $\Delta_{n}=a_{n} \Delta_{n-1}+a_{1} a_{2} \ldots a_{n-1}$.
225. Represent as a sum of two determinants and show that

$$
\Delta_{n}=\left(a_{n}-x\right) \Delta_{n-1}+x\left(a_{1}-x\right) \ldots\left(a_{n-1}-x\right)
$$

226. Setting $x_{n}=\left(x_{n}-a_{n}\right)+a_{n}$, represent the determinant in the form of a sum of two determinants and show that

$$
\Delta_{n}=\left(x_{n}-a_{n}\right) \Delta_{n-1}+a_{n}\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right) \ldots\left(x_{n-1}-a_{n-1}\right) .
$$

227. Represent in the form of a sum of two determinants and show that $\Delta_{n}=\left(x_{n}-a_{n} b_{n}\right) \Delta_{n-1}+a_{n} b_{n}\left(x_{1}-a_{1} b_{1}\right) \ldots\left(x_{n-1}-a_{n-1} b_{n-1}\right)$.
228. Represent in the form of a sum of two determinants and show that

$$
\Delta_{n}=-m \Delta_{n-1}+(-1)^{n-1} m^{n-1} x_{n} .
$$

230. Expand by elements of the first row and show that

$$
\Delta_{2 n}=\left(a^{2}-b^{2}\right) \Delta_{2 n-2} .
$$

231. From each row subtract the preceding one and add to the second all subsequent rows. Then, expanding the determinant by elements of the last row, show that

$$
\Delta_{n}=[a+(n-1) b] \Delta_{n-1}+a(a+b) \quad \ldots[a+(n-2) b] .
$$

232. Represent as a sum of two determinants and show that

$$
\Delta_{n}=x\left(x-2 a_{n}\right) \Delta_{n-1}+a_{n}^{2} x^{n-1} \prod_{i=1}^{n-1}\left(x-2 a_{i}\right) .
$$

233. Setting $\left(x-a_{n}\right)^{2}=x\left(x-2 a_{n}\right)+a_{n}^{2}$, represent the determinant as a sum of two determinants and show that

$$
\Delta_{n}=x\left(x-2 a_{n}\right) \Delta_{n-1}+a_{n}^{2} x^{n-1}\left(x-2 a_{1}\right) \ldots\left(x-2 a_{n-1}\right) .
$$

234. Represent as a sum of two determinants and show that

$$
\Delta_{n}=\Delta_{n-1}+(-1)^{n} b_{1} b_{2} \ldots b_{n} .
$$

235. Represent the last element of the last row as $a_{n}-a_{n}$. Pr ove that

$$
\Delta_{n}=(-1)^{n-1} b_{1} b_{2} \ldots b_{n-1} a_{n}-a_{n} \Delta_{n-1} .
$$

236. From each row subtract the next.
237. Set $1=x+(1-x)$ in the upper left corner. Represent the determinant as a sum of two determinants. Use the result of Problem 236.
238. Multiply the second row by x^{n-1}, the third by x^{n-2}, \ldots, the nth by x. From the first column take out x^{n}, from the second, x^{n-1}, \ldots, from the n th, x.
239. Use the suggestion of the preceding problem.
240. From each column subtract the preceding one (begin with the last column). Then from each row subtract the preceding one. Prove that $\Delta_{n}=$ $=\Delta_{n-1}$. When calculating, bear in mind that $C_{n}^{k}=C_{n-1}^{k}+C_{n-1}^{k-1}$.
241. From each column subtract the preceding one.
242. From each row subtract the preceding one. Prove that $\Delta_{n}=\Delta_{n-1}$.
243. Take m out of the first row, $m+1$ out of the second, $\ldots, m+n$ out of the last. Take $\frac{1}{k}$ out of the first column, $\frac{1}{k+1}$ out of the second, etc. Repeat this operation until all elements of the first column become equal to 1 .
244. From each column subtract the preceding one. In the resulting determinant, subtract from each column the preceding one, keeping the first two fixed. Again, subtract from each column the preceding one, keeping the first three columns fixed, and so on. After m such operations we get a determinant in which all elements of the last column are 1 . The evaluation of this determinant presents no special difficulties.
245. From each row subtract the preceding one and show that $\Delta_{n+1}=$ $=(x-1) \Delta_{n}$.
246. From each row subtract the preceding one and show that $\Delta_{n+1}=$ $=(n-1)!(x-1) \Delta_{n}$.
247. From each row subtract the preceding one; from each column subtract the preceding one. Prove that $\Delta_{n}=\alpha \Delta_{n-1}$.
248. Represent the last element of the last row as $z+(x-z)$. Represent the determinant as a sum of two determinants. Use the fact that the determinant is symmetric in y and z.
249. See the suggestion of Problem 248.
250. Subtract from each row the first row multiplied by $\frac{\beta}{a}$. In the resulting determinant, take $\frac{a b-\lambda \beta}{a(\alpha-\beta)}$ out of the first column and subtract from the first column all the other columns.
251. Add all columns to the first and from each row subtract the preceding one. See Problem 199.
252. Use the suggestion of Problem 253.
253. Regard the determinant as a polynomial in a of degree four. Show that the desired polynomial is divisible by the following linear polynomials in a :

$$
a+b+c+d, a+b-c-d, a-b+c-d, a-b-c+d .
$$

258. Adding all columns to the first, separate out the factor $x+a_{1}+\ldots+a_{n}$ Then setting $x=a_{1}, a_{2}, \ldots, a_{n}$, convince yourself that the determinant is divisible by $x-a_{1}, x-a_{2}, \ldots, x-a_{n}$.
259. The Vandermonde determinant.
260. Expand by elements of the first column.
261. From the second row subtract the first. In the resulting determinant subtract the second row from the third, etc.
262. Take $\frac{1}{2!}$ out of the third row, $\frac{1}{3!}$ out of the fourth, etc.
263. Make use of the result of Problem 269.
264. Take 2 out of the second column, 3 out of the third, etc. When computing $\prod_{n \geqslant i>k \geqslant 1}\left(i^{2}-k^{2}\right)$ it is useful to represent

$$
\prod_{\left(i^{2}-k^{2}\right)}=\prod_{(i-k)} \cdot \prod_{(i+k)}
$$

272. Take $\frac{x_{1}}{x_{1}-1}$ out of the first column, $\frac{x_{2}}{x_{2}-1}$ out of the second, etc.
273. Take a_{1}^{n} out of the first row, a_{2}^{n} out of the second, and so on.
274. To the first column add the second multiplied by $C^{1}{ }_{n}$, the third multiplied by C_{2}^{2}, etc.
275. Take advantage of the result of Problem 51.
276. Take advantage of Problem 53.
277. Adjoin the row $1, x_{1}, x_{2}, \ldots, x_{n}$ and the column $1,0,0, \ldots, 0$.
278. Consider the determinant

$$
D=\left|\begin{array}{ccccc}
1 & 1 & & 1 & 1 \\
x_{1} & x_{i} & \ldots & x_{n} & z \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} & z^{2} \\
\cdots & \ldots & \ldots & \cdots \\
x_{1}^{n} & x_{2}^{n} & \ldots & x_{n}^{n} & z^{n}
\end{array}\right|
$$

Compare the expansion of D by elements of the last column with the expression $D=\prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right) \cdot \prod_{i=1}\left(z-x_{i}\right)$.
280. Use the suggestion of Problem 279.
282. Adjoin the first row $1,0, \ldots, 0$ and thefi rst column $1,1,1, \ldots, 1$. Subtract the first column from all the succeeding columns.
285. Expand by elements of the last row.
286. First, from each column (beginning with the last) subtract the preceding column multiplied by x. Then, after reducing the order and taking out obvious factors, transform the first rows (dependent on x) using the relation

$$
(m+1)^{s}-m^{s}=s m^{s-1}+\frac{s(s-1)}{2} m^{s-2}+\ldots+1
$$

287. From each column, beginning with the last, subtract the preceding column multiplied by x.
288. (m) Add to the first column the sixth and the eleventh, to the second column, the seventh and the twelfth, ..., to the fifth column, the tenth and the fifteenth. Add to the sixth column the eleventh, to the seventh column, the twelfth, ..., to the tenth column, the fifteenth.

From the fifteenth row subtract the tenth, from the fourteenth row subtract the ninth, ..., from the sixth row subtract the first.
293. Consider
294. Consider

295. Consider

$$
\left|\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
x_{1} & x_{2} & \ldots & x_{n} & x \\
\cdots & \ldots & \ldots & \ldots & \cdots \\
x_{1}^{n} & x_{2}^{n} & \ldots & x_{n}^{n} & x^{n}
\end{array}\right| \cdot\left|\begin{array}{lllll}
1 & x_{1} & \ldots & x_{1}^{n-1} & 0 \\
1 & x_{2} & \ldots & x_{2}^{n-1} & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & 1
\end{array}\right|
$$

296. Raise to the second power.

297. Subtract from the third column the first, from the fourth the second. Then multiply by

$$
\left|\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos 2 \varphi & -\sin 2 \varphi \\
0 & 0 & \sin 2 \varphi & \cos 2 \varphi
\end{array}\right|
$$

298. Subtract from the second column n times the first, from the fourth, n times the second. Interchange the second and third columns. Multiply by

$$
\left|\begin{array}{cccc}
\cos n \varphi & -\sin n \varphi & 0 & 0 \\
\sin n \varphi & \cos n \varphi & 0 & 0 \\
0 & 0 & \cos (n+1) \varphi & --\sin (n+1) \varphi \\
0 & 0 & \sin (n+1) \varphi & \cos (n+1) \varphi
\end{array}\right|
$$

299. Square it. Transform as a Vandermonde determinant and transform each difference to the sine of some angle. This will yield the sign.
300. Study the product

$$
\left.\left|\begin{array}{lllll}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \ldots & a_{n-2} \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right| \cdot \right\rvert\, \begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & \varepsilon_{1} & \ldots & \varepsilon_{n-1} \\
a_{1} & a_{2} & a_{3} & \ldots
\end{array} a_{0}, \ldots \ldots
$$

where $\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$.
308. Consider $\varepsilon_{1}=\cos \frac{\pi}{n}+i \sin \frac{\pi}{n}$. Then

$$
\Delta=\prod_{k=0}^{n-1}\left(\sum_{j=1}^{n} \frac{\varepsilon_{1}^{j}+\varepsilon_{1}^{-j}}{2} \varepsilon_{1}^{2 k(j-1)}\right)
$$

311. Use Problem 92.
312. $\prod_{k=0}^{2 n-1}\left(a_{0}+a_{1} \varepsilon_{k}+a_{2} \varepsilon_{k}^{2}+\ldots+a_{2 n-1} \varepsilon_{k}^{2 n-1}\right)$

$$
\begin{aligned}
& =\prod_{r=0}^{n-1}\left[\left(a_{0}+a_{n}\right)+\left(a_{1}+a_{n+1}\right) a_{r}+\ldots+\left(a_{n-1}+a_{2 n-1}\right) a_{r}^{n-1}\right] \\
& \times \prod_{s=0}^{n-1}\left[\left(a_{0}-a_{n}\right)+\left(a_{1}-a_{n+1}\right) \beta_{s}+\ldots+\left(a_{n-1}-a_{2 n-1}\right) \beta_{s}^{n-1}\right]
\end{aligned}
$$

where $\varepsilon_{k}=\cos \frac{k \pi}{n}+i \sin \frac{k \pi}{n} ; \alpha_{r}=\cos \frac{2 r \pi}{n}+i \sin \frac{2 r \pi}{n}$;

$$
\beta_{s}=\cos \frac{(2 s+1) \pi}{n}+i \sin \frac{(2 s+1) \pi}{n} .
$$

323. From each row subtract the first, from each column subtract the first.
324. Use Problem 217.
325. Represent in the form of a sum of determinants or set $x=0$ in the determinant and its derivatives.
326. (1) From the $(2 n-1)$ th row subtract the $(2 n-2)$ th, from the $(2 n-2)$ th row subtract the $(2 n-3)$ th, \ldots, and from the $(n+1)$ th row subtract the n th, from the nth row subtract the sum of all the preceding ones.
(2) Add to the $(n+i)$ th row the i th, $i=1,2, \ldots, n-1$.
327. Add to every row all the subsequent ones, and subtract from every column the preceding column. Prove that

$$
\Delta_{n+1}(x)=(x-n) \Delta_{n}(x-1)
$$

CHAPTER 4

MATRICES

466. Use the result of Problem 465 (e).
467. Consider the sum of the diagonal elements.
468. Take advantage of the results of Problems $489,490$.
469. Use the result of Problem 490.

494, 495. Use the results of Problems 492, 493.
496. Argue by induction with respect to the number of columns of the matrix B, first having proved that if the adjoining of one column does not change the rank of B, then it does not change the rank of the matrix (A, B) either.

A proof other than by induction can be carried out by using the Laplace theorem.
497. Take advantage of the results of Problems $496,492$.
498. From the matrix $(E-A, E+A$) select a nonsingular square matrix P and consider the product $(E-A) P$ and $(E+A) P$.
500. Take advantage of the result of Problem 489.
501. Prove the uniqueness of the representation in Problem 500 and thus reduce the problem to counting the number of triangular matrices R with a
given determinant k. Denoting the desired number by $F_{n}(k)$, prove that if $k=a \cdot b$ for relatively prime a, b, then $F_{n}(k)=F_{n}(a) F_{n}(b)$. Finally, construct, inductively, a formula for $F_{n}\left(p^{m}\right)$, where p is prime.
505. Take advantage of the results of Problems 495,498 . Find the matrix P with the smallest possible determinant so that $P^{-1} A P$ is diagonal, and then use the result of Problem 500.
517. Use the Laplace theorem and the Bunyakovsky inequality.
518. Establish the equation $|\vec{A} A|=|\bar{B} B| \cdot|\bar{C} C|$ on the assumption that the sum of the products of the elements of any column of matrix B into corresponding elements of any column of matrix C is equal to zero. Then complete (in appropriate fashion) the matrix (B, C) to a square matrix and take advantage of the result of Problem 517.
523. On the left of the determinant, adjoin a column, all elements of which are equal to $\frac{M}{2}$; adjoin at the top a row, all elements of which (except the corner) are 0 ; then subtract the first column from all other columns.
527. Take advantage of the results of Problems 522, 526.
528. Establish a connection between an adjoint matrix and an inverse matrix.
529. With respect to the minor formed from elements of the first m rows and the first m columns of the adjoint matrix, establish the result by considering the product of the matrices
where $A_{i k}$ are the cofactors of the elements $a_{i k}$.
Do the same for the general case.
535. Represent $A \times B$ as $\left(A \times E_{m}\right) \cdot\left(E_{n} \times B\right)$.
537. First analyze the case when A_{11} is a nonsingular matrix and then argue by induction. Reduce the general case to this case, adding λE to the matrix.

CHAPTER 5

POLYNOMIALS AND RATIONAL FUNCTIONS OF ONE VARIABLE

547. (a) Expand $f(x)$ in powers of $x-3$, then substitute $x+3$ for x.
548. Differentiate directly and substitute $x=1$, then isolate the maximum power of x and continue the differentiation.
549. Consider the polynomials

$$
f_{1}(x)=n f(x)-x f^{\prime}(x), \quad f_{2}(x)=n f_{1}(x)-x f_{1}^{\prime}(x)
$$

and so on.
561. Prove by the method of mathematical induction.
562. The nonzero root of multiplicity $k-1$ of the polynomial $f(x)$ is a root of multiplicity $k-2$ of the polynomial $x f^{\prime}(x)$, a root of multiplicity $k-3$ of the polynomial $x\left[x f^{\prime}(x)\right]^{\prime}$, etc.

Conversely, the general nonzero root of the polynomials $f(x), x f^{\prime}(x)$, $x\left[x f^{\prime}(x)\right]^{\prime}, \ldots$ (a total of $k-1$ polynomials) is a root of $f(x)$ of multiplicity not lower than $k-1$.
563. Differentiate the equation showing that the polynomial is divisible by its derivative.
567. Consider the function $\frac{f_{1}(x)}{f_{2}(x)}$ or $\frac{f_{2}(x)}{f_{1}(x)}$.
568. Relate the problem to a consideration of the roots

$$
\varphi(x)=f(x) f^{\prime}\left(x_{0}\right)-f^{\prime}(x) f\left(x_{0}\right)
$$

where x_{0} is a root of $\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)$.
569. Use the solution of Problem 568 and expand $f(x)$ in powers of $x-x_{0}$.
576. Prove it like d'Alembert's lemma.

580, 581. Represent the function in the same form as in proving the d'Alembert lemma:

$$
f(z)=f(a)+\frac{f^{k}(a)}{k!}(z-a)^{k}[1+\varphi(z)], \quad \varphi(a)=0 .
$$

583. Find the roots of the polynomials and take into account the leading coefficients [in Problems (a) and (b)]. It is advisable, in Problem (c), to set $x=\tan ^{2} \theta$ when seeking the roots.
584. Find the common roots.
585. First prove that $f(x)$ does not have any real roots of odd multiplicity.
586. Use the result of Problem 622.
587. Use the fact that the equation should not change when $-x$ is substituted for x and $\frac{1}{x}$ for x.
588. The equation should not change when $\frac{1}{x}$ is substituted for x and $1-x$ for x.
589. Divide by $(1-x)^{n}$ and differentiate $m-1$ times, assuming $x=0$ after each differentiation. Take advantage of the fact that the degree of $N(x)$ is less than m and the degree of $M(x)$ is less than n.
590. Use the Lagrange formula. Perform the division in each term of the result and collect like terms using the result of Problem 100.
591. Express $f\left(x_{0}\right)$ in terms of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$, using the Lagrange interpolation formula and compare the result with the hypothesis of the problem, taking into account the independence of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$. Then study $\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$, expanding it in powers of $x-x_{0}$.
592. Represent the polynomial x^{s} in terms of its values by means of the Lagrange interpolation formula.

648, 649. Construct an interpolation polynomial by Newton's method.
650. Find the values of the desired polynomial for $x=0,1,2,3, \ldots, 2 n$.
651. The problem can be solved by using Newton's method. A shorter way is to consider the polynomial $F(x)=x f(x)-1$, where $f(x)$ is the desired polynomial.
652. Consider the polynomial $(x-a) f(x)-1$.
653. Construct the polynomial by Newton's method and, for convenien ce of computation, introduce a factorial into the denominator of each term.
654. Consider the polynomial $f\left(x^{2}\right)$, where $f(x)$ is the desired polynomial.
655. The easiest way is by the Lagrange formula

$$
\frac{f(x)}{\varphi(x)}=\sum_{k=1}^{n} \frac{f\left(x_{k}\right)}{\left(x-x_{k}\right) \varphi^{\prime}\left(x_{k}\right)}
$$

$\left(x_{1}, x_{2}, \ldots, x_{n}\right.$ are roots of the denominator).
656. First expand by the Lagrange formula, then combine complex conjugate terms.
657. (e) Use Problem 631. (f) Set $\frac{a+x}{2 a}=y$. (d), (h) Seek expansions by the method of undetermined coefficients. Find part by the substitution $x=x_{1}, x_{2}, \ldots, x_{n}$ after multiplying by the common denominator. Then differentiate and again set $x=x_{1}, x_{2}, \ldots, x_{n}$.
660. Use Problem 659. In Problem (b) decompose $\frac{1}{x^{2}-3 x+2}$ into partial fractions.

665, 666. Take advantage of Problem 663.
667. In Problem (c) expand the polynomial in powers of $x-1$.
668. Expand in powers of $x-1$ (or put $x=y+1$).
669. Set $x=y+1$ and use mathematical induction to prove that all coefficients of the dividend and divisor (except the leading coefficients) are divisible by p.

670, 671. The proof is like that of the Eisenstein theorem.
679, 680. Assuming reducibility of $f(x)$, set $x=a_{1}, a_{2}, \ldots, a_{n}$ and draw a conclusion concerning the values of the divisors.
681. Count the number of equal values of the presumed divisors.
682. Use the fact that $f(x)$ does not have real roots.
683. Prove that a polynomial having more than three integral roots cannot have for one of its values a prime in the case of an integral value of the independent variable; apply this to the polynomial $f(x)-1$.

684, 685. Use the result of Problem 683.
702. Construct a Sturm sequence and consider separately the cases of even and odd n.

707-712. Derive recurrence relations between the polynomials of consecutive degrees and their derivatives and use them to construct a Sturm sequence. In Problem 708, construct a Sturm sequence solely for positive values of x and use other reasoning to assure yourself that there are no negative roots. In Problem 709, construct a Sturm sequence for negative x.
713. Use the fact that $F^{\prime}(x)=2 f(x) f^{\prime \prime \prime}(x)$ and that $f^{\prime \prime \prime}(x)$ is a constant.
717. Factor $g(x)$ and use the result of Problem 716 several times.
718. Apply the result of Problem 717 to the polynomial x^{m}.
719. Use the fact that if all the roots of the polynomial $a_{0} x^{n}+a_{1} x^{n-1}+\ldots$ $+a_{n-1} x+a_{n}$ are real, then all the roots of the polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots$ $+a_{0}$ are real.
721. Multiply by $x-1$.
727. Prove by contradiction by taking advantage of Rolle's theorem and the result of Problem 581.
728. Construct the graph of $\psi(x)=\frac{f(x)}{f^{\prime}(x)}$ and prove rigorously that every root of $\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)$ yields an extreme point for $\psi(x)$ and conversely. Prove that $\psi(x)$ has no extreme points in the intervals, between the roots of $f^{\prime}(x)$, that contain a root of $f(x)$, and has exactly one extreme point in the intervals which do not contain roots of $f(x)$.
729. Use the result of Problems 727 and 726.
730. Study the behaviour of the function

$$
\psi(x)=\frac{f(x)}{f^{\prime}(x)}+\frac{x+\lambda}{\gamma} .
$$

731. It is solved on the basis of the preceding problem for $\lambda=0$.
732. Prove by means of induction with respect to the degree of $f(x)$, setting $f(x)=(x+\lambda) f_{1}(x)$, where $f_{1}(x)$ is a polynomial of degree $n-1$.
733. The proof is obtained by a double application of the result of Problem 732.
734. If all the roots of $f(x)$ are positive, then the proof is effected by elementary means, namely by induction with respect to the degree of $f(x)$. Include in the induction hypotheses that the roots $x_{1}, x_{2}, \ldots, x_{n-1}$ of the polynomial $b_{0}+b_{1} w x+\ldots+b_{n-1} w^{(n-1) 2} x^{n-1}$ satisfy the condition

$$
0<x_{1}<x_{2}<\ldots<x_{n-1} \text { and } x_{i}>x_{i-1} w^{-2} .
$$

To prove the theorem in the general case, it is necessary to represent $w^{x^{2}}$ as the limit of a polynomial in x with roots not contained in the interval $(0, n)$ and to take advantage of the result of Problem 731.
735. Consider $\left|\frac{\varphi(x)+i \psi(x)}{\varphi(x)-i \psi(x)}\right|$, where

$$
\begin{aligned}
& \varphi(x)=a_{0} \cos \varphi+\ldots+a_{n} \cos (\varphi+n \theta) x^{n}, \\
& \psi(x)=b_{0} \sin \varphi+\ldots+b_{n} \sin (\varphi+n \theta) x^{n} .
\end{aligned}
$$

736. Consider the modulus of $\frac{\varphi(x)+i \psi(x)}{\varphi(x)-i \psi(x)}$, where

$$
\begin{aligned}
& \varphi(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}, \\
& \psi(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n} .
\end{aligned}
$$

Having proved the real nature of the roots, multiply $\varphi(x)+i \psi(x)$ by $\alpha-\beta i$ and consider the real part. Use the result of Problem 727.
737. Decompose $\frac{\psi(x)}{\varphi(x)}$ into partial fractions, investigate the signs of the coefficients in this decomposition and study the imaginary part

$$
\frac{-i[\varphi(x)+i \psi(x)]}{\varphi(x)}=\frac{\psi(x)}{\varphi(x)}-i .
$$

738. Investigate the imaginary part of $\frac{f^{\prime}(x)}{f(x)}$ by decomposing the fraction into partial fractions.
739. Change the variable so that the given half-plane is converted into the half-plane $\operatorname{Im}(x)>0$.
740. Relate to Problem 739.
741. Decompose $\frac{f^{\prime}(x)}{f(x)}$ into partial fractions and estimate the imaginary part.
742. Set $x=y i$ and take advantage of the results of Problems 736 and 737.

744, 745. Take advantage of the result of Problem 743.
746. Set $x=\frac{1+y}{1-y}$ and use the result of Problem 744.
747. Multiply the polynomial by $1-x$ and, setting $|x|=\rho>1$, estimate the modulus of $(1-x) f(x)$.

CHAPTER 6

SYMMETRIC FUNCTIONS

772. The sides of a triangle similar to the given one and inscribed in a circle of radius $\frac{1}{2}$ are equal to the sines of the angles of the given triangle.
773. First compute the sum

$$
\sum_{i=1}^{n}\left(x+x_{i}\right)^{k}
$$

and then substitute $x=x_{j}$ and sum from 1 to n with respect to j. Finally, delete extraneous terms and divide by 2.
801. The solution is like that of Problem 800.
805. Every primitive nth root of unity raised to the m th power yields a primitive root of degree $\frac{n}{d}$, where d is the greatest common divisor of m and n. As a result of this operation performed with respect to all primitive nth roots of unity, all primitive roots of degree $\frac{n}{d}$ are obtained the same number of times.
806. Use the results of Problems 805, 117, and 119.
807. It is necessary to find an equation whose roots are $x_{1}, x_{2}, \ldots, x_{n}$. To do this, use Newton's formulas or a representation of the coefficients in terms of power sums in the form of a determinant (Problem 803).
808. The problem is readily solved by means of Newton's formulas or by means of representing power sums in terms of the elementary symmetric functions in the form of determinants (Problem 802). However, it is still easier to multiply the equation by $(x-a) \cdot(x-b)$ and compute the power sums for the new equation.
809. The simplest way is to multiply the equation by $(x-a) \cdot(x-b)$.
818. Consider the roots of the polynomial $f(x)$ as independent variables. Multiply the determinant of the coefficients of the remainders by the Vandermonde determinant.
819. First prove that all polynomials ψ_{k} have degree $n-1$. Then multiply the determinant of the coefficients of ψ_{k} by the Vandermonde determinant.
820. The solution is like that of Problem 819.
827. Use the fact that the m th degrees of the primitive nth roots of 1 run through all primitive roots of unity of degree $\frac{n}{d}$, where d is the greatest common divisor of m and n.
828. Use the result of Problem 827 and the fact that $R\left(X_{m}, X_{n}\right)$ is a divisor of $R\left(X_{m}, x^{n}-1\right)$ and $R\left(X_{n}, x^{m}-1\right)$.

834, 835. Compute $R\left(f^{\prime}, f\right)$.
839. Multiply by $x-1$.
840. Multiply by $x-1$ and use the result of Problem 835.
843. Compute $R\left(X_{n}, X_{n}^{\prime}\right)$. In computing the values of X_{n}^{\prime} for the roots of X_{n}, represent X_{n} in the form

$$
\left(x^{n}-1\right) \Pi\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}
$$

considering that d runs through the proper divisors of n.
844. Take advantage of the relation $E_{n}^{\prime}=E_{n}-x^{n}$.
845. Take advantage of the relation

$$
(n x-x-a) F_{n}-x(x+1) F_{n}^{\prime}+\cdots-\frac{(a-1) \ldots(a-n)}{n!}=0 .
$$

846. Use the relations

$$
P_{n}=x P_{n-1}-(n-1) P_{n-2}, P_{n}^{\prime}=n P_{n-1} .
$$

847. Use the relations

$$
x P_{n}^{\prime}=n P_{n}+n^{2} P_{n-1}, P_{n}=(x-2 n+1) P_{n-1}-(n-1)^{2} P_{n-2} .
$$

848. Use the relations

$$
\left(4-x^{2}\right) P_{n}^{\prime}+n x P_{n}=2 n P_{n-1}, P_{n}-x P_{n-1}+P_{n-2}=0 .
$$

849. Use the relations

$$
P_{n}-2 x P_{n-1}+\left(x^{2}+1\right) P_{n-2}=0, P_{n}^{\prime}=(n+1) P_{n-1} .
$$

850. Use the relations

$$
P_{n}-(2 n-1) x P_{n-1}+(n-1)^{2}\left(x^{2}+1\right) P_{n-2}=0, P_{n}^{\prime}=n^{2} P_{n-1}
$$

851. Use the relations

$$
\begin{gathered}
P_{n}-(2 n x+1) P_{n-1}+n(n-1) x^{2} P_{n-2}=0, \\
P_{n}^{\prime}=(n+1) n P_{n-1} .
\end{gathered}
$$

852. Solve the problem by Lagrange's method of multipliers. Write the result of equating the derivatives to zero in the form of a differential equation with respect to the polynomial that yields a maximum, and solve the equation by the method of undetermined coefficients.
853. First demonstrate that there is only a finite number of equations with the given properties for a given n. Then show that the properties are not destroyed under the transformation $y=x^{m}$.

CHAPTER 7

LINEAR ALGEBRA

884. Use the results of Problems $51,52$.
885. The smallest angle is to be sought among the angles formed by vectors of the second plane with their orthogonal projections on the first plane.
886. Specify the cube in a system of coordinates with origin at the centre and with axes parallel to the edges. Then take four mutually orthogonal diagonals for the axes.
887. Use the result of Problem 907.
888. Prove by induction.
889. Use the fact that $V\left[A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{k}\right]=V\left[A_{1}, \ldots, A_{m}\right] \cdot V\left[B_{1}\right.$, $\left.\ldots, B_{k}\right]$ if $A_{i} \perp B_{j}$ and use the result of the preceding problem.
890. First find the eigenvalues of the square of the matrix. Then, to determine the signs in taking the square root, use the fact that the sum of the eigenvalues is equal to the sum of the elements of the principal diagonal and that the product of the eigenvalues is equal to the determinant. Apply the results of Problems 126 and 299.
891. Apply the result of Problem 933.
892. Use the results of Problems 537 and 930.
893. (1) Use the fact that the determinant of a triangular transformation is equal to unity.
(2) Set

$$
x_{k+1}=x_{k+2}=\ldots=x_{n}=0
$$

945. For the new independent variable take the linear form whose square is added to the quadratic form.
946. Isolate one square from the form f and use the result of Problem 945.
947. Consider the quadratic form in the unknowns $u_{1}, u_{2}, \ldots, u_{n}$:

$$
f=\sum_{k=1}^{n}\left(u_{1}+u_{2} x_{k}+\ldots+u_{n} x_{k}^{n-1}\right)^{2}
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are roots of the given equation.
950. Decompose f and φ into a sum of squares and use the distributivity of the operation (f, φ).
965. In proving the converse, make use of the factorization $X=A X+$ $+(E-A) X$.
966. Write the projection matrix in the basis obtained by combining the orthonormal bases P and Q.
967. Be sure that $A X \cdot X=0$ for any real vector X. Decompose the eigenvalue and eigenvector into a real part and an imaginary part.
968. Multiply the matrix A on the right by P, on the left by P^{-1}, where P
is an orthogonal matrix, the first two columns of which are composed of normalized real and imaginary parts of the eigenvector.

970, 971. Use the fact that for the orthogonal matrix $A, A X \cdot A Y=$ $=X \cdot Y$ for any real vectors X and Y.
972. The proof is based on the results of Problems 970, 971 and, like Problem 968, on the results of Problem 967.

975, 976. Go to the Jordan canonical form.
978. Connect it with the solution of Problem 977.
980. For necessity, see Problem 473.

For the sufficiency proof, consider first the case when all diagonal elements of the matrix C are zero. Then use the fact that if $C=X Y-Y X$, then

$$
S^{-1} C S=\left(S^{-1} X S\right)\left(S^{-1} Y S\right)-\left(S^{-1} Y S\right)\left(S^{-1} X S\right)
$$

PART III. ANSWERS AND SOLUTIONS

CHAPTER 1

COMPLEX

 NUMBERS1. $x=-\frac{4}{11}, y=\frac{5}{11}$.
2. $x=-2, \quad y=\frac{3}{2}, \quad z=2, \quad t=-\frac{1}{2}$.
3. 1 if $n=4 k$; i if $n=4 k+1 ;-1$ if $n=4 k+2$; $-i$ if $n=4 k+3$; k an integer.
4. (a) $117+44 i$, (b) -556 , (c) $-76 i$.
5. If and only if:
(1) none of the factors is zero;
(2) the factors are of the form $(a+b i)$ and $\lambda(b+a i)$, where λ is a real number.
6. (a) $\cos 2 \alpha+i \sin 2 \alpha$,
(b) $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+i \frac{2 a b}{a^{2}+b^{2}}$,
(c) $\frac{44-5 i}{318}$,
(d) $\frac{-1-32 i}{25}$,
(e) 2 .
7. $2 i^{n-1}$.
8. (a) $x=1+i, y=i$; (b) $x=2+i, y=2-i$; (c) $x=3-11 i, y=-3-9 i$, $z=1-7 i$.
9. (a) $-\frac{1}{2}-i \frac{\sqrt{3}}{2}$, (b) 1 .
10. (a) $a^{2}+b^{2}+c^{2}-(a b+b c+a c)$; (b) $a^{3}+b^{3}$;
(c) $2\left(a^{3}+b^{3}+c^{3}\right)-3\left(a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b\right)+12 a b c$;
(d) $a^{2}-a b+b^{2}$.
11. (a) $0,1,-\frac{1}{2}+\frac{i \sqrt{3}}{2},-\frac{1}{2}-\frac{i \sqrt{3}}{2}$; (b) $0,1, i,-1,-i$.
12. (a) $\pm(1+i)$; (b) $\pm(2-2 i)$; (c) $\pm(2-i)$; (d) $\pm(1+4 i)$;
(e) $\pm(1-2 i)$;
(f) $\pm(5+6 i) ;$ (g) $\pm(1+3 i) ;(\mathrm{h}) \pm(1-3 i)$;
(i) $\pm(3-i)$;
(j) $\pm(3+i)$;
(k) $\pm\left(\sqrt{\frac{\sqrt{\overline{13}+2}}{2}}-i \sqrt{\frac{\sqrt{13}-2}{2}}\right)$;
(1) $\pm \sqrt{8+2 \sqrt{17}} \pm i \sqrt{-8+2 \sqrt{17}} ; ~(\mathrm{~m}) ~ \pm\left(\sqrt{\frac{3}{2}}-i \sqrt{\frac{1}{2}}\right)$;
(n) $\frac{\sqrt{2}(\pm 1 \pm i)}{2}$; (o) $i^{\alpha}\left(\frac{1+\sqrt{3}}{2}+\frac{1-\sqrt{3}}{2} i\right), \alpha=0,1,2,3$.
13. $\pm(\beta-\alpha i)$.
14. (a) $x_{1}=3-i, x_{2}=-1+2 i$; (b) $x_{1}=2+i, x_{2}=1-3 i$;
(c) $x_{1}=1-i, \quad x_{2}=\frac{4-2 i}{5}$.
15. (a) $1 \pm 2 i,-4 \pm 2 i,\left(x^{2}-2 x+5\right)\left(x^{2}+8 x+20\right)$;
(b) $2 \pm i \sqrt{2},-2 \pm 2 i \sqrt{2},\left(x^{2}-4 x+6\right)\left(x^{2}+4 x+12\right)$.
16. (a) $x= \pm \frac{\sqrt{7}}{2} \pm \frac{i}{2}$;
(b) $\pm 4 \pm i$.
17. $\pm \sqrt{\frac{\sqrt{q}}{2}-\frac{p}{4}} \pm i \sqrt{\frac{\sqrt{q}}{2}+\frac{p}{4}}$.
18. (a) $\cos 0+i \sin 0 ;$ (b) $\cos \pi+i \sin \pi$; (c) $\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$;
(d) $\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}$;
(e) $\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$;
(f) $\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$;
(g) $\sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$;
(h) $\sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)$;
(i) $2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$;
(j) $2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$;
(k) $2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$;
(1) $2\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right) ;(\mathrm{m}) 2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$;
(n) $3(\cos \pi+i \sin \pi) ; \quad$ (o) $2\left(\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6}\right)$;
(p) $(\sqrt{2}+\sqrt{6})\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$.

Remark. Given here is one of the possible values of the argument.
23. (a) $\sqrt{10}\left(\cos 18^{\circ} 26^{\prime}+i \sin 18^{\circ} 26^{\prime}\right)$;
(b) $\sqrt{17}\left(\cos 345^{\circ} 57^{\prime} 48^{\prime \prime}+i \sin 345^{\circ} 57^{\prime} 48^{\prime \prime}\right)$;
(c) $\sqrt{5}\left(\cos 153^{\circ} 26^{\prime} 6^{\prime \prime}+i \sin 153^{\circ} 26^{\prime} 6^{\prime \prime}\right)$;
(d) $\sqrt{5}\left(\cos 243^{\circ} 26^{\prime} 6^{\prime \prime}+i \sin 243^{\circ} 26^{\prime} 6^{\prime \prime}\right)$.
24. (a) A circle of radius 1 with centre at the origin.
(b) A ray issuing from the origin at an angle of $\frac{\pi}{6}$ to the positive direction of the axis of reals.
25. (a) The interior of a circle of radius 2 with centre at the coordinate origin.
(b) The interior and contour of a circle of radius 1 with centre at the point $(0,1)$.
(c) The interior of a circle of radius 1 with centre at the point $(1,1)$.
26. (a) $x=\frac{3}{2}-2 i$, (b) $x=\frac{3}{4}+i$.
27. The identity expresses a familiar theorem of geometry: the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
29. If the difference of the arguments of these numbers is equal to $\pi+2 k \pi$, where k is an integer.
30. If the difference of the arguments of these numbers is equal to $2 k \pi$, where k is an integer.
34. $\cos (\varphi+\psi)+i \sin (\varphi+\psi)$.
35. $\frac{\sqrt{2}}{2}\left[\cos \left(2 \varphi-\frac{\pi}{12}\right)+i \sin \left(2 \varphi-\frac{\pi}{12}\right)\right]$.
36. (a) $2^{12}(1+i)$, (b) $2^{9}(1-i \sqrt{3})$, (c) $(2-\sqrt{3})^{12}$, (d) -64 .
38. $\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}$.
39. $2 \cos \frac{2 n \pi}{3}$.
40. Solution. $1+\cos \alpha+i \sin \alpha$

$$
\begin{aligned}
& =2 \cos ^{2} \frac{\alpha}{2}+2 i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}=2 \cos \frac{\alpha}{2}\left(\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right) \\
& (1+\cos \alpha+i \sin \alpha)^{n}=2^{n} \cos ^{n} \frac{\alpha}{2}\left(\cos \frac{n \alpha}{2}+i \sin \frac{n \alpha}{2}\right)
\end{aligned}
$$

43. (a) $-i, \frac{\sqrt{3}+i}{2}, \frac{-\sqrt{3}+i}{2}$;
(b) $-1+i, \frac{1+\sqrt{3}}{2}+\frac{\sqrt{3}-1}{2} i, \frac{1-\sqrt{3}}{2}-\frac{1+\sqrt{3}}{2} i$;
(c) $1+i, 1-i,-1+i,-1-i$;
(d) $1,-1,-\frac{1}{2}+i \frac{\sqrt{3}}{2},-\frac{1}{2}-i \frac{\sqrt{3}}{2}, \frac{1}{2}+i \frac{\sqrt{3}}{2}, \frac{1}{2}-i \frac{\sqrt{3}}{2}$;
(e) $i \sqrt{3},-i \sqrt{3}, \frac{3+i \sqrt{3}}{2}, \frac{3-i \sqrt{3}}{2},-\frac{3+i \sqrt{3}}{2}, \frac{-3+i \sqrt{3}}{2}$.
44. (a) $\sqrt{5}\left(\cos 8^{\circ} 5^{\prime} 18^{\prime \prime}+i \sin 8^{\circ} 5^{\prime} 18^{\prime \prime}\right) \varepsilon_{k}$, where $\varepsilon_{k}=\cos 120^{\circ} k+i \sin 120^{\circ} k, k=0,1,2$;
(b) $\sqrt{10}\left(\cos 113^{\circ} 51^{\prime} 20^{\prime \prime}+i \sin 113^{\circ} 51^{\prime} 20^{\prime \prime}\right) \varepsilon_{k}$, where $\varepsilon_{k}=\cos 120^{\circ} k+i \sin 120^{\circ} k, k=0,1,2$;

10
(c) $\sqrt{13}\left(\cos 11^{\circ} 15^{\prime} 29^{\prime \prime}+i \sin 11^{\circ} 15^{\prime} 29^{\prime \prime}\right) \varepsilon_{k}$, where $\varepsilon_{k}=\cos 72^{\circ} k+i \sin 72^{\circ} k, k=0,1,2,3,4$.
45. (a) $\frac{1}{\sqrt[12]{2}}\left(\cos \frac{24 k+19}{72} \pi+i \sin \frac{24 k+19}{72} \pi\right)$,
where $k=0,1,2,3,4,5$;
(b) $\frac{1}{\sqrt[16]{2}}\left(\cos \frac{24 k+5}{96} \pi+i \sin \frac{24 k+5}{96} \pi\right)$,
where $k=0,1,2,3,4,5,6,7$;
(c) $\frac{1}{\sqrt[12]{2}}\left(\cos \frac{24 k+17}{72} \pi+i \sin \frac{24 k+17}{72} \pi\right)$,
where $k=0,1,2,3,4,5$.
46. $\beta\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right)$, where $k=0,1,2, \ldots, n-1$.
47. (a) Solution. Consider $(\cos x+i \sin x)^{5}$. By De Moivre's formula, $(\cos x+i \sin x)^{5}=\cos 5 x+i \sin 5 x$.
On the other hand,
$(\cos x+i \sin x)^{5}=\cos ^{5} x+5 i \cos ^{4} x \sin x-10 \cos ^{3} x \sin ^{2} x-10 i \cos ^{2} x$ $\sin ^{3} x+5 \cos x \sin ^{4} x+i \sin ^{5} x=\left(\cos ^{5} x-10 \cos ^{3} x \sin ^{2} x+5 \cos x \sin ^{4} x\right)$
$+i\left(5 \cos ^{4} x \sin x-10 \cos ^{2} x \sin ^{3} x+\sin ^{5} x\right)$.
Comparing the results, we have
$\cos 5 x=\cos ^{5} x-10 \cos ^{3} x \sin ^{2} x+5 \cos x \sin ^{4} x$;
(b) $\cos ^{8} x-28 \cos ^{6} x \sin ^{2} x+70 \cos ^{4} x \sin ^{4} x-28 \cos ^{9} x \sin ^{6} x+\sin ^{8} x$;
(c) $6 \cos ^{5} x \sin x-20 \cos ^{3} x \sin ^{8} x+6 \cos x \sin ^{5} x$;
(d) $7 \cos ^{6} x \sin x-35 \cos ^{4} x \sin ^{3} x+21 \cos ^{2} x \sin ^{5} x-\sin ^{7} x$.
48. $\frac{2\left(3 \tan \varphi-10 \tan ^{3} \varphi+3 \tan ^{5} \varphi\right)}{1-15 \tan ^{2} \varphi+15 \tan ^{4} \varphi-\tan ^{6} \varphi}$.
49. $\cos n x=\cos ^{n} x-C_{n}^{2} \cos ^{n-2} x \sin ^{2} x+C_{n}^{4} \cos ^{n-4} x \sin ^{4} x-\ldots+M$
where $\quad M=(-1)^{\frac{n}{2}} \sin ^{n} x$ if n is even, and

$$
M=(-1)^{\frac{n-1}{2}} n \cos x \sin ^{n-1} x \text { if } n \text { is odd }
$$

$$
\sin n x=C_{n}^{1} \cos ^{n-1} x \sin x-C_{n}^{3} \cos ^{n-3} x \sin ^{3} x+\ldots+M
$$

where $\quad M=(-1)^{\frac{n-2}{2}} n \cos x \sin ^{n-1} x$ if n is even, and

$$
M=(-1)^{\frac{n-1}{2}} \sin ^{n} x \text { if } n \text { is odd. }
$$

50. (a) Solution. Let $\alpha=\cos x+i \sin x$. Then

$$
\begin{aligned}
\alpha^{-1} & =\cos x-i \sin x \\
\alpha^{k} & =\cos k x+i \sin k x ; \quad \alpha^{-k}
\end{aligned}=\cos k x-i \sin k x . ~ \$
$$

Whence we have $\cos k x=\frac{\alpha^{k}+\alpha^{-k}}{2} ; \sin k x=\frac{\alpha^{k}-\alpha^{-k}}{2 i}$.
In particular, $\cos x=\frac{\alpha+\alpha^{-1}}{2} ; \sin x=\frac{\alpha-\alpha^{-1}}{2 i}$;
$\sin ^{3} x=\left(\frac{\alpha-\alpha^{-1}}{2 i}\right)^{3}=\frac{\alpha^{3}-3 \alpha+3 \alpha^{-1}-\alpha^{-3}}{-8 i}=\frac{\left(\alpha^{3}-\alpha^{-3}\right)-3\left(\alpha-\alpha^{-1}\right)}{-8 i} ;$
$\sin ^{3} x=\frac{2 i \sin 3 x-6 i \sin x}{-8 i}=\frac{3 \sin x-\sin 3 x}{4} ;$
(b) $\frac{\cos 4 x-4 \cos 2 x+3}{8}$;
(c) $\frac{\cos 5 x+5 \cos 3 x+10 \cos x}{16}$;
(d) $\frac{\cos 6 x+6 \cos 4 x+15 \cos 2 x+10}{32}$.

52. Solution.

$$
\begin{aligned}
C_{m-p}^{p}+C_{m-p-1}^{p-1}= & \frac{(m-p)(m-p-1) \ldots(m-2 p+1)}{p!} \\
& \quad+\frac{(m-p-1) \ldots(m-2 p+1)}{(p-1)!} \\
& =\frac{m(m-p-1)(m-p-2) \ldots(m-2 p+1)}{p!}
\end{aligned}
$$

Denote $2 \cos m x=S_{m} ; 2 \cos x=a$. Then the equation that interests us may be written thus:
$S_{m}=a^{m}-m a^{m-2}+\left(C_{m_{-2}}^{2}+C_{m-3}^{1}\right) a^{m-4}$

$$
-\ldots+(-1)^{p}\left(C_{m-p}^{p}+C_{m-p-1}^{p-1}\right) a^{m-2 p}+\ldots
$$

It is easy to show that
$2 \cos m x=2 \cos x \cdot 2 \cos (m-1) x-2 \cos (m-2) x$ or, in our notations, $S_{m}=a S_{m-1}-S_{m-2}$.

It can readily be verified that for $m=1$ and $m=2$, the equation being proved holds true. Let us assume that

$$
\begin{aligned}
S_{m-1}=a^{m-1}-(m-1) & a^{m-3}+\left(C_{m-3}^{2}+C_{m-1}^{1}\right) a^{m-5} \\
& +\ldots+(-1)^{p}\left(C_{m-p-1}^{p}+C_{m-1}^{p-1}\right) a^{m-2 p-1}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& S_{m-2}=a^{m-2}-(m-2) a^{m-4}+\left(C_{m-4}^{2}+C_{m-5}^{1}\right) a^{m-6} \\
&+\ldots+(-1)^{p-1}\left(C_{m-p-1}^{p-1}+C_{m-p-2}^{p-2}\right) a^{m-2 p}+\ldots
\end{aligned}
$$

Then $S_{m}=a^{m}-m a^{m-2}$

$$
+\ldots+(-1)^{p}\left(C_{m-p-1}^{p}+C_{m-p-8}^{p-1}+C_{m-p-1}^{p-1}+C_{m-p-2}^{p-2}\right) a^{m-2 p}+\ldots
$$

Bearing in mind that $C_{n}^{k}=C_{n-1}^{k}+C_{n-1}^{k-1}$, we get the required result.
53. $\frac{\sin m x}{\sin x}=(2 \cos x)^{m-1}-C_{m-2}^{1}(2 \cos x)^{m-3}$ $+C_{m-3}^{2}(2 \cos x)^{m-5}-\ldots+(-1)^{p} C_{m-p-1}^{p}(2 \cos x)^{m-2 p-1}+\ldots$
54. (a) $2^{\frac{n}{2}} \cos \frac{n \pi}{4}$,
(b) $2^{\frac{n}{2}} \sin \frac{n \pi}{4}$.
56. $\frac{2^{n}}{3^{\frac{n-1}{2}}} \sin \frac{n \pi}{6}$.
59. (a) Solution.
$S=1+a \cos \varphi+a^{2} \cos 2 \varphi+\ldots+a^{k} \cos k \varphi$.
Form $T=a \sin \varphi+a^{2} \sin 2 \varphi+\ldots+a^{k} \sin k \varphi$;
$S+T i=1+a(\cos \varphi+i \sin \varphi)+a^{9}(\cos 2 \varphi+i \sin 2 \varphi)$
$+\ldots+a^{k}(\cos k \varphi+i \sin k \varphi)$.
Setting $\alpha=\cos \varphi+i \sin \varphi$, we have

$$
S+T i=1+a \alpha+a^{2} \alpha^{2}+\ldots+a^{k} \alpha^{k}=\frac{a^{k+1} \alpha^{k+1}-1}{a \alpha-1}
$$

S is equal to the real part of the sum obtained. We have

$$
S+T i=\frac{a^{k+1} \alpha^{k+1}-1}{a \alpha-1} \cdot \frac{a \alpha^{-1}-1}{a \alpha^{-1}-1}=\frac{a^{k+2} \alpha^{k}-a^{k+1} \alpha^{k+1}-a \alpha^{-1}+1}{a^{2}-a\left(\alpha+\alpha^{-1}\right)+1} .
$$

Whence $S=\frac{a^{k+2} \cos k \varphi-a^{k+1} \cos (k+1) \varphi-a \cos \varphi+1}{a^{2}-2 a \cos \varphi+1}$.
(b) $\frac{a^{k+2} \sin (\varphi+k h)-a^{k+1} \sin [\varphi+(k+1) h]-a \sin (\varphi-h)+\sin \varphi}{a^{2}-2 a \cos h+1}$.
(c) $\frac{\sin \frac{2 n+1}{2} x}{2 \sin \frac{x}{2}}$.
60. Solution.

$$
\begin{aligned}
& T=\sin x+\sin 2 x+\ldots+\sin n x \\
& S=\cos x+\cos 2 x+\ldots+\cos n x
\end{aligned}
$$

Let $\alpha=\cos \frac{x}{2}+i \sin \frac{x}{2}$. Then $S+T i=\alpha^{2}+\alpha^{4}+\ldots+\alpha^{2 n}$,
$S+T i=\alpha^{2} \frac{\alpha^{2 n}-1}{\alpha^{2}-1}=\alpha^{2} \frac{\alpha^{n}\left(\alpha^{n}-\alpha^{-n}\right)}{\alpha\left(\alpha-\alpha^{-1}\right)}$

$$
=\left(\cos \frac{n+1}{2} x+i \sin \frac{n+1}{2} x\right) \frac{\sin \frac{n}{2} x}{\sin \frac{x}{2}}
$$

Whence $T=\sin \frac{n+1}{2} x \frac{\sin \frac{n x}{2}}{\sin \frac{x}{2}}$.
61. $\frac{2(2-\cos x)}{5-4 \cos x}$.
64. (a) $\frac{\sin \left(a+\frac{n-1}{2} h\right) \sin \frac{n h}{2}}{\cos \frac{h}{2}}$, if n is even,
$\frac{\cos \left(a+\frac{n-1}{2} h\right) \cos \frac{n h}{2}}{\cos \frac{h}{2}}$, if n is odd;
(b) $\frac{\cos \left(a+\frac{n-1}{2} h\right) \sin \frac{n h}{2}}{\cos \frac{h}{2}}$, if n is even ,

$$
\frac{\sin \left(a+\frac{n-1}{2} h\right) \cos \frac{n h}{2}}{\cos \frac{h}{2}}, \text { if } n \text { is odd. }
$$

66. (a) $2^{n} \cos ^{n} \frac{x}{2} \cos \frac{n+2}{2} x ;$ (b) $2^{n} \cos ^{n} \frac{x}{2} \sin \frac{n+2}{2} x$.
67. (a) $2^{n} \sin ^{n} \frac{x}{2} \cos \frac{n \pi-(n+2) x}{2}$; (b) $2^{n} \sin ^{n} \frac{x}{2} \sin \frac{(n+2) x-n \pi}{2}$.
68. The limit of the sum is equal to the vector depicting the number $\frac{3+i}{5}$.
69. $\frac{n}{2}-\frac{\sin 4 n x}{4 \sin 2 x}$.
70. (a) $\frac{3 \cos \frac{n+1}{2} x \sin \frac{n x}{2}}{4 \sin \frac{x}{2}}+\frac{\cos \frac{3(n+1)}{2} x \sin \frac{3 n x}{2}}{4 \sin \frac{3 x}{2}}$;
(b) $\frac{3 \sin \frac{n+1}{2} x \sin \frac{\text { ! } \frac{? n}{2}}{2}}{4 \sin \frac{x}{2}}-\frac{\sin \frac{3(n+1)}{2} x \sin \frac{3 n x}{2}}{4 \sin \frac{3 x}{2}}$.
71. (a) $\frac{(n+1) \cos n x-n \cos (n+1) x-1}{4 \sin ^{2} \frac{x}{2}}$;
(b) $\frac{(n+1) \sin n x-n \sin (n+1) x}{4 \sin ^{2} \frac{x}{2}}$.
72. $e^{a}(\cos b+i \sin b)$.
73. (a) $-3, \frac{3 \pm i \sqrt{3}}{2} ;$ (b) $-3, \frac{3 \pm 5 i \sqrt{3}}{2}$;
(c) $-7,-1 \pm i \sqrt{3}$;
(d) $-1, \frac{-5 \pm 5 i \sqrt{3}}{2}$;
(e) $2,-1 \pm \sqrt{3}$;
(f) $\sqrt[3]{\sqrt{2}}-\sqrt[3]{4}, \frac{\sqrt[3]{4}-\sqrt[3]{2}}{2} \pm \frac{i \sqrt{3}}{2}(\sqrt[3]{4} \overline{4}+\sqrt[3]{2})$;
(g) $\sqrt[3]{\sqrt{9}}-2 \sqrt[3]{3}, \frac{2 \sqrt[3]{3}-\sqrt[3]{9}}{2} \pm \frac{i \sqrt{3}}{2}(\sqrt[3]{9}+2 \sqrt[3]{3})$;
(h) $1-\sqrt[3]{2}-\sqrt[3]{4}, \frac{2+\sqrt[3]{2}+\sqrt[3]{4}}{2} \pm \frac{i \sqrt{3}}{2}(\sqrt[3]{4}-\sqrt[3]{2})$;
(i) $-(1+\sqrt[3]{3}+\sqrt[3]{9})$,
$\frac{-2+\sqrt[3]{3}+\sqrt[3]{9}}{2} \pm \frac{i \sqrt{3}}{2}(\sqrt[3]{9}-\sqrt[3]{3}) ;$
(j) $2,-1 \pm 2 i \sqrt{3}$; (k) $2,-1 \pm 3 i \sqrt{3}$; (l) $2,-1 \pm 4 i \sqrt{3}$;
(m) $1,-2 \pm \sqrt{3}$; (n) $4,-1 \pm 4 i \sqrt{3}$; (o) $-2 i, i, i$;
(p) $-1-i,-1-i, 2+2 i$;
(q) $-(a+b), \frac{a+b}{2} \pm \frac{i \sqrt{3}}{2}(a-b)$;
(r) $-\left(a \sqrt[3]{f^{2} g}+b \sqrt[3]{f g^{2}}\right)$,
$\frac{a \sqrt[3]{f^{2} g}+b \sqrt[3]{\sqrt{f g^{2}}}}{2} \pm \frac{i \sqrt{3}}{2}\left(a \stackrel{3}{\sqrt{f^{2} g}-b} \sqrt[3]{\sqrt{g^{2}}}\right) ;$
(s) $2,1149,-0,2541,-1,8608$;
(t) $1,5981,0,5115,-2,1007$.
74. Solution.

$$
\begin{aligned}
& x_{1}-x_{2}=\alpha(1-\omega)+\beta\left(1-\omega^{2}\right)=(1-\omega)\left(\alpha-\beta \omega^{2}\right) ; \\
& x_{1}-x_{3}=\alpha\left(1-\omega^{2}\right)+\beta(1-\omega)=\left(1-\omega^{2}\right)(\alpha-\beta \omega) ; \\
& x_{2}-x_{3}=\alpha\left(\omega-\omega^{2}\right)+\beta\left(\omega^{2}-\omega\right)=\left(\omega-\omega^{2}\right)(\alpha-\beta) ; \\
& \left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)=3\left(\omega-\omega^{2}\right)\left(\alpha^{3}-\beta^{3}\right) ; \\
& \left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{8}-x_{2}\right)^{2}=-27\left[\left(\alpha^{8}+\beta^{3}\right)^{2}-4 \alpha^{3} \beta^{3}\right]=-27 q^{2}-4 p^{3} .
\end{aligned}
$$

77. Solution.

The cubic equation mentioned in "Hints to Solutions" $z^{8}-3(p x+q) z+$ $+x^{3}+p^{3}-3 q x-3 p q=0$ having the obvious root $z=-(x+p)$. The other roots of this equation are $z_{2,3}=\frac{x+p \pm \sqrt{-3(x-p)^{2}+12 q}}{2}$. By virtue of Problem 76 , the left member of the equation under study may be given as

$$
\begin{aligned}
& -\frac{1}{27}\left(z_{4}-z_{3}\right)^{2}\left(z_{3}-z_{1}\right)^{2}\left(z_{1}-z_{3}\right)^{2} \\
& =-\frac{1}{27}\left[-3(x-p)^{2}+12 q\right]\left[\frac{3(x+p)+\sqrt{-3(x-p)^{2}+12 q}}{2}\right]^{2} \\
& \quad \times\left[\frac{\left.3(x+p)-\sqrt{\frac{-3(x-p)^{2}+12 q}{2}}\right]^{2}}{2} \quad=\left[(x-p)^{2}-4 q\right]\left(x^{3}+p x+p^{2}-q\right)\right.
\end{aligned}
$$

whence the roots are readily found:

$$
\begin{aligned}
& x_{1, \mathrm{~s}}=p \pm 2 \sqrt{q}, \quad x_{3}=x_{4}=\frac{-p+\sqrt{4 q-3 p^{2}}}{2} ; \\
& x_{5}=x_{6}=\frac{-p-\sqrt{4 q-3 p^{2}}}{2}
\end{aligned}
$$

78. The left member will be represented in the form

$$
\alpha^{5}+\beta^{5}+5(\alpha+\beta)\left(\alpha^{2}+\alpha \beta+\beta^{2}-a\right)(\alpha \beta-a)-2 b=0 .
$$

Answer. $\boldsymbol{x}=\alpha+\beta$ where
$\alpha=\sqrt[5]{b+\sqrt{b^{2}-a^{5}}}, \quad \beta=\sqrt[5]{b-\sqrt{b^{2}-a^{5}}} ; \quad \alpha \beta=a$.
79. (a) $\pm \sqrt{2}, 1 \pm i \sqrt{3} ;$ (b) $-1 \pm \sqrt{6}, \pm i \sqrt{3}$;
(c) $\pm \sqrt{2}, \frac{1 \pm i \sqrt{3}}{2}$;
(d) $\frac{1 \pm \sqrt{5}}{2}, \frac{3 \pm \sqrt{5}}{2}$;
(e) $\frac{1 \pm \sqrt{13}}{2}, 1 \pm i$;
(f) $\frac{1 \pm \sqrt{29}}{2}, \frac{5 \pm i \sqrt{7}}{2}$;
(g) $\pm i, 1 \pm i \sqrt{2}$;
(h) $\pm \sqrt{5}, \frac{1 \pm i \sqrt{7}}{2}$;
(i) $\pm i,-1 \pm i \sqrt{6}$;
(j) $-2 \pm 2 \sqrt{2},-1 \pm i$;
(k) $1,3,1 \pm \sqrt{2}$;
(l) $1,-1,1 \pm 2 i$;
(m) $\frac{1+\sqrt{5} \pm \sqrt{22+2 \sqrt{5}}}{4}$, $\frac{1-\sqrt{5} \pm \sqrt{22-2 \sqrt{5}}}{4} ;$
(n) $\frac{1+\sqrt{5} \pm \sqrt{30-6 \sqrt{5}}}{4}, \quad \frac{1-\sqrt{5} \pm \sqrt{30+6 \sqrt{5}}}{4}$;
(o) $\frac{1+\sqrt{2}}{2} \pm \frac{1}{2} \sqrt{-1-2 \sqrt{2}}, \quad \frac{1-\sqrt{2}}{2} \pm \frac{1}{2} \sqrt{-1+2} \sqrt{\overline{2}}$;
(p) $1+\sqrt{7} \pm \sqrt{6+2 \sqrt{7}}, \quad 1-\sqrt{7} \pm \sqrt{6-2 \sqrt{7}} ;$
(q) $\frac{1 \pm \sqrt{4 \sqrt{3}-3}}{2}, \frac{1 \pm \sqrt{-4 \sqrt{3}-3}}{2}$;
(r) $\frac{1+\sqrt{5} \pm \sqrt{-2-6 \sqrt{5}}}{4}, \quad \frac{1-\sqrt{5} \pm \sqrt{-2+6 \sqrt{5}}}{4}$;
(s) $\frac{1+\sqrt{2} \pm \sqrt{-5+2 \sqrt{2}}}{4}, \quad \frac{1-\sqrt{2} \pm \sqrt{-5-2 \sqrt{2}}}{4}$;
(t) $\frac{1+\sqrt{3} \pm \sqrt{12+2 \sqrt{3}}}{4}, \quad \frac{1-\sqrt{3} \pm \sqrt{12-2 \sqrt{3}}}{4}$.
80. Solution.
$x^{4}+a x^{3}+b x^{2}+c x+d$

$$
=\left(x^{2}+\frac{a}{2} x+\frac{\lambda}{2}+m x+n\right)\left(x^{2}+\frac{a}{2} x+\frac{\lambda}{2}-m x-n\right) ;
$$

$x_{1} x_{2}=\frac{\lambda}{2}+n ; \quad x_{3} x_{4}=\frac{\lambda}{2}-n ; \quad \lambda=x_{1} x_{2}+x_{3} x_{4}$.
81. (a) ± 1; (b) $1,-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$; (c) $\pm 1, \pm i$;
(d) $\pm 1, \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2} ;$ (e) $\pm 1, \pm i, \pm \frac{\sqrt{2}}{2}(1 \pm i)$;
(f) $\pm 1, \pm i, \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2}, \pm \frac{\sqrt{3}}{2} \pm \frac{i}{2}$;
(g) $\pm 1, \pm i, \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2}, \pm \frac{\sqrt{2}}{2}(1 \pm i), \pm \frac{\sqrt{3}}{2} \pm \frac{i}{2}$,
$\pm \frac{\sqrt{6}+\sqrt{2}}{4} \pm i \frac{\sqrt{\overline{6}}-\sqrt{2}}{4}, \pm \frac{\sqrt{6}-\sqrt{2}}{4} \pm i \frac{\sqrt{6}+\sqrt{2}}{4}$.
82. (a) -1 ;
(b) $-\frac{1}{2} \pm i \frac{l^{\prime} 3}{2}$;
(c) $\pm i$;
(d) $\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$;
(e) $\pm \frac{\sqrt{2}}{2}(1 \pm i)$;
(f) $\pm \frac{\sqrt{3}}{2} \pm \frac{i}{2}$;
(g) $\pm \frac{\sqrt{6}+\sqrt{2}}{4} \pm i \frac{\sqrt{6}-\sqrt{2}}{4}, \pm \frac{\sqrt{6}-\sqrt{2}}{4} \pm i \frac{\sqrt{6}+\sqrt{2}}{4}$.
83. (a) $20,20,180$; (b) $72,144,12$.
84. $\cos \frac{2 k \pi}{7}+i \sin \frac{2 k \pi}{7}$, where $k=1,2,3,4,5,6$.
85. (a) Denoting $\varepsilon_{k}=\cos \frac{2 k \pi}{16}+i \sin \frac{2 k \pi}{16}$, we get the following:
ε_{0} belongs to exponent 1 ,
ε_{8} belongs to exponent 2 ,
$\varepsilon_{4}, \varepsilon_{12}$ belong to exponent 4 ,
$\varepsilon_{2}, \varepsilon_{6}, \varepsilon_{10}, \varepsilon_{14}$ belong to exponent 8 , the primitive 16 th roots are $\varepsilon_{1}, \varepsilon_{3}, \varepsilon_{5}, \varepsilon_{7}, \varepsilon_{9}, \varepsilon_{11}, \varepsilon_{13}, \varepsilon_{15}$.
(b) Denoting $\varepsilon_{k}=\cos \frac{2 k \pi}{20}+i \sin \frac{2 k \pi}{20}$, we find that
ε_{0} belongs to exponent 1 ,
ε_{10} belongs to exponent 2 ,
$\varepsilon_{5}, \varepsilon_{15}$ belong to exponent 4,
$\varepsilon_{4}, \varepsilon_{8}, \varepsilon_{12}, \varepsilon_{16}$ belong to exponent 5 , $\varepsilon_{2}, \varepsilon_{6}, \varepsilon_{14}, \varepsilon_{18}$ belong to exponent 10 , the primitive 20 th roots are $\varepsilon_{1}, \varepsilon_{9}, \varepsilon_{7}, \varepsilon_{9}, \varepsilon_{11}, \varepsilon_{13}, \varepsilon_{17}, \varepsilon_{19}$.
(c) Denoting $\varepsilon_{k}=\cos \frac{2 k \pi}{24}+i \sin \frac{2 k \pi}{24}$, we find that
ε_{0} belongs to exponent 1 ,
ε_{12} belongs to exponent 2,
$\varepsilon_{8}, \varepsilon_{16}$ belong to exponent 3 ,
$\varepsilon_{6}, \varepsilon_{18}$ belong to exponent 4 ,
$\varepsilon_{4}, \varepsilon_{\mathrm{z0}}$ belong to exponent 6 ,
$\varepsilon_{3}, \varepsilon_{9}, \varepsilon_{15}, \varepsilon_{21}$ belong to exponent 8 ,
$\varepsilon_{2}, \varepsilon_{10}, \varepsilon_{14}, \varepsilon_{22}$ belong to exponent 12 , the primitive 24 th roots are $\varepsilon_{1}, \varepsilon_{5}, \varepsilon_{7}, \varepsilon_{11}, \varepsilon_{12}, \varepsilon_{17}, \varepsilon_{19}, \varepsilon_{23}$.
86. (a) $X_{1}(x)=x-1$; (b) $X_{2}(x)=x+1$;
(c) $X_{3}(x)=x^{2}+x+1$; (d) $X_{4}(x)=x^{2}+1$;
(e) $X_{5}(x)=x^{4}+x^{3}+x^{2}+x+1$; (f) $X_{6}(x)=x^{2}-x+1$;
(g) $X_{7}(x)=x^{6}+x^{5}+x^{4}+x^{8}+x^{2}+x+1$; (h) $X_{8}(x)=x^{4}+1$;
(i) $X_{0}(x)=x^{6}+x^{8}+1$; (j) $X_{10}(x)=x^{4}-x^{3}+x^{2}-x+1$;
(k) $X_{11}(x)=x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$;
(l) $X_{12}(x)=x^{4}-x^{2}+1$;
(m) $X_{15}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1$:
(n) $X_{105}(x)=x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2 x^{41}-x^{40}-x^{39}+x^{36}+x^{95}$

$$
\begin{aligned}
& +x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{28} \\
& -x^{24}-x^{22}-x^{20}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}-x^{9}-x^{8} \\
& -2 x^{7}-x^{6}-x^{5}+x^{2}+x+1 .
\end{aligned}
$$

87. $\frac{2}{1-\varepsilon}$.
88. 0 if $n>1$.
89. n if k is divisible by $n ; 0$ if k is not divisible by n.
90. $m\left(x^{m}+1\right)$.
91. $-\frac{n}{1-\varepsilon}$ if $\varepsilon \neq 1 ; \quad \frac{n(n+1)}{2}$ if $\varepsilon=1$.
92. $-\frac{n^{2}(1-\varepsilon)+2 n}{(1-\varepsilon)^{2}}$ if $\varepsilon \neq 1 ; \quad \frac{n(n+1)(2 n+1)}{6}$ if $\varepsilon=1$.
93. (a) $-\frac{n}{2}$; (b) $-\frac{n}{2} \cot \frac{\pi}{n}$.
94. (a) 1 , (b) 0 , (c) -1 .
95. $x_{0}=1$;
$x_{1}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}+\frac{i}{4} \sqrt{10+2 \sqrt{5}} ;$
$x_{2}=\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}=-\frac{\sqrt{5}+1}{4}+\frac{i}{4} \sqrt{10-2 \sqrt{5}} ;$
$x_{3}=\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5}=-\frac{\sqrt{5}+1}{4}-\frac{i}{4} \sqrt{10-2 \sqrt{5}} ;$
$x_{4}=\cos \frac{8 \pi}{5}+i \sin \frac{8 \pi}{5}=\frac{\sqrt{5}-1}{4}-\frac{i}{4} \sqrt{10+2 \sqrt{5}}$.
96. $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}, \quad \cos 18^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}$.
97. Solution. Divide both sides of the equation $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=$ $=0$ by x^{3}. A few simple manipulations yield

$$
\left(x+\frac{1}{x}\right)^{3}+\left(x+\frac{1}{x}\right)^{2}-2\left(x+\frac{1}{x}\right)-1=0 .
$$

The equation $z^{8}+z^{2}-2 z-1=0$ is satisfied by $z=2 \cos \frac{4 \pi}{7}=-2 \sin \frac{\pi}{14}$.
Whence $t=2 \sin \frac{\pi}{14}$ satisfies the equation $t^{3}-t^{2}-2 t+1=0$. The resulting equation is the simplest in the sense that any other equation with rational coefficients having a common root with it is of higher degree. The proof of this fact requires information from subsequent sections of the course.
98. Solution. Let $n=2 m$, then the equation $x^{n}-1=0$ has two real roots, 1 and -1 and $2 m-2$ complex roots. Here $\varepsilon_{k}=\cos \frac{2 k \pi}{2 m}+i \sin \frac{2 k \pi}{2 m}$ is associated with $\varepsilon_{2 m-k}=\cos \frac{2(2 m-k) \pi}{2 m}+i \sin \frac{2(2 m-k) \pi}{2 m}$. We thus have

$$
\begin{gathered}
x^{2 m}-1=\left(x^{2}-1\right)\left(x-\varepsilon_{1}\right)\left(x-\bar{\varepsilon}_{1}\right)\left(x-\varepsilon_{2}\right)\left(x-\bar{\varepsilon}_{2}\right) \\
\ldots\left(x-\varepsilon_{m-1}\right)\left(x-\bar{\varepsilon}_{m-1}\right) \\
x^{2 m}-1=\left(x^{2}-1\right)\left[x^{2}-\left(\varepsilon_{1}+\bar{\varepsilon}_{1}\right) x+1\right] \ldots\left[x^{2}-\left(\varepsilon_{m-1}+\bar{\varepsilon}_{m-1}\right) x+1\right] \\
x^{2 m}-1=\left(x^{2}-1\right) \prod_{k=1}^{m-1}\left(x^{2}-2 x \cos \frac{k \pi}{m}+1\right)
\end{gathered}
$$

If $n=2 m+1$, then in analogous fashion we obtain

$$
x^{2 m+1}-1=(x-1) \prod_{k=1}^{m}\left(x^{2}-2 x \cos \frac{2 k \pi}{2 m+1}+1\right)
$$

99. Solution. (a) We have

$$
\frac{x^{2 m}-1}{x^{2}-1}=\prod_{k=1}^{m-1}\left(x^{2}-2 x \cos \frac{k \pi}{m}+1\right)
$$

Putting $x=1$, we get $m=2^{m-1} \prod_{k=1}^{m-1}\left(1-\cos \frac{k \pi}{m}\right)$
or $m=2^{2(m-1)} \prod_{k=1}^{m-1} \sin ^{2} \frac{k \pi}{2 m}$ and finally,

$$
\frac{\sqrt{m}}{2^{m-1}}=\prod_{k=1}^{m-1} \sin \frac{k \pi}{2 m}
$$

Formula (b) is obtained in similar fashion.
100. Solution. In the identity $x^{n}-1=\prod_{k=0}^{n-1}\left(x-\varepsilon_{k}\right)$
where $\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$, put $x=-\frac{a}{b}$. We get

$$
(-1)^{n} \frac{a^{n}}{b^{n}}-1=(-1)^{n} \prod_{k=0}^{n-1}\left(\frac{a}{b}+\varepsilon_{k}\right) \text { and so on. }
$$

101. Following the suggestion made in "Hints to Solutions", we get

$$
\begin{aligned}
& \cos n \Theta+i \sin n \Theta-1=\prod_{k=0}^{n-1}\left(\cos \Theta+i \sin \Theta-\varepsilon_{k}\right) \\
& \cos n \Theta-i \sin n \Theta-1=\prod_{k=0}^{n-1}\left(\cos \Theta-i \sin \Theta-\varepsilon_{k}\right)
\end{aligned}
$$

We get the required result by multiplying together the last equations.
102. Solution.

$$
\begin{aligned}
& \prod_{k=0}^{n-1} \frac{\left(t+\varepsilon_{k}\right)^{n}-1}{t}=\frac{1}{t^{n}} \prod_{k=0}^{n-1} \prod_{s=0}^{n-1}\left(t+\varepsilon_{k}-\varepsilon_{s}\right) \\
& =\frac{1}{t^{n}} \prod_{k=0}^{n-1} \prod_{s=0}^{n-1}\left[t-\varepsilon_{k}\left(\frac{\varepsilon_{s}}{\varepsilon_{k}}-1\right)\right]=\frac{1}{t^{n}} \prod_{k=0}^{n-1} \prod_{s=0}^{n-1}\left[t-\varepsilon_{k}\left(\varepsilon_{s}-1\right)\right] \\
& =\frac{1}{t^{n}} \prod_{s=0}^{n-1} \prod_{k=0}^{n-1}\left[t-\varepsilon_{k}\left(\varepsilon_{s}-1\right)\right]=\frac{1}{t^{n}} \prod_{s=0}^{n-1}\left[t^{n}-\left(\varepsilon_{s}-1\right)^{n}\right] \\
& \quad=\prod_{k=1}^{n-1}\left[t^{n}-\left(\varepsilon_{k}-1\right)^{n}\right] .
\end{aligned}
$$

103. We have $|x|=|x|^{n-1}$, hence $|x|=0$ or $|x|=1$. If $|x|=0$, then $x=0$. But if $|x|=1$, then $x \bar{x}=1$.

On the other hand, $x \bar{x}=x^{n}$. Hence, $x^{n}=1$. Thus

$$
x=0 \text { and } x=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0,1,2, \ldots, n-1
$$

The converse is readily verified.
104. Solution. If z satisfies the given equation, then $\left|\frac{z-a}{z-b}\right|=\sqrt[n]{\left|\frac{\mu}{\lambda}\right|}$. The locus of points the distance from which to two given points is the given ratio is a circle (a straight line in a particular case).
105. (a) We have $\frac{x+1}{x-1}=\varepsilon_{k}$ where $\varepsilon_{k}=\cos \frac{2 k \pi}{m}+i \sin \frac{2 k \pi}{m}$, $k=1,2, \ldots, m-1$. Whence $x=\frac{\varepsilon_{k}+1}{\varepsilon_{k}-1}$. Transformation of the last expression yields $x_{k}=i \cot \frac{k \pi}{m}, k=1,2, \ldots, m-1$;
(b) $x_{k}=\cot \frac{k \pi}{m}, k=1,2, \ldots, m-1$;
(c) $x_{k}=$

$$
\frac{a}{\varepsilon_{k} \sqrt[n]{2}-1}
$$

where $\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0,1,2, \ldots, n-1$.
106. Solution. Let $A=\cos \varphi+i \sin \varphi$. Then
$\frac{1+i x}{1-i x}=\eta_{k}^{2}$ where $\eta_{k}=\cos \frac{\varphi+2 k \pi}{2 m}+i \sin \frac{\varphi+2 k \pi}{2 m}, k=0,1, \ldots, m-1$
Whence,

$$
x=\frac{\eta_{k}^{2}-1}{i\left(\eta_{k}^{2}+1\right)}=\frac{\eta_{k}-\eta_{k}^{-1}}{i\left(\eta_{k}+\eta_{k}^{-1}\right)}=\tan \frac{\varphi+2 k \pi}{2 m} .
$$

107. Solution. Using the hint, we have

$$
S+T i=\mu(1+\lambda x)^{n}, \quad S-T i=\bar{\mu}(1+\bar{\lambda} x)^{n}
$$

where $\lambda=\cos \alpha+i \sin \alpha, \mu=\cos \varphi+i \sin \varphi$. Whence

$$
2 S=\mu(1+\lambda x)^{n}+\bar{\mu}(1+\bar{\lambda} x)^{n} .
$$

The equation becomes $\mu(1+\lambda x)^{n}+\bar{\mu}(1+\bar{\lambda} x)^{n}=0$;

$$
x_{k}=-\frac{\sin \frac{(2 k+1) \pi-2 \varphi}{2 n}}{\sin \frac{(2 k+1) \pi-2 \varphi-2 n \alpha}{2 n}},
$$

$$
k=0,1,2, \ldots, n-1 .
$$

108. Solution. Let $\alpha^{a}=1, \beta^{b}=1$. Then $(\alpha \beta)^{a b}=\left(\alpha^{a}\right)^{b} \cdot\left(\beta^{b}\right)^{a}=1$.
109. Solution. Let ε be the common root of $x^{a}-1$ and $x^{b}-1$; s is the exponent to which ε belongs. Then s is a common divisor of a and b and can therefore only be equal to 1 and $\varepsilon=1$. The converse is obvious.
110. Solution. Let α_{k} and β_{s} be roots of 1 of degree a and $b ; k=0,1,2$, $\ldots, a-1 ; s=0,1,2, \ldots, b-1$. On the basis of Problem 108 it suffices to show that all $\alpha_{k} \beta_{s}$ are distinct. Suppose that $\alpha_{k_{1}} \beta_{s_{1}}=\alpha_{k_{2}} \beta_{s_{2}}$. Then $\frac{\alpha_{k_{1}}}{\alpha_{k_{2}}}=\frac{\beta_{s_{2}}}{\beta_{s_{1}}}$, i.e., $\alpha_{i}=\beta_{j}$. On the basis of Problem 109, $\alpha_{i}=\beta_{j}=1$, i.e., $k_{1}=k_{2}, s_{1}=s_{2}$.
111. Solution. Let α and β be primitive a th and b th roots of 1 . Let $(\alpha \beta)^{s}=1$. Then $\alpha^{b s}=1, \beta^{a s}=1$. It thus appears that $b s$ is divisible by a and $a s$ is divisible by b. Hence, s is divisible by $a b$.

Let λ be a primitive abth root of unity. Then $\lambda=\alpha^{k} \beta^{s}$ (Problem 110). Let α^{k} belong to the exponent $a_{1}<a$. Then $\lambda^{a_{1} b}=\left(\alpha^{k}\right)^{a_{1} b}\left(\beta^{j}\right)^{a_{1} b}=1$ which is impossible. In the same way it may be shown that β^{s} is a primitive b th root of 1 .
112. It follows directly from Problem 111.
113. Using the bint, write out all multiples of p that do not exceed p^{α}. Namely, $1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, p^{\alpha-1} \cdot p$. It is immediately seen that there are $p^{\alpha-1}$ such numbers. Whence $\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{p}\right)$. On the basis
of Problem 112, $\varphi(n)=\varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(p_{2}^{\alpha_{2}}\right) \ldots \varphi\left(p_{k}^{\alpha} k\right)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)$ $\ldots\left(1-\frac{1}{p_{k}}\right)$.
114. Solution. If ε is a primitive nth root of 1 , then $\bar{\varepsilon}$, the conjugate of ε, is also a primitive nth root of 1 . Here, $\varepsilon \neq \pm 1$ since $n>2$.
115. $X_{p}(x)=x^{p-1}+x^{p-2}+\ldots+x+1$.
116. $X_{p} m(x)=x^{(p-1) p^{m-1}}+x^{(p-2) p^{m-1}}+\ldots+x^{p^{m-1}}+1$.
117. The suggestion can be utilized immediately on the basis of Problem 111.

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\varphi(n)}$ be primitive nth roots of 1 . Then $-\alpha_{1},-\alpha_{2}, \ldots,-\alpha_{\varphi(n)}$ are primitive $2 n$th roots of 1 . We have
$X_{2 n}(x)=\left(x+\alpha_{1}\right)\left(x+\alpha_{2}\right) \ldots\left(x+\alpha_{\varphi(n)}\right)=(-1)^{\varphi(n)}\left(-x-\alpha_{1}\right) \ldots\left(-x-\alpha_{\varphi(n)}\right)$ or (Problem 114) $X_{2 n}(x)=X_{n}(-x)$.
118. Solution. Let $\varepsilon_{k}=\cos \frac{2 k \pi}{n d}+i \sin \frac{2 k \pi}{n d}$ be a primitive $n d$ th root of 1 , that is, k and n are relatively prime. Divide k by n, this yields $k=n q+r$, where $0<r<n$. Whence $\varepsilon_{k}=\cos \frac{2 q \pi+\frac{2 r \pi}{n}}{d}+i \sin \frac{2 q \pi+\frac{2 r \pi}{n}}{d}$ that is, ε_{k} is one of the values of the d th root of $\eta_{r}=\cos \frac{2 r \pi}{n}+i \sin \frac{2 r \pi}{n}$; η_{r} is a primitive nth root of 1 , since every common divisor of r and n is a common divisor of k and n.

Now let $\eta_{r}=\cos \frac{2 r \pi}{n}+i \sin \frac{2 r \pi}{n}$ be a primitive nth root of 1 , i.e., r and n are relatively prime.

Form $\varepsilon_{q}=\cos \frac{2 q \pi+\frac{2 r \pi}{n}}{d}+i \sin \frac{2 q \pi+\frac{2 r \pi}{n}}{d}=\cos \frac{2 \pi(r+n q)}{n d}+$ $+i \sin \frac{2 \pi(r+n q)}{n d}$ where $q=0,1,2, \ldots, d-1 ; \varepsilon_{q}$ is a primitive ndth root of 1 . Indeed, if $r+n q$ and $n d$ were both divisible by some prime p, then p would divide n and r, but this is impossible.
119. Solution. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\varphi\left(n^{\prime}\right)}$ be primitive roots of 1 of degree n^{\prime}. $\varphi\left(n^{\prime}\right)$
Then $X_{n^{\prime}}\left(x^{n \prime \prime}\right)=\prod\left(x^{n \prime}-\varepsilon_{k}\right)$. Furthermore, let $\left(x-\varepsilon_{k, 1}\right)\left(x-\varepsilon_{k, 2}\right)$ $k=1$
$\ldots\left(x-\varepsilon_{k \cdot n^{\prime \prime}}\right)$ be a factorization of $x^{n^{\prime \prime}}-\varepsilon_{k}$ into linear factors. Then $X_{n}^{\prime}\left(x^{n \prime \prime}\right)=$ $k=\varphi\left(n^{\prime}\right)$
$i=n^{\prime \prime}$
$=\prod_{\substack{k=1 \\ i=1}}\left(x-\varepsilon_{k}, i\right)$. On the basis of Problem 118, each linear factor $x-\varepsilon_{k, i}$
enters into the factorization of $X_{n}(x)$, and conversely. Besides, since $\varphi(n)=n^{\prime \prime} \varphi\left(n^{\prime}\right)$, the degrees of $X_{n}(x)$ and $X_{n^{\prime}}\left(x^{n^{\prime \prime}}\right)$ are equal.
121. Solution. The sum of all nth roots of 1 is zero. Since each nth root of 1 belongs to the exponent d, which is a divisor of n, and conversely, it follows that $\sum_{d / n} \mu(d)=0$.
122. Solution. Let $\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$ belong to the exponent n_{1}. Then the factor $x-\varepsilon_{k}$ will enter into the binomials $x^{d}-1$, where d is divisible by n_{1} (and only such binomials). Here, if d runs through all divisors of n that are multiples of $n_{1}, \frac{n}{d}$ runs through all divisors of $\frac{n}{n_{1}}$. Thus, $x-\varepsilon_{k}$ will enter the right side with exponent $\sum \mu\left(d_{1}\right)$. This sum is equal to zero if $\frac{n}{n_{1}} \neq 1$ and to 1 if $n=n_{1}$.
123. Solution. If $n=p^{\alpha}$ where p is prime, then $X_{n}(1)=p$. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ $\ldots p_{k k}^{\alpha}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, then (Problem 119) $X_{n}(1)=$ $=X_{n^{\prime}}(1)$, where $n^{\prime}=p_{1}, p_{2} \ldots p_{k}$.

Now let $n=p_{1}, p_{2} \ldots p_{k} ; k \geqslant 2 ; n_{1}=\frac{n}{p_{k}}$. Note that in order to obtain all divisors of n it is sufficient to adjoin to all divisors of n_{1} their products into p_{k}. Therefore

$$
\begin{aligned}
& X_{n}(x)=\prod_{d / n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)} \\
& \quad=\prod_{d / n_{1}}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)} \cdot \prod_{d / n_{1}}\left(x^{d p_{k}}-1\right)^{\mu\left(\frac{n}{d p_{k}^{-}}\right)} \\
& =\left[X_{n_{1}}(x)\right]^{-1} \cdot X_{n_{1}}\left(x^{p_{k}}\right) .
\end{aligned}
$$

Whence $X_{n}(1)=1$.
124. Solution. (1) Let n be odd and greater than unity. Then (Problem 117) $X_{n}(-1)=X_{2_{n}}(1)=1$.
(2) Let $n=2^{k}$, then $X_{n}=\frac{x^{n}-1}{x^{\frac{n}{2}}-1}=x^{\frac{n}{2}}+1$ and $X_{n}(-1)$ is equal to 0 if $k=1$ and to 2 if $k>1$.
(3) Let $n=2 n_{1}$ where n_{1} is odd and greater than unity. Then (Problem 117) $X_{n}(-1)=X_{n_{1}}$ (1) and, hence, $X_{n}(-1)$ is equal to p if $n_{1}=p^{x}$ (p prime) or is equal to 1 if $n_{1} \neq p^{x}$.
(4) Let $n=2^{k} n_{1}$, where $k>1$ and $n_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{s}^{\alpha_{s}}\left(p_{1}, p_{2}, \ldots, p_{s}\right.$ are distinct odd primes). In this case (Problem 119) $X_{n}(x)=X_{2 p_{1} p_{2} \ldots p_{s}}\left(x^{\lambda}\right)$, where $\lambda=2^{k-1} p_{1}^{\alpha_{1}-1} \ldots p_{s}^{\alpha_{s}-1}$. Whence it follows that $X_{n}(-1)=X_{n}(1)=1$.
125. Solution. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\varphi(n)}$ be primitive nth roots of 1 :
$s=\varepsilon_{1} \varepsilon_{2}+\varepsilon_{1} \varepsilon_{3}+\ldots+\varepsilon_{\varphi(n)-1} \cdot \varepsilon_{\varphi(n)}=\frac{[\mu(n)]^{2}-\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots+\varepsilon_{\varphi(n)}^{2}\right)}{2}$.
(1) Let n be odd, then ε_{i}^{2} is a primitive nth root of 1 and $\varepsilon_{i}^{2}=\varepsilon_{j}^{2}$ for $i=j$ only. Therefore

$$
\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots+\varepsilon_{\varphi(n)}^{2}=\mu(n) \text { and } s=\frac{[\mu(n)]^{2}-\mu(n)}{2} .
$$

(2) Let $n=2 n_{1}, n_{1}$ is odd. In this case $-\varepsilon_{i}$ (Problem 111) is a primitive n_{1} th root of unity and therefore $[\sec (1)] \varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots+\varepsilon_{\varphi(n)}^{2}=\mu\left(n_{1}\right)=-\mu(n)$. Thus, in this case $s=\frac{[\mu(n)]^{2}+\mu(n)}{2}$.
(3) Let $n=2^{k} n_{1}$ where $k>1, n_{1}$ is odd. In this case ε_{i}^{2} belongs to exponent $\frac{n}{2}$. On the basis of Problem 118, we assert that $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\varphi(n)}$ are square roots of $\eta_{1}, \eta_{2}, \ldots, \eta_{\varphi\left(\frac{n}{2}\right)}$, where $\eta_{1}, \eta_{2}, \ldots, \eta_{\varphi\left(\frac{n}{2}\right)}$ are primitive $\frac{n}{2}$ th roots of 1 . Whence it follows that

$$
\begin{aligned}
& \varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots+\varepsilon_{\varphi(n)}^{2}=2\left(\eta_{1}+\eta_{2}+\ldots+\eta_{\varphi\left(\frac{n}{2}\right)}\right)=2 \mu\left(\frac{n}{2}\right) ; \\
& s=-\mu\left(\frac{n}{2}\right) .
\end{aligned}
$$

126. Solution. $S=\sum_{x=0}^{n-1} \varepsilon^{x^{2}}=\sum_{x=y}^{y+n-1} \varepsilon^{x^{2}}=\sum_{s=0}^{n-1} \varepsilon^{(y+s)^{2}}$
for arbitrary integral y :

$$
\begin{aligned}
& S^{\prime}=\sum_{y=0}^{n-1} \varepsilon^{-y^{2}} ; \quad S^{\prime} S=\sum_{y=0}^{n-1} \varepsilon^{-y^{2}} S=\sum_{y=0}^{n-1}\left(\varepsilon^{-y^{\prime}} \cdot \sum_{s=0}^{n-1} \varepsilon^{(y+s)^{2}}\right) \\
&=\sum_{\substack{y=0 \\
n-1}} \sum_{s=0}^{n-1} \varepsilon^{2 y s+s^{2}}=\sum_{s=0}^{n-1}\left(\varepsilon^{s^{2}} \cdot \sum_{y=0}^{n-1} \varepsilon^{2 y s}\right)=n+\sum_{s=1}^{n-1} \varepsilon^{s^{2}} \\
& \sum_{y=0}\left(\varepsilon^{2 s}\right)^{y}=n \text { for } n \text { odd } ; \\
& S S^{\prime}=n+n \varepsilon \varepsilon^{\left(\frac{n}{2}\right)^{2}}=n\left[1+(-1)^{\frac{n}{2}}\right]
\end{aligned}
$$

for n even (since $\sum_{y=0}^{n-1} \varepsilon^{2 s y}=0$ for $2 s$ not divisible by n).
To summarize, $|S|=\sqrt{y=0} n$ if n is odd, and $|S|=\sqrt{n\left[1+(-1)^{\frac{n}{2}}\right]}$ if n is even.

CHAPTER 2

EVALUATION OF DETERMINANTS

127. (a) 5 , (b) 5 , (c) 1 , (d) $a b-c^{2}-d^{2}$, (e) $\alpha^{2}+\beta^{2}-\gamma^{2}-\delta^{2}$, (f) $\sin (\alpha-\beta)$,
(g) $\cos (\alpha+\beta)$, (h) $\sec ^{2} \alpha,(\mathrm{i})-2$, (j) $0,(\mathrm{k})(b-c)(d-a),(\mathrm{l}) 4 a b,(\mathrm{~m})-1$, (n) -1 , (o) $\frac{1+i \sqrt{3}}{2}$.
128. (a) 1 ,
(b) 2,
(c) $2 a^{2}(a+x)$,
(d) 1 ,
(e) -2 ,
(f) $-2-\sqrt{2}$,
(g) $-3 i \sqrt{3}$, (h) -3 .
129. The number of transpositions is odd.
130. (a) 10 , (b) 18 , (c) 36 . 131. (a) $i=8, k=3$, (b) $i=3, k=6$.
131. C_{n}^{2}. 133. $C_{n}^{2}-1$. 134. (a) $\frac{n(n-1)}{2}$, (b) $\frac{n(n+1)}{2}$.
132. (a) $\frac{n(3 n+1)}{2}$
(b) $\frac{3 n(n-1)}{4}$.
133. Consider a pair of elements a_{i} and a_{k}, where $i<k$. . If these elements do not form an inversion, then a_{i} will precede a_{k} when the permutation returns to its original order, and, hence, the indices will not yield an inversion.

But if the elements a_{i} and a_{k} form an inversion, then a_{k} will precede a_{i} after the permutation is returned to its original ordering and, thus, the indices i and k will yield an inversion.
137. In both cases the permutation is odd. This is due to the fact that the original arrangement is obtained from the other one by means of an even number of transpositions.
138. (a) With the + sign; (b) with the + sign.
139. (a) No, (b) yes. 140. $i=1, k=4$.
141. $a_{11} a_{23} a_{32} a_{44}, a_{12} a_{23} a_{34} a_{41}$ and $a_{14} a_{23} a_{31} a_{42}$.
142. $-a_{14} a_{23}\left|\begin{array}{lll}a_{31} & a_{82} & a_{35} \\ a_{41} & a_{42} & a_{45} \\ a_{51} & a_{52} & a_{65}\end{array}\right|$.
143. With the+sign. 144. With the $\operatorname{sign}(-1)^{C_{n}^{2}}$.
146. $2,-1$. 147. (a) $n!$, (b) $(-1)^{\frac{n(n-1)}{2}}$, (c) $n!$.
148. (a) $(-1)^{\frac{n(n+1)}{2}}(n!)^{n+1}$, (b) $(-1)^{\frac{n(n+1)}{2}}(n!)^{n+1}$.
149. Solution. Interchanging rows and columns: (1) does not change the determinant; (2) makes the determinant a conjugate complex number.
150. Solution. Interchanging rows and columns: (1) does not change the determinant; (2) results in the determinant being multiplied by -1 .
151. $(-1)^{n-1} \Delta$. 152. Is multiplied by $(-1)^{\frac{n(n-1)}{2}}$.
153. Zero, since the number of even permutations of n elements is equal to the number of their odd permutations.
154. (a) $x_{1}=a_{1} ; x_{2}=a_{2} ; \ldots ; x_{n-1}=a_{n-1}$;
(b) $x_{1}=0 ; x_{2}=1 ; \ldots ; x_{n-1}=n-2$;
(c) $x_{1}=a_{1} ; x_{2}=a_{2} ; \ldots ; x_{n-1}=a_{n-1}$.
156. 0. 158. $(m q-n p)\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$.
159. (a) $a_{1} a_{2} \ldots a_{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$;
(b) $(-1)^{\frac{n(n-1)}{2}} a_{1} a_{2} \ldots a_{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$.
160. $3 a-b+2 c+d$. 161. $4 t-x-y-z$. 162. $2 a-b-c-d$.
163. $-1,487,600$. 164. $-29,400,000$. 165. 48. 166. 1 .
167. 160. 168. 12. 169. 900. 170. 394. 171. 665.
172. $a^{2}+b^{2}+c^{2}-2(b c+c a+a b)$. 173. $-2\left(x^{3}+y^{8}\right)$.
174. $(x+1)\left(x^{2}-x+1\right)^{2}$. 175. $x^{2} z^{2}$. 176. $-3\left(x^{2}-1\right)\left(x^{2}-4\right)$.
177. $\sin (c-a) \sin (c-b) \sin (a-b)$. 178. $(a f-b e+c d)^{2}$.
179. $n!$. 180. $b_{1} b_{2} \ldots b_{n}$. 181. $\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$.
182. $(n-1)$!. 183. $-2(n-2)$!. 184. 1 .
185. $\frac{n a^{n-1}}{2}[2 a+(n-1) h]$. 186. $\frac{n a^{n-1}}{2}[2 a+(n-1) h]$.
187. $(-1)^{\frac{n(n+1)}{2}}\left[a_{0}-a_{1}+a_{2}-\ldots+(-1)^{n} a_{n}\right]$.
188. $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$. 189. $\frac{n x^{n}}{x-1}-\frac{x^{n}-1}{(x-1)^{2}}$.
190. $(n+1)$! x^{n}. 191. $\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$.
192. $[x+(n-1) a](x-a)^{n-1} . \quad$ 193. $\frac{(x+a)^{n}+(x-a)^{n}}{2}$.
194. $(-1)^{n}(n+1) a_{1} a_{2} \ldots a_{n}$.
195. $a_{1} a_{2} \ldots a_{n}\left(1+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$.
196. $h(x+h)^{n}$. 197. $(-1)^{n-1}(n-1) x^{n-2}$.
198. $(-1)^{n} 2^{n-1} a_{1} a_{2} \ldots a_{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$.
199. $(-1)^{\frac{n(n-1)}{2}} \frac{n^{n-1}(n+1)}{2}$. 200. $\frac{(n+1)^{n+1}}{n^{n}}$.
201. $\prod_{k=1}^{n}\left(l-a x_{k, k}\right)$ 202. $(-1)^{n-1} 2^{n-2}(n+1)$.
203. $(-1)^{n}\left(a_{0} b_{0}+a_{1} b_{1}+\ldots+a_{n} b_{n}\right) b_{1} b_{2} \ldots b_{n-1}$.
204. $a(a+b)(a+2 b) \ldots[a+(n+1) b]$.
205. $x^{n}+(-1)^{n-1} y^{n}$. 206. 0 if $n>2$. 207. 0 if $n>2$.
208. Let $n=2$. Using the hint, we have

$$
\begin{aligned}
& \left\lvert\, \begin{array}{rr}
1+a_{1}+x_{1} & \left.\begin{array}{r}
a_{1}+x_{2} \\
a_{2}+x_{1} \\
1+a_{2}+x_{2}
\end{array} \right\rvert\, \\
& =\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|+\left|\begin{array}{ll}
1 & a_{1}+x_{2} \\
0 & a_{2}+x_{2}
\end{array}\right|+\left|\begin{array}{ll}
a_{1}+x_{1} & 0 \\
a_{2}+x_{1} & 1
\end{array}\right|+\left|\begin{array}{ll}
a_{1}+x_{1} & a_{1}+x_{2} \\
a_{2}+x_{1} & a_{2}+x_{2}
\end{array}\right| \\
& =1+\left[\left(a_{1}+x_{1}\right)+\left(a_{2}+x_{2}\right)\right]+\left(a_{2}-a_{1}\right)\left(x_{1}-x_{2}\right)
\end{array}\right.
\end{aligned}
$$

If in this fashion we represent an n th-order determinant in the form of a sum of 2^{n} determinants, we find that one of the summands is equal to unity, n summands are equal to $a_{i}+x_{i}$, where $i=1,2, \ldots, n$ and $\frac{n(n-1)}{2}$ summands are equal to $\left(a_{i}-a_{k}\right)\left(x_{k}-x_{i}\right)$, where $i>k$.

The other summands are zero. Thus, we have the answer:
$1+\sum_{i=1}^{n}\left(a_{i}+x_{i}\right)+\sum_{i>k}\left(a_{i}-a_{k}\right)\left(x_{k}-x_{i}\right)$.
This result can be transformed to
$\left(1+a_{1}+a_{2}+\ldots+a_{n}\right)\left(1+x_{1}+x_{2}+\ldots+x_{n}\right)-n\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\right)$.
209. 0 if $p>2$. 211. $\frac{n+1}{1-x}+\frac{x^{n+1}-1}{(1-x)^{2}}$.
212. Solution. It is easy to see that $\Delta_{2}=x_{1} x_{2}\left(1+\frac{a_{1}}{x_{1}}+\frac{a_{2}}{x_{2}}\right)$. Suppose that
$\Delta_{n-1}=x_{1} x_{2} \ldots x_{n-1}\left(1+\frac{a_{1}}{x_{1}}+\frac{a_{2}}{x_{2}}+\ldots+\frac{a_{n-1}}{x_{n-1}}\right)$.
Then $\Delta_{n}=x_{1} x_{2} \ldots x_{n}\left(1+\frac{a_{1}}{x_{1}}+\frac{a_{2}}{x_{2}}+\ldots+\frac{a_{n-1}}{x_{n-1}}\right)$

$$
+a_{n} x_{1} x_{2} \ldots x_{n-1}=x_{1} x_{2} \ldots x_{n}\left(1+\frac{a_{1}}{x_{1}}+\frac{a_{8}}{x_{2}}+\ldots+\frac{a_{n}}{x_{n}}\right)
$$

213. $a_{0} x_{1} x_{2} \ldots x_{n}+a_{1} y_{1} x_{2} \ldots x_{n}+a_{2} y_{1} y_{2} x_{3} \ldots x_{n}+\ldots+a_{n} y_{1} y_{2} \ldots y_{n}$.
214. $-a_{1} a_{2}, \ldots a_{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$.
215. $n!\left(a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}\right)$.
216. $a_{1} a_{2} \ldots a_{n-1}-a_{1} a_{2} \ldots a_{n-2}+\ldots+(-1)^{n} a_{1}+(-1)^{n+1}$.
217. Solution. Expand the determinant by elements of the first column; this yields $\Delta_{n}=(\alpha+\beta) \Delta_{n-1}-\alpha \beta \Delta_{n-2}$. It is easy to verify that
$\Delta_{2}=\frac{\alpha^{3}-\beta^{3}}{\alpha-\beta}, \Delta_{3}=\frac{\alpha^{4}-\beta^{4}}{\alpha-\beta}$. Suppose that $\Delta_{n-2}=\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}, \Delta_{n-1}=$ $=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$. Then

$$
\Delta_{n}=(\alpha+\beta) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}-\alpha \beta-\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta} .
$$

Alternative solution.
Represent Δ_{n} as a sum $d_{n}+\delta_{n}$, where

$$
\begin{aligned}
& d_{n}=\left|\begin{array}{cccccc}
\alpha & \alpha \beta & 0 & \ldots & 0 & 0 \\
1 & \alpha+\beta & \alpha \beta & \ldots & 0 & 0 \\
0 & 1 & \alpha+\beta & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \cdots & \cdots \\
0 & 0 & 0 & \ldots & 1 & \alpha+\beta
\end{array}\right|, \\
& \delta_{n}=\left|\begin{array}{cccccc}
\beta & 0 & 0 & \ldots & 0 & 0 \\
1 & \alpha+\beta & \alpha \beta & \ldots & 0 & 0 \\
0 & 1 & \alpha+\beta & \ldots & 0 & 0 \\
\cdots & \ldots & \ldots & \ldots & \ldots & \cdots \\
0 & 0 & 0 & \ldots & 1 & \alpha+\beta
\end{array}\right| .
\end{aligned}
$$

Take α out of the first row of d_{n} and then subtract the first row from the second. This yields $d_{n}=\alpha d_{n-1}$. It is readily seen that $d_{2}=\alpha^{2}$. Let $d_{n-1}=\alpha^{n-1}$, then $d_{n}=\alpha^{n}$.

Expanding δ_{n} by elements of the first row, we see that

$$
\delta_{n}=\beta \Delta_{n-1}
$$

From the foregoing it follows that $\Delta_{n}=\alpha^{n}+\beta \Delta_{n-1}$. We can readily check that $\Delta_{2}=\frac{\alpha^{3}-\beta^{3}}{\alpha-\beta}$. Suppose that $\Delta_{n-1}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$. Then

$$
\Delta_{n}=\alpha^{n}+\beta \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}
$$

218. $n+1$. 219. $\frac{\sin (n+1) \Theta}{\sin \Theta}$. 220. $\cos n \Theta$.
219. $x^{n}-C_{n-1}^{1} x^{n-2}+C_{n-2}^{2} x^{n-4}-\ldots$ Compare with Problem 53.
220. $x_{1} y_{n} \prod_{i=1}^{n-1}\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)$.
221. $a_{1} a_{2} \ldots a_{n}\left(1+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$.
222. $(-1)^{\frac{n(n-1)}{-(n}} a_{1} a_{2} \ldots a_{n}\left(1+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)$.
223. $x\left(a_{1}-x\right) \ldots\left(a_{n}-x\right)\left(\frac{1}{x}+\frac{1}{a_{1}-x}+\ldots+\frac{1}{a_{n}-x}\right)$.
224. $\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right) \ldots\left(x_{n}-a_{n}\right)\left(1+\frac{a_{1}}{x_{1}-a_{1}}+\ldots+\frac{a_{n}}{x_{n}-a_{n}}\right)$.
225. $\prod_{i=1}^{n}\left(x_{i}-a_{i} b_{i}\right)\left(1+\sum_{i=1}^{n} \frac{a_{i} b_{i}}{x_{i}-a_{i} b_{i}}\right)$.
226. $(-1)^{n} m^{n}\left(1-\sum_{i=1}^{n} \frac{x_{i}}{m}\right)$.
227. $x_{1}=x_{2}=\ldots=x_{n-1}=0 ; \quad x_{n}=\sum_{i=1}^{n} \frac{a_{i}}{\alpha_{i}}$.
228. $\left(a^{2}-b^{2}\right)^{n}$.
229. $a(a+b) \ldots[a+(n-1) b]\left(\frac{1}{a}+\frac{1}{a+b}+\ldots+\frac{1}{a+(n-1) b}\right)$.
230. $x^{n-1} \prod_{i=1}^{n}\left(x-2 a_{i}\right)\left(x+\sum_{i=1}^{n} \frac{a_{i}^{2}}{x-2 a_{i}}\right)$.
231. $x^{n-1} \prod_{i=1}^{n}\left(x-2 a_{i}\right)\left(x+\sum_{i=1}^{n} \frac{a_{i}^{2}}{x-2 a_{i}}\right)$.
232. $1-b_{1}+b_{1} b_{2}-b_{1} b_{2} b_{3}+\ldots+(-1)^{n} b_{1} b_{2} \ldots b_{n}$.
233. $(-1)^{n-1}\left(b_{1} a_{2} a_{3} \ldots a_{n}+b_{1} b_{2} a_{3} \ldots a_{n}+\ldots+b_{1} b_{2} \ldots b_{n-1} a_{n}\right)$.
234. $(-1)^{n-1} x^{n-2}$. 237. $(-1)^{n}\left[(x-1)^{n}-x^{n}\right]$.
235. $a_{0} x^{n} \prod_{i=1}^{n}\left(b_{i}-a_{i}\right)$ 240. 1. 241. 1. 242. 1.
236. $\frac{C_{m+n}^{n+1} C_{m+n-1}^{n+1} \ldots C_{m+n-k+1}^{n+1}}{C_{k+n}^{n+1} C_{k+n-1}^{n+1} \ldots C_{n+1}^{n+1}}$. $244 .(-1)^{\frac{m(m+1)}{2}}$.
237. $(x-1)^{n}$. 246. $(n-1)!(n-2)!\ldots 1!(x-1)^{n}$. 247. α^{n}.
238. Using the hint, we have

$$
\begin{aligned}
& \Delta_{n}=(x-z) \Delta_{n-1}+z(x-y)^{n-1} \\
& \Delta_{n}=(x-y) \Delta_{n-1}+y(x-z)^{n-1}
\end{aligned}
$$

From the resulting system of equations, we find

$$
\Delta_{n}=\frac{z(x-y)^{n}-y(x-z)^{n}}{z-y}
$$

249. $(-1)^{\frac{n(n+1)}{2}} \frac{a b\left(b^{n-1}-a^{n-1}\right)}{a-b}$.
250. $\frac{x f(y)-y f(x)}{x-y}$ where $f(x)=\prod_{k=1}^{n}\left(a_{k}-x\right)$.
251. $\frac{f(a)-f(b)}{a-b}$ where $f(x)=\prod_{k=1}^{n}\left(c_{k}-x\right)$.
252. $(\alpha-\beta)^{n-2}[\lambda \alpha+(n-2) \lambda \beta-(n-1) a b]$.
253. $(-1)^{\frac{n(n-1)}{2}} \frac{n^{n-1}(n+1)}{2}$.
254. $(-1)^{\frac{n(n-1)}{2}}(n h)^{n-1}\left[a+\frac{h(n-1)}{2}\right]$. 255. $\left(1-x^{n}\right)^{n-1}$.
255. If all columns are added to the first column, then we can take $a+b+$ $+c+d$ outside the sign of the determinant; all elements of the remaining determinant will be integral expressions in a.

This proves that the determinant is divisible by $a+b+c+d$. If we addthe second column to the first and subtract the third and fourth, we find that the determinant is divisible by $a+b-c-d$. Reasoning in this way, we will show that the determinant is divisible by $a-b+c-d$ and $a-b-c+d$. From the foregoing it follows that the determinant is equal to $\lambda(a+b+c+d)(a+b-$ $-c-d)(a-b+c-d)(a-b-c+d)$. To determine λ, note that the coeffi cient of a^{4} must be equal to 1 , and so $\lambda=1$.
257. $(a+b+c+d+e+f+g+h)(a+b+c+d-e-f-g-h) \times$

$$
\begin{array}{r}
\times(a+b-c-d+e+f-g-h)(a+b-c-d-e-f+g+h)(a-b+c \\
-d+e-f+g-h)(a-b+c-d-e+f-g+h)(a-b-c+d+e-f \\
-g+h)(a-b-c+d-e+f+g-h) .
\end{array}
$$

258. $\left(x+a_{1}+a_{2}+\ldots+a_{n}\right)\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$.
259. $2^{\frac{n(n-1)}{2}} \prod_{1 \leqslant i<k \leqslant n} \sin \frac{\varphi_{i}+\varphi_{k}}{2} \prod_{1 \leqslant i<k \leqslant n} \sin \frac{\varphi_{k}-\varphi_{i}}{2}$.
260. $2^{\frac{n(n-1)}{2}} \prod_{n \geqslant i>k \geqslant 1} \cos \frac{\varphi_{i}+\varphi_{k}}{2} \prod_{n \geqslant i>k \geqslant 1} \sin \frac{\varphi_{i}-\varphi_{k}}{2}$.
261. $1!2!\ldots n!$ 262. $\prod_{n+1 \geqslant k>i \geqslant 1}\left(a_{i}-a_{k}\right)$.
262. $(-1)^{n} 1|2| \ldots n!$.
263. $(-1)^{n-1} \prod_{i=1}^{n} a_{i} \prod_{n \geqslant i>k \geqslant 1}\left(a_{i}-a_{k}\right)\left(\sum_{i=1}^{n} \frac{w_{i}}{a_{i} f^{\prime}\left(a_{i}\right)}\right)$
where $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$.
264. $\prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right)$.
265. $2^{\frac{n(n-1)}{2}} \prod_{n \geqslant i>k \geqslant 1} \cos \frac{\varphi_{i}+\varphi_{k}}{2} \prod_{n \geqslant i>k \geqslant 1} \sin \frac{\varphi_{i}-\varphi_{k}}{2}$.
266. $\prod_{n}\left(x_{i}-x_{k}\right)$.
$n \geqslant i>k \geqslant 1$
268.2 $2^{\frac{n(n-1)}{2}} a_{01} a_{02} \ldots a_{0, n-1} \prod_{n \geqslant i>k \geqslant 1} \sin \frac{\varphi_{i}+\varphi_{k}}{2} \prod_{n \geqslant i>k \geqslant 1} \sin \frac{\varphi_{k}-\varphi_{i}}{2}$.
267. $\frac{1}{1!21 \ldots(n-1)!} \prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right)$.
268. $1!3!5!\ldots(2 n-1)!$ 272. $\prod_{i=1}^{n} \frac{x_{i}}{x_{i}-1} \prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right)$.
269. $\prod_{n+1 \geqslant k>i \geqslant 1}\left(b_{k} a_{i}-a_{k} b_{i}\right) . \quad$ 274. $\prod_{1 \leqslant i<k \leqslant n} \sin \left(\alpha_{i}-\alpha_{k}\right)$.
270. $\prod\left(a_{i}-a_{k}\right)\left(a_{i} a_{k}-1\right)$.
$1 \leqslant i<k \leqslant n+1$
271. $2^{(n-1)^{2}} \prod_{n-1 \geqslant i>k \geqslant 0} \sin \frac{\varphi_{i}+\varphi_{k}}{2} \prod_{n-1 \geqslant i>k \geqslant 0} \sin \frac{\varphi_{k}-\varphi_{i}}{2}$.
272. $2^{n(n+1)} \sin \alpha_{0} \sin \alpha_{1}$
$\ldots \sin \alpha_{n} \prod_{n \geqslant i>k \geqslant 0} \sin \frac{\alpha_{i}+\alpha_{k}}{2} \prod_{n \geqslant i>k \geqslant 0} \sin \frac{\alpha_{i}-\alpha_{k}}{2}$.
273. $\left[x_{1} x_{2} \ldots x_{n}-\left(x_{1}-1\right) \ldots\left(x_{n}-1\right)\right] \prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right)$.
274. $x_{1} x_{2} \ldots x_{n}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}\right) \prod_{n \geqslant i>k \geqslant \mathrm{i}}\left(x_{i}-x_{k}\right)$.
275. $\left(x_{1}+x_{2}+\ldots+x_{n}\right) \prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right)$.
276. $\sigma_{n-s} \prod\left(x_{i}-x_{k}\right)$ where σ_{p} forms a sum of all possible products of the numbers $x_{1}, x_{2}, \ldots, x_{n}$ taken p at a time.
277. $\left[2 x_{1} x_{2} \ldots x_{n}-\left(x_{1}-1\right)\left(x_{2}-1\right) \ldots\left(x_{n}-1\right)\right] \prod\left(x_{i}-x_{k}\right)$.
278. $x^{2}\left(x^{3}-1\right)^{4}$. 284. $2 x^{3} y(x-y)^{8}$.
279. $1 \left\lvert\, 2!3!\ldots(n-1)!x^{\frac{n(n-1)}{2}}(y-x)^{n}\right.$.
280. $1!2!3!\ldots(k-1)!x^{\frac{k(k-1)}{2}}\left(y_{1}-x\right)^{k}\left(y_{3}-x\right)^{k}$

$$
\ldots\left(y_{n-k}-x\right)^{k} \prod_{n-k \geqslant i>j \geqslant 1}\left(y_{i}-y_{j}\right) .
$$

287. $(y-x)^{k}(n-k)$.
288. (b) 9 , (c) 5 , (e) 128 , (f) $\left(a_{1} a_{3}-b_{1} b_{2}\right)\left(c_{1} c_{2}-d_{1} d_{2}\right)$,
(g) $\left(x_{3}-x_{2}\right)^{2}\left(x_{3}-x_{1}\right)^{2}\left(x_{2}-x_{1}\right)^{2}$,
(h) $\left(\lambda^{2}-a^{2}\right)(\alpha-\beta)^{n-1}[\alpha+(n-1) \beta]$,
(k) $\left(x_{4}-x_{3}\right)\left[\left(x_{3}-x_{2}\right)\left(x_{4}-x_{2}\right)-2\left(x_{3}-x_{1}\right)\left(x_{4}-x_{1}\right)\right]$,
(m) $27(a+2)^{3}(a-1)^{6}\left[3(a+2)^{2}-4 x^{2}\right]\left[3(a-1)^{2}-4 x^{2}\right]^{2}$.

Remark. This problem is a particular case of Problem 537.
289. (a) $\left|\begin{array}{rr}-5 & -2 \\ -8 & 4\end{array}\right|$, (b) $\left|\begin{array}{rrr}2 & 8 & 17 \\ 11 & -6 & 5 \\ 3 & 8 & -3\end{array}\right|$,
(c) $\left|\begin{array}{rrrr}7 & 5 & -3 & 3 \\ -1 & 5 & -3 & 3 \\ -4 & -4 & -5 & 4 \\ -4 & -4 & 0 & 3\end{array}\right|$.
290. (a) 24, (b) 18 ,
(c) $(a+b+c+d)(a+b-c-d)(a-b+c-d)(a-b-c+d)$.
291. (a) 256 , (b) 78400 , (c) $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{4}$.
292. $D \prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right)$.
293. (a) $C_{n}^{1} C_{n}^{2} \ldots C_{n}^{n} \prod_{n \geqslant i>k \geqslant 0}\left(a_{i}-a_{k}\right)\left(b_{k}-b_{i}\right)$,
(b) $\prod_{n \geqslant i>k \geqslant 1}\left(\alpha_{i}-\alpha_{k}\right)\left(\beta_{i}-\beta_{k}\right)$.
294. 0 if $n \geqslant 2$. 295. $\prod_{i=1}^{n}\left(x-x_{i}\right) \prod_{n \geqslant i>k \geqslant 1}\left(x_{i}-x_{k}\right)^{2}$.
296. $-\left(a^{9}+b^{2}+c^{2}+d^{2}+l^{2}+m^{2}+n^{2}+p^{2}\right)^{4}$.
297. $4 \sin ^{4} \varphi$. 298. $4 \sin ^{4} \varphi$.
299. Denote the desired determinant by Δ. Squaring yields $|\Delta|=n^{\frac{n}{2}}$ On the other hand, $\Delta=\prod_{n-1 \geqslant k>s \geqslant 0}\left(\varepsilon^{k}-\varepsilon^{s}\right)$.

We assume $\varepsilon_{1}=\cos \frac{\pi}{n}+i \sin \frac{\pi}{n}$. Then $\varepsilon=\varepsilon_{1}^{2}$ and

$$
\begin{aligned}
\Delta=\prod_{n-1 \geqslant k>s \geqslant 0}\left(\varepsilon^{k}-\varepsilon^{s}\right) & =\prod \varepsilon_{1}^{k+s} \prod\left(\varepsilon_{1}^{k-s}-\varepsilon_{1}^{-k+s}\right) \\
& =\prod \varepsilon_{1}^{k+s} \cdot i^{\frac{n(n-1)}{2}} \prod 2 \sin \frac{(k-s) \pi}{n} .
\end{aligned}
$$

Furthermore, $\sin \frac{(k-s) \pi}{n}>0$ for all k, s. Hence

$$
n^{\frac{n}{2}}=|\Delta|=\left|\prod 2 \sin \frac{(k-s) \pi}{n}\right|=\prod 2 \sin \frac{(k-s) \pi}{n}
$$

Therefore

$$
\begin{aligned}
\Delta=n^{\frac{n}{2}} i^{\frac{n(n-1)}{2}} \prod_{n-1 \geqslant k>s \geqslant 0} \varepsilon_{1}^{k+s}= & n^{\frac{n}{2}} i^{\frac{n(n-1)}{2}} \varepsilon_{1}^{\frac{n(n-1)^{2}}{2}} \\
& =n^{\frac{n}{2}} i^{\frac{n(n-1)}{2}+(n-1)^{2}}=n^{\frac{n}{2}} i^{-\frac{(n-1)(n+2)}{2}} .
\end{aligned}
$$

300. $\prod_{k=0}^{n-1}\left(a_{0}+a_{1} \varepsilon_{k}+a_{2} \varepsilon_{k}^{2}+\ldots+a_{n-1} \varepsilon_{k}^{n-1}\right)$ where $\varepsilon_{k}=\cos \frac{2 k \pi}{n}$ $+i \sin \frac{2 k \pi}{n}$.
301. $x^{4}-y^{4}+z^{4}-u^{4}+4 x y^{2} z+4 x z u^{2}-4 x^{2} y u-4 y z^{2} u-2 x^{2} z^{2}+2 y^{2} u^{2}$.
302. 2^{n-1} if n is odd, 0 if n is even.
303. $(-1)^{n} \frac{\left[(n+1) a^{n}-1\right]^{n}-n^{n} a^{n(n+1)}}{\left(1-a^{n}\right)^{2}}$.
304. $(-1)^{n-1}(n-1) \prod_{k=0}^{n-1}\left(a_{1}+a_{2} \varepsilon_{k}+\ldots+a_{n} \varepsilon_{k}^{n-1}\right)$ where
$\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$.
305. $\varphi_{0}(t) \varphi_{1}(t) \ldots \varphi_{n-1}(t)$ where $\varphi_{k}(t)=\frac{\left(t+\varepsilon_{k}\right)^{n}-1}{t}$;
$\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$.

According to the result of Problem 102, the answer can be represented as $n-1$
$\prod\left[t^{n}-\left(\varepsilon_{k}-1\right)^{n}\right]$.
$k=\mathrm{I}$
307. $(-2)^{n-1}(n-2 p)$ if $(n, p)=1,0$ if $(n, p) \neq 1$.
308. $2^{n-2}\left(\cos ^{n} \frac{\pi}{n}-1\right)$.
309. $2^{n-2} \sin ^{n-2} \frac{n \Theta}{2}\left[\sin ^{n} \frac{(n+2) \Theta}{2}-\sin ^{n} \frac{n \Theta}{2}\right]$.
310. $(-1)^{n} 2^{n-2} \sin ^{n-2} \frac{n h}{2}\left[\cos ^{n}\left(a+\frac{n h}{2}\right)-\cos ^{n}\left(a+\frac{(n-2) h}{2}\right)\right]$.
311. $(-1)^{n-1} \frac{(n+1)(2 n+1)}{12}-n^{n-2}\left[(n+2)^{n}-n^{n}\right]$.
313. $\prod_{k=0}^{n-1}\left(a_{1}+a_{2} \varepsilon_{k}+a_{3} \varepsilon_{k}^{2}+\ldots+a_{n} \varepsilon_{k}^{n-1}\right)$ where $\varepsilon_{k}=\cos \frac{(2 k+1) \pi}{n}$ $+i \sin \frac{(2 k+1) \pi}{n}$.
315. $\prod_{i=1}\left(a_{1}+a_{2} \rho_{i}+a_{3} \rho_{i}^{2}+\ldots+a_{n} \rho_{i}^{n-1}\right)$ where $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ are nth roots of μ.
318. The solution of Problem 223. Adding 1 to all elements of the determinant $\left|\begin{array}{cccc}a_{1} & 0 & \ldots & 0 \\ 0 & a_{2} & \ldots & 0 \\ \ldots & \ldots & \ldots & . \\ 0 & 0 & \ldots & a_{n}\end{array}\right|$, we get the determinant Δ.

We have $\Delta=a_{1} a_{2} \ldots a_{n}+\sum_{k=1}^{n} \sum_{i=1}^{n} A_{i k}$,

$$
\sum_{k=1}^{n} \sum_{i=1}^{n} A_{i k}=a_{1} a_{2} \ldots a_{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) .
$$

The solution of Problem 250. Denote by Δ the determinant to be evaluated. We have

$$
\begin{aligned}
& \Delta=\left(a_{1}-x\right)\left(a_{2}-x\right) \ldots\left(a_{n}-x\right)+x \sum A_{i k}, \\
& \Delta=\left(a_{1}-y\right)\left(a_{2}-y\right) \ldots\left(a_{n}-y\right)+y \sum A_{i k}
\end{aligned}
$$

where $\sum A_{i k}$ is the sum of the cofactors of all elements of Δ.
Δ is readily determined from the system of equations.
323. $\prod_{1 \leqslant i<k \leqslant n}\left(a_{i}-a_{k}\right) \prod_{1 \leqslant i<k \leqslant n}\left(b_{i}-b_{k}\right) \frac{1}{\prod_{i=1}^{n} f\left(a_{i}\right)}$
where $f(x)=\left(x+b_{1}\right) \ldots\left(x+b_{n}\right)$.
325. $\frac{\left[c+\sqrt{c^{2}-4 a b}\right]^{n+1}-\left[c-\sqrt{c^{2}-4 a b}\right]^{n+1}}{2^{n+1} \sqrt{1}_{c^{2}}-4 a b}$.
326.

$$
\frac{\left[p+l^{\prime} \overline{p^{2}-4 q}\right]^{n}+\left[p-\sqrt{p^{2}-4}\right]^{n}}{2^{n}} .
$$

327. $x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}$, where a_{k} is the sum of all k th-order minors of the determinant
$\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \cdots & \ldots & \cdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right| \begin{aligned} & \\ & \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-k} \text { and columns with the same indices. }\end{aligned}$
328. $(n+1)^{n-1}$, 329. $(x-n)^{n+1}$.
329. $\left(x^{4}-1^{2}\right)\left(x^{2}-3^{2}\right) \ldots\left[x^{2}-(2 m-1)^{2}\right]$ if $n=2 m$,

$$
x\left(x^{2}-2^{2}\right)\left(x^{2}-4^{2}\right) \ldots\left(x^{2}-4 m^{2}\right) \text { if } n=2 m+1
$$

331. $(x+n a-n)[x+(n-2) a-n+1][x+(n-4) a-n+2] \ldots(x-n a)$.
332. $(-1)^{\frac{n(n-1)}{2}}[(n-1)!]^{n} . \quad$ 333. $\frac{[1!2!\ldots(n-1)!]^{3}}{n!(n+1)!\ldots(2 n-1)!}$.
333. $\frac{\Delta\left(a_{1}, a_{2}, \ldots, a_{n}\right) \Delta\left(b_{1}, b_{2}, \ldots, b_{n}\right)}{(1,2, \ldots, n)}$ where Δ is the Vandermonde determinant.

CHAPTER 3

SYSTEMS OF LINEAR EQUATIONS

335. $x_{1}=3, x_{2}=x_{8}=1$.
336. $x_{1}=1, x_{2}=2, x_{3}=-2$.
337. $x_{1}=2, x_{2}=-2, x_{3}=3$.
338. $x_{1}=3, x_{2}=4, x_{3}=5$.
339. $x_{1}=x_{2}=-1, x_{3}=0, x_{4}=1$.
340. $x_{1}=1, x_{2}=2, x_{3}=-1, x_{4}=-2$.
341. $x_{1}=-2, x_{2}=2, x_{3}=-3, x_{4}=3$.
342. $x_{1}=1, x_{2}=2, x_{3}=1, x_{4}=-1$.
343. $x_{1}=2, x_{2}=x_{3}=x_{4}=0$.
344. $x_{1}=x_{2}=x_{3}=x_{4}=0$.
345. $x_{1}=1, x_{2}=-1, x_{3}=0, x_{4}=2$,
346. $x_{1}=x_{2}=x_{9}=x_{4}=x_{5}=0$.
347. $x_{1}=x_{2}=x_{3}=x_{4}=0$.
348. $x_{1}=1, x_{2}=-1, x_{3}=1, x_{1}=-1, x_{5}=1$.
349. $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=0$.
350. $x_{1}=1, x_{2}=-1, x_{3}=1, x_{4}=-1, x_{5}=1$.
351. $x_{1}=0, x_{2}=2, x_{3}=-2, x_{4}=0, x_{5}=3$.
352. $x_{1}=2, x_{2}=0, x_{3}=-2, x_{4}=-2, x_{5}=1$.
353. The determinant of the system is equal to zero, since the system has a nonzero solution.
354. The determinant of the system is equal to $-\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}$.

$$
a \sum^{n} a_{k}-a_{i}[(n-1) \alpha+\beta]
$$

355.

356. $x_{i}=-\frac{f\left(\beta_{i}\right)}{\varphi^{\prime}\left(\beta_{i}\right)}$ where $\begin{aligned} & f(x)=\left(x-b_{1}\right)\left(x-b_{2}\right) \ldots\left(x-b_{n}\right), \\ & \varphi(x)=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \ldots\left(x-\beta_{n}\right) .\end{aligned}$
357. $x_{i}=\frac{f(t)}{\left(t-\alpha_{i}\right) f^{\prime}\left(\alpha_{i}\right)}$ where $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$.
358. $x_{s}=\sum_{i=1}^{n} \frac{(-1)^{n+s} u_{i}}{f^{\prime}\left(\alpha_{i}\right)} \varphi_{s, i}$ where $f(x)=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)$;
$\varphi_{s, i}=\sum_{t_{1}} \alpha_{t_{1}} \ldots \alpha_{t_{n-s}} ;$ the sum is taken over all combinations t_{1}, t_{2}, \ldots, t_{n-s} of $1,2, \ldots, i-1, i+1, \ldots, n$.
359. $x_{s}=\sum_{i=1}^{n} \frac{(-1)^{n+i} u_{i}}{f^{\prime}\left(\alpha_{s}\right)} \varphi_{i, s}$ where $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$;

$$
\varphi_{t, s}=\sum \alpha_{t_{1}} \alpha_{t_{2}} \ldots \alpha_{t_{n-i}} ;
$$

here, the sum is taken over all combinations $t_{1}, t_{2}, \ldots, t_{n-i}$ of $1,2, \ldots, s-1$, $s+1, \ldots, n$.
360. $x_{i}=\frac{(-1)^{n} a_{n-i}}{n!}$ where $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$

$$
=(x-1)(x-2) \ldots(x-n) .
$$

361. $C_{m}^{k} \cdot C_{n}^{k}$.
362. (a) It does not change or it increases by unity; (b) it does not change or it increases by unity or by two.
363. 2. 367. 3. 368. 2. 369. 2. 370. 3. 371. 3. 372. 4. 373. 3. 374. 2.
1. 3. 376. 5. 377. 6. 378. 5. 379. 3. 380. 4.
1. The forms are independent. 384. $2 y_{1}-y_{2}-y_{3}=0$.
2. $y_{1}+3 y_{2}-y_{3}=0,2 y_{1}-y_{2}-y_{4}=0$.
3. The forms are independent.
4. $y_{1}+y_{2}-y_{a}-y_{4}=0$.
5. $y_{1}-y_{2}+y_{3}=0,5 y_{1}-4 y_{2}+y_{4}=0$.
6. The forms are independent.
7. The forms are independent.
8. $y_{1}+y_{2}-y_{3}-y_{4}=0$. 392. $2 y_{1}-y_{2}-y_{3}=0$.
9. $3 y_{1}-y_{2}-y_{3}=0, y_{1}-y_{2}-y_{4}=0$.
10. The forms are independent. 395. $y_{1}-y_{2}-y_{3}-y_{4}=0$.
11. $3 y_{1}-2 y_{2}-y_{3}+y_{4}=0, y_{1}-y_{2}+2 y_{3}-y_{5}=0$.
12. $\lambda=10,3 y_{1}+2 y_{2}-5 y_{3}-y_{4}=0$.
13. $x_{2}=2 x_{2}-x_{1}, x_{4}=1$. 399. $\lambda=5$.
14. The system has no solutions. 401. $x_{1}=1, x_{2}=2, x_{3}=-2$.
15. $x_{1}=1, x_{2}=2, x_{3}=1$. 403. $x_{1}=-\frac{11 x_{3}}{7}, x_{2}=-\frac{x_{3}}{7}$.
16. The system has no solutions.
17. $x_{1}=0, x_{2}=2, x_{3}=\frac{5}{3}, x_{4}=-\frac{4}{3}$.
18. $x_{1}=-8, x_{2}=3+x_{4}, x_{3}=6+2 x_{4}$.
19. $x_{1}=2, x_{2}=x_{3}=x_{4}=1$. 408. $x_{1}=x_{2}=x_{3}=x_{4}=0$.
20. $x_{1}=\frac{3 x_{3}-13 x_{4}}{17}, \quad x_{2}=\frac{19 x_{3}-20 x_{4}}{17}$.
21. $x_{1}=\frac{7}{6} x_{5}-x_{3}, \quad x_{2}=\frac{5}{6} \quad x_{5}+x_{3}, \quad x_{4}=\frac{x_{5}}{3}$.
22. $x_{1}=-16+x_{3}+x_{4}+5 x_{5}, x_{2}=23-2 x_{9}-2 x_{4}-6 x_{5}$.
23. $x_{1}=\frac{-4 x_{4}+7 x_{5}}{8}, x_{2}=\frac{-4 x_{4}+5 x_{5}}{8}, x_{3}=\frac{4 x_{4}-5 x_{5}}{8}$.
24. $x_{1}=x_{2}=x_{3}=0, x_{4}=x_{5}$.
25. $x_{1}=\frac{1+x_{5}}{3}, \quad x_{2}=\frac{1+3 x_{3}+3 x_{4}-5 x_{5}}{3}$.
26. $x_{1}=\frac{2+x_{5}}{3}, x_{2}=\frac{1+3 x_{3}-3 x_{4}-5 x_{5}}{6}$.
27. The system has no solutions.
28. The system has no solutions.
29. $x_{1}=-\frac{x_{5}}{2}, x_{2}=-1-\frac{x_{5}}{2}, x_{3}=0, x_{4}=-1-\frac{x_{5}}{2}$.
30. $x_{1}=\frac{1+5 x_{4}}{6}, x_{2}=\frac{1-7 x_{4}}{6}, x_{3}=\frac{1+5 x_{4}}{6}$.
31. The system has no solutions.
32. $x=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, y=\frac{a^{2}+c^{2}-b^{2}}{2 a c}, z=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$.
33. If $(\lambda-1)(\lambda+2) \neq 0, x=-\frac{\lambda+1}{\lambda+2}, y=\frac{1}{\lambda+2}, z=\frac{(\lambda+1)^{2}}{\lambda+2}$.

If $\lambda=1$, the system has solutions dependent on two parameters. If $\lambda=-2$, the system has no solutions.
423. If $(\lambda-1)(\lambda+3) \neq 0, x=-\frac{\lambda^{2}+2 \lambda+2}{\lambda+3}$,
$y=-\frac{\lambda^{2}+\lambda-1}{\lambda+3}, z=\frac{2 \lambda+1}{\lambda+3}, t=-\frac{\lambda^{3}+3 \lambda^{2}+2 \lambda+1}{\lambda+3}$.
If $\lambda=1$, the system has solutions dependent on three parameters.
If $\lambda=-3$, the system has no solutions.
424. If a, b, c are all distinct,
$x=a b c, y=-(a b+a c+b c), z=a+b+c$.
If among a, b, c two are equal, the solutions depend on one parameter.
If $a=b=c$, the solutions depend on two parameters.
425. If a, b, c are all distinct,
$x=\frac{(b-d)(c-d)}{(b-a)(c-a)}, y=\frac{(a-d)(c-d)}{(a-b)(c-b)}, \quad z=\frac{(a-d)(b-d)}{(a-c)(b-c)}$.
If $a=b, a \neq c, d=a$ or $d=c$, the solutions depend on one parameter.
If $b=c, a \neq b, d=a$ or $d=b$, the solutions depend on one parameter.
If $a=c, a \neq b, d=a$ or $d=b$, the solutions depend on one parameter.
If $a=b=c=d$, the solutions depend on two parameters.
In all other cases, the system has no solutions.
426. If $b(a-1) \neq 0, x=\frac{2 b-1}{b(a-1)}, y=\frac{1}{b}, z=\frac{2 a b-4 b+1}{b(a-1)}$.

If $a=1, b=\frac{1}{2}$, the solutions depend on one parameter.
In all other cases, the system has no solutions.
427. If $b(a-1)(a+2) \neq 0, x=z=\frac{a-b}{(a-1)(a+2)}, y=\frac{a b+b-2}{b(a-1)(a+2)}$.

If $a=-2, b=-2$, the solutions depend on one parameter.
If $a=1, b=1$, the solutions depend on two parameters.
In all other cases the system has no solutions.
428. If $(\alpha-1)(\alpha+2) \neq 0, \quad x=\frac{m \alpha+m-n-p}{(\alpha+2)(\alpha-1)}$,

$$
y=\frac{n \alpha+n-m-p}{(\alpha+2)(\alpha-1)}, \quad z=\frac{p \alpha+p-m-n}{(\alpha+2)(\alpha-1)} .
$$

If $\alpha=-2$ and $m+n+p=0$, the solutions depend on one parameter.
If $\alpha=1$ and $m=n=p$, the solutions depend on two parameters.
In all other cases the system has no solutions.
429. If $a(a-b) \neq 0, x=\frac{a^{2}(b-1)}{b-a}, y=\frac{b\left(a^{2}-1\right)}{a(a-b)}, z=\frac{a-1}{a(b-a)}$.

If $a=b=1$, the solutions depend on two parameters.
In all other cases the system has no solutions.
430. $\Delta=\lambda^{2}(\lambda-1)$. For $\lambda=0, \lambda=1$, the system is inconsistent.
431. $\Delta=-2 \lambda$. If $\lambda \neq 0, x=1-\lambda, y=\lambda, z=0$. If $\lambda=0, x=1, z=0, y$ is arbitrary.
432. $\Delta=(k-1)^{2}(k+1)$. If $k=1$, the solution depends on one parameter. If $k=-1$, the system is inconsistent.
433. $\Delta=a(b-1)(b+1)$.

If $a=0, b=5, y=-\frac{1}{3}, z=\frac{4}{3}, x$ is arbitrary.
If $a=0, b \neq 1$ and $b \neq 5$, the system is inconsistent.
If $b=1, z=0, y=1-a x, x$ is arbitrary.
If $b=-1$, the system is inconsistent.
434. (a) $\Delta=-m(m+2)$. For $m=0$ and $m=-2$ the system is inconsistent.
(b) $\Delta=m\left(m^{2}-1\right)$. If $m=0, m=1$, the system is inconsistent. If $m=-1$, the solution depends on one parameter.
(c) $\Delta=\lambda(\lambda-1)(\lambda+1)$. If $\lambda=1, \lambda=-1$, the system is inconsistent. If $\lambda=0$ the solution depends on one parameter.
435. (a) $\Delta=3(c+1)(c-1)^{2}$. If $c=-1$, the system is inconsistent.

If $\boldsymbol{c}=1$, the solution depends on two parameters.
(b) $\Delta=(\lambda-1)(\lambda-2)(\lambda-3)$. If $\lambda=2, \lambda=3$, the system is inconsistent. If $\lambda=1$, the solution depends on one parameter.
(c) $\Delta=d(d-1)(d+2)$. If $d=1, d=-2$, the system is inconsistent. If $d=0$, the solution depends on one parameter.
(d) $\Delta=(a-1)^{2}(a+1)$. If $a=-1$, the system is inconsistent. If $a=1$, the solution depends on two parameters.
436. $\left|\begin{array}{lll}\boldsymbol{x} & \boldsymbol{y} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$.
437. If and only if $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0 . \quad$ 438. If and only if $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$.
439. If and only if $\left|\begin{array}{cccc}x_{0}^{2}+y_{0}^{2} & x_{0} & y_{0} & 1 \\ x_{1}^{2}+y_{1}^{2} & x_{1} & y_{1} & 1 \\ x_{2}^{2}+y_{2}^{2} & x_{2} & y_{3} & 1 \\ x_{3}^{2}+y_{3}^{2} & x_{3} & y_{3} & 1\end{array}\right|=0$.
440. $(x-1)^{2}+(y-1)^{2}=1$. 441. $y^{2}-y=0$.
442. $y=x^{3}-1$.
443. $\left|\begin{array}{ccccccc}y & x^{n} & x^{n-1} & \ldots & x^{2} & x & 1 \\ y_{0} & x_{0}^{n} & x_{0}^{n-1} & \ldots & x_{0}^{2} & x_{0} & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ y_{n} & x_{n}^{n} & x_{n}^{n-1} & \ldots & x_{n}^{2} & x_{n} & 1\end{array}\right|=0$.
444. If and only if

$$
\left|\begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{3} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}\right|=0 .
$$

445. $x^{2}+y^{2}+z^{2}-x-y-z=0$.
446. If and only if the rank of the matrix

$$
\left(\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
\hdashline & \cdots & \cdots \\
x_{n} & y_{n} & 1
\end{array}\right)
$$

is less than three.
447. If and only if the rank of the matrix

$$
\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
\cdots & \cdots & \cdots \\
a_{n} & b_{n} & c_{n}
\end{array}\right)
$$

is less than three.
448. In one plane if and only if the rank of the matrix

$$
\left(\begin{array}{cccc}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{3} & 1 \\
\cdots & \cdots & \cdots & 1 \\
x_{n} & y_{n} & z_{n} & 1
\end{array}\right)
$$

is less than four; on one straight line if and only if the rank of the matrix is less than three.
449. All planes pass through one point only when the rank of the matrix

$$
\left(\begin{array}{cccc}
A_{1} & B_{1} & C_{1} & D_{1} \\
A_{2} & B_{2} & C_{2} & D_{2} \\
\cdots & \cdots & A_{n} & D_{n} \\
A_{n} & B_{n} & C_{n} & D_{n}
\end{array}\right)
$$

is less than four'; through one straight line only when the rank of this matrix is less than three.
450. $\left|\begin{array}{ccccc}a_{11} & a_{12} & \ldots & a_{1, n-1} & a_{1 n} \\ a_{21} & a_{32} & \ldots & a_{2, n-1} & a_{2 n} \\ \cdots & \cdots & \ldots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n, n-1} & a_{n n}\end{array}\right|=0$.
453. No. 454. For example, $\left(\begin{array}{lllll}1 & -2 & 1 & 0 & 0 \\ 1 & -2 & 0 & 1 & 0 \\ 5 & -6 & 0 & 0 & 1\end{array}\right)$.
455. Yes.
456. Solution. Let

$$
A=\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\
\alpha_{21} & \alpha_{22} & \ldots & \alpha_{2 n} \\
\ldots & \cdots & \ldots & ._{1} \\
\alpha_{r 1} & \alpha_{r 2} & \ldots & \alpha_{r n}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
\lambda_{11} & \lambda_{11} & \ldots & \lambda_{1 r} \\
\lambda_{21} & \lambda_{21} & \ldots & \lambda_{2 r} \\
\cdots & \lambda_{21} & \cdots & \lambda_{r r} \\
\lambda_{r 1} & \lambda_{r 2} & \ldots & \lambda_{r r}
\end{array}\right),
$$

$$
B A=\left(\begin{array}{cccccc}
\sum_{s=1}^{r} & \lambda_{1 s} & \alpha_{s 1} & \ldots & \sum_{s=1}^{r} \lambda_{1 s} & \alpha_{s n} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\sum_{s=1}^{r} \lambda_{r s} & \alpha_{s 1} & \ldots & \sum_{s=1}^{r} \lambda_{r s} & \alpha_{s n}
\end{array}\right) .
$$

It is immediately obvious that the rows of the matrix $B A$ are solutions of the system. Besides, since $|B| \neq 0, A=B^{-1}(B A)$, i. e., the solutions written down by the matrix A are linear combinations of the solutions written down by the matrix $B A$.
457. Solution. Let

$$
A=\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\
\alpha_{21} & \alpha_{22} & \ldots & \alpha_{2 n} \\
\ldots & \ldots & \ldots & \cdots \\
\alpha_{r 1} & \alpha_{r 2} & \ldots & \alpha_{r n}
\end{array}\right), \quad C=\left(\begin{array}{cccc}
\gamma_{11} & \gamma_{12} & \ldots & \gamma_{1 n} \\
\gamma_{21} & \gamma_{22} & \ldots & \gamma_{2 n} \\
\cdots & \cdots & \ldots & \cdots \\
\gamma_{r 1} & \gamma_{r 2} & \ldots & \gamma_{r n}
\end{array}\right)
$$

Since C is a fundamental system of solutions, $\alpha_{11}=\lambda_{11} \gamma_{11}+\lambda_{12} \gamma_{21}+\ldots+\lambda_{11} \gamma_{r}$ and so on, that is, $A=B C$, where

$$
B=\left(\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \ldots & \lambda_{1 r} \\
\lambda_{r 1} & \lambda_{r 2} & \ldots & \lambda_{1 r}
\end{array}\right) .
$$

On the other hand, A is also a fundamental system of solutions, and therefore $|B| \neq 0$.
459. For example,

$$
x_{1}=c_{1}+c_{2}+5 c_{2}, x_{2}=-2 c_{1}-2 c_{2}-6 c_{3}, x_{3}=c_{1}, x_{4}=c_{2}, x_{5}=c_{3}
$$

(see the answer to Problem 454).
460. $x_{1}=11 c, x_{2}=c, x_{2}=-7 c$.
461. No. 408. $x_{1}=x_{2}=x_{3}=x_{4}=0$.

No. 409. $x_{1}=3 c_{1}+13 c_{2}, x_{2}=19 c_{1}+20 c_{2}, x_{3}=17 c_{1}, x_{4}=-17 c_{2}$.
No. 410. $x_{1}=c_{1}+7 c_{2}, x_{2}=-c_{1}+5 c_{2}, x_{3}=-c_{1}, x_{4}=2 c_{2}, x_{5}=6 c_{2}$.
No. 412. $x_{1}=c_{1}+7 c_{2}, x_{2}=c_{1}+5 c_{2}, x_{3}=-c_{1}-5 c_{2}, x_{4}=-2 c_{1} ; x_{5}=8 c_{2}$.
No. 413. $x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=c, x_{5}=c$.
462. $x_{1}=-16+c_{1}+c_{2}+5 c_{2}$,

$$
\begin{aligned}
& x_{2}=23-2 c_{1}-2 c_{2}-6 c_{3}, \\
& x_{3}=c_{1} ; x_{4}=c_{2} ; x_{5}=c_{3} .
\end{aligned}
$$

463. No. 406. $x_{1}=-8, x_{2}=3+c, x_{3}=6+2 c, x_{4}=c$.

No. 414. $x_{1}=c_{3}, x_{2}=2+c_{1}+c_{2}-5 c_{3}, x_{2}=c_{1}, x_{4}=c_{2}, x_{5}=-1+3 c_{3}$.
No. 415. $x_{1}=1+2 c_{8}, x_{2}=1+c_{1}-c_{2}+5 c_{3}, x_{3}=2 c_{1}, x_{4}=2 c_{2}, x_{5}=1+6 c_{8}$.

CHAPTER 4

MATRICES

464. (a) $\left(\begin{array}{ll}3 & -1 \\ 5 & -1\end{array}\right)$,
(b) $\left(\begin{array}{rr}-9 & 13 \\ 15 & 4\end{array}\right)$,
(c) $\left(\begin{array}{rrr}6 & 2 & -1 \\ 6 & 1 & 1 \\ 8 & -1 & 4\end{array}\right)$, (d) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, (e) $\left(\begin{array}{rrr}1 & 9 & 15 \\ -5 & 5 & 9 \\ 12 & 26 & 32\end{array}\right)$,
(f) $\left(\begin{array}{ccc}a+b+c & a^{2}+b^{2}+c^{2} & b^{2}+2 a c \\ a+b+c & b^{2}+2 a c & a^{2}+b^{2}+c^{2} \\ 3 & a+b+c & a+b+c\end{array}\right)$.
465. (a) $\left(\begin{array}{lll}7 & 4 & 4 \\ 9 & 4 & 3 \\ 3 & 3 & 4\end{array}\right), \quad$ (b) $\left(\begin{array}{ll}15 & 20 \\ 20 & 35\end{array}\right), \quad$ (c) $\left(\begin{array}{rr}3 & -2 \\ 4 & 8\end{array}\right)$,
(d) $\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right), \quad$ (e) $\left(\begin{array}{rr}\cos n \varphi & -\sin n \varphi \\ \sin n \varphi & \cos n \varphi\end{array}\right)$.
466. $\left(\begin{array}{cc}1 & \frac{\alpha}{n} \\ -\frac{\alpha}{n} & 1\end{array}\right)=\sqrt{1+\frac{\alpha^{2}}{n^{2}}} \cdot \quad\left(\begin{array}{rr}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)$
where $\tan \varphi=\frac{\alpha}{n}$. Hence,

$$
\left(\begin{array}{rr}
1 & \frac{\alpha}{n} \\
-\frac{\alpha}{n} & 1
\end{array}\right)^{n}=\left(1+\frac{\alpha^{2}}{n^{2}}\right)^{\frac{n}{2}} \cdot\left(\begin{array}{rr}
\cos n \varphi & \sin n \varphi \\
-\sin n \varphi & \cos n \varphi
\end{array}\right) .
$$

The limit of the first factor is equal to 1. $\lim _{n \rightarrow \infty} n \varphi=\alpha \lim _{\varphi \rightarrow 0} \frac{\varphi}{\tan \varphi}=\alpha$. Therefore

$$
\lim \left(\begin{array}{cc}
1 & -\frac{\alpha}{n} \\
-\frac{\alpha}{n} & 1
\end{array}\right)^{n}=\left(\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right) .
$$

467. (a) $(A+B)^{2}=A^{2}+A B+B A+B^{2}=A^{2}+2 A B+B^{2}$.
(b) $(A+B)(A-B)=A^{2}-A B+B A-B^{2}=A^{2}-B^{2}$.
(c) The proof is by induction.
468.

(a) $\left(\begin{array}{rrr}-10 & -4 & -7 \\ 6 & 14 & 4 \\ -7 & 5 & -4\end{array}\right)$.
(b) $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
469.
(a) $\left(\begin{array}{rr}x & 2 y \\ -y & x-2 y\end{array}\right)=(x-y) E+y A$,
(b) $\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right)=(x-y) E+y A$,
(c) $\left(\begin{array}{ccc}x & y & 0 \\ u & v & 0 \\ 3 t-3 x-u & t-3 y-v & t\end{array}\right)$.
470.
(a) $\left(\begin{array}{rrr}5 & 1 & 3 \\ 8 & 0 & 3 \\ -2 & 1 & -2\end{array}\right)$,
(b) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
471. It is verified by direct computation.
472. The polynomials $F(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$, such that $F(A)=0$, exist because the equality $F(A)=a_{0} E+a_{1} A+\ldots+a_{m} A^{m}=0$ is equivalent to a system of n^{2} homogeneous linear equations in $m+1$ unknowns $a_{0}, a_{1}, \ldots, a_{m}$, which system probably has nontrivial solutions for $m \geqslant n^{2}$. Let $F(x)$ be some polynomial for which $F(A)=0$ and let $f(x)$ be a polynomial of lowest degree among the polynomials having this property. Then $F(x)=f(x) q(x)+r(x)$, where $r(x)$ is a polynomial of degree less than that of $f(x)$. We have $r(A)=$ $=F(A)-f(A) q(A)=0$, hence, $r(x)=0$, otherwise there would be a contradiction with the choice of $f(x)$. Thus, $F(x)=f(x) q(x)$.
473. Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\cdots & \cdots & \cdots \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right)
$$

Then the sum "of the diagonal elements of the matrix $A B$ is equal to $\sum_{i=1}^{n} \sum_{k=1}^{n} a^{n}$ the same. Hence, the sum of the diagonal elements of the matrix $A B-B A$ is equal to zero, and the equality $A B-B A=E$ is impossible.

Remark. The result is not valid for matrices with elements of a field of characteristic $p \neq 0$. Indeed, in a field of characteristic p, for matrices of order p,

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & . \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & \\
1 & 0 & 0 & \ldots & \\
0 & 2 & 0 & \ldots & \\
\ldots & \ldots & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & p-1
\end{array}\right)
$$

we have $A B-B A=E$.
474. $(E-A)\left(E+A+A^{2}+\ldots+A^{k-1}\right)=E-A^{k}=E$.
475. $\left(\begin{array}{rr}a & b \\ c & -a\end{array}\right), \quad b c=-a^{2}$.
476. If $A^{8}=0$, then $A^{2}=0$ also. Indeed, if $A^{8}=0$, then $|A|=0$. Hence (see 471), $A^{2}=(a+d) A, 0=A^{9}=(a+d) A^{2}=(a+d)^{2} A$, whence $a+d=0$ and $A^{2}=0$.
477. $\pm E,\left(\begin{array}{rr}a & b \\ c & -a\end{array}\right), \quad a^{2}=1-b c$.
478. If $A=0$, then X is any matrix. If $|A| \neq 0$, then $X=0$. Finally, if $|A|=0$, but $A \neq 0$, then the rows of matrix A are proportional. Let $\alpha: \beta$ be the ratio of corresponding elements of the first and second rows of the matrix A. Then $X=\left(\begin{array}{cc}-\beta x & \alpha x \\ -\beta y & \alpha y\end{array}\right)$ for $\operatorname{arbitrary} x, y$.
479. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(1) If $A \neq 0$, but $a+d=0, a d-b c=0$, then there are no solutions;
(2) if $a+d \neq 0,(a-d)^{2}+4 b c=0,(a-d), b, c$ are not equal to zero simultaneously, then there are two solutions:

$$
X= \pm \frac{1}{2 \sqrt{2(a+d)}}\left(\begin{array}{cc}
3 a+d & 2 b \\
2 c & a+3 d
\end{array}\right)
$$

(3) if $a+d \neq 0, a d-b c=0$, then there are two solutions:

$$
X= \pm \frac{1}{\sqrt{a+d}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(4) if $a d-b c \neq 0,(a-d)^{2}+4 b c \neq 0$, then there are four solutions:

$$
X=\frac{1}{\lambda}\left(\begin{array}{cc}
\frac{\lambda^{2}+a-d}{2} & b \\
c & \frac{\lambda^{2}-a+d}{2}
\end{array}\right)
$$

where $\quad \lambda= \pm \sqrt{a+d \pm 2 \sqrt{a d-b} c}$;
(5) if $a-d=b=c=0$, then there are infinitely many solutions: $X= \pm \sqrt{ } \vec{a} E$ and $X=\left(\begin{array}{rr}x & y_{z} \\ z & -x^{2}\end{array}\right)$, where x, y, z are connected by the relation $x^{2}+y z=a$.
480.
(a) $\left(\begin{array}{rr}5 & -2 \\ -2 & 1\end{array}\right)$,
(b) $\frac{1}{a d-b c}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$,
(c) $\left(\begin{array}{rrr}1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)$,
(d) $\left(\begin{array}{rrrr}1 & -3 & 11 & -38 \\ 0 & 1 & -2 & 7 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1\end{array}\right)$,
(e) $\left(\begin{array}{rrr}1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4\end{array}\right)$,
(f) $\frac{1}{4}\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$,
(g) $\left(\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ 31 & -19 & 3 & -4 \\ -23 & 14 & -2 & 3\end{array}\right)$,
(h) $\frac{1}{n-1}\left(\begin{array}{cccccc}2-n & 1 & 1 & & 1 \\ 1 & 2-n & 1 & & 1 \\ 1 & 1 & 2-n & \ldots & 1 \\ \ldots & \ldots & \ldots & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 2-n\end{array}\right)$,
(i) $\frac{1}{n}\left(\begin{array}{ccccc}1 & 1 & 1 & & 1 \\ 1 & \varepsilon^{-1} & \varepsilon^{-2} & \ldots & \varepsilon^{-n+1} \\ 1 & \varepsilon^{-2} & \varepsilon^{-4} & \ldots & \varepsilon^{-2 n+2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & \varepsilon^{-n+1} & \varepsilon^{-2 n+2} & \ldots & \varepsilon^{-(n-1)^{2}}\end{array}\right)$,
(j) $\frac{1}{n+1}\left(\begin{array}{lllll}1 \cdot n & 1 \cdot(n-1) & 1 \cdot(n-2) & \ldots & 1 \cdot 1 \\ 1 \cdot(n-1) & 2 \cdot(n-1) & 2 \cdot(n-2) & \ldots & 2 \cdot 1 \\ 1 \cdot(n-2) & 2 \cdot(n-2) & 3 \cdot(n-2) & \ldots & 3 \cdot 1 \\ \cdots \cdots \cdots & \cdots \cdot \cdots & \cdots & \cdots & \ldots \\ 1 \cdot 1 & 2 \cdot 1 & 3 \cdot 1 & \ldots & n \cdot 1\end{array}\right)$,
(k) $\frac{1}{2 n^{3}}\left(\begin{array}{ccccc}2-n^{2} & 2+n^{2} & 2 & \ldots & 2 \\ 2 & 2-n^{2} & 2+n^{2} & \ldots & 2 \\ \ldots & \ldots & \cdots & \cdots & \cdots \\ 2+n^{2} & 2 & 2 & \ldots & 2-n^{2}\end{array}\right)$,
(1) $\frac{1}{d}\left(\begin{array}{ccccc}b_{1} c_{1}+d & b_{2} c_{1} & \ldots & b_{n} c_{1} & -c_{1} \\ b_{1} c_{2} & b_{2} c_{2}+d & \ldots & b_{n} c_{2} & -c_{2} \\ \ldots & c_{2} & \ldots & \ldots & \ldots\end{array}\right)$
where $d=a-b_{1} c_{1}-b_{2} c_{2}-\ldots-b_{n} c_{n}$,

$$
\text { (m) } \frac{1}{f}\left(\begin{array}{lllll}
f-f_{0} x^{n} & x f-f_{1} x^{n} & \ldots & x^{n-1} f-f_{n-1} x^{n} & x^{n} \\
-f_{0} x^{n-1} & f-f_{1} x^{n-1} & \ldots & x^{n-2} f-f_{n-1} x^{n-1} & x^{n-1} \\
-x_{0} & \cdots & \ldots & \ldots & \ldots
\end{array}\right)
$$

where $f_{0}=a_{0}, f_{1}=a_{0} x+a_{1}, \ldots, f_{n-1}=a_{0} x^{n-1}+\ldots+a_{n-1}, f=a_{0} x^{n}+a_{1} x^{n-1}+$ $\ldots+a_{n}$,

$$
\text { (n) }\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \cdots & \ldots & 0 \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)-\frac{1}{\mu}\left(\begin{array}{cccc}
\lambda_{1}^{2} & \lambda_{1} \lambda_{2} & \ldots & \lambda_{1} \lambda_{n} \\
\lambda_{2} \lambda_{1} & \lambda_{2}^{2} & \ldots & \lambda_{2} \lambda_{n} \\
\cdots \lambda_{n} & \lambda_{n} & \ldots & \lambda_{n} \\
\lambda_{n} \lambda_{1} & \lambda_{n} \lambda_{2} & \ldots & \lambda_{n}^{2}
\end{array}\right) \text {, }
$$

$$
\mu=1+\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n} ;
$$

(o) $\left(\begin{array}{cc}B^{-1}+\lambda B^{-1} U V B^{-1} & -\lambda B^{-1} U \\ -\lambda V B^{-1} & \lambda\end{array}\right), \quad \lambda=-\frac{1}{a-V B^{-1} U}$.
481.
(a) $\left(\begin{array}{rr}2 & -23 \\ 0 & 8\end{array}\right)$,
(b) $\left(\begin{array}{rrr}-3 & 2 & 0 \\ -4 & 5 & -2 \\ -5 & 3 & 0\end{array}\right)$,
(c) $\left(\begin{array}{rrrrrrrrr}1 & -1 & -1 & 0 & \ldots & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 & \ldots & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & \ldots & 0 & 0 & 0 & 0 \\ \ldots & . \\ 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 2\end{array}\right)$,
(d) $\left(\begin{array}{rr}24 & 13 \\ -34 & -18\end{array}\right), \quad$ (e) $X=E-\frac{n-1}{n^{2}}$
$\left(\begin{array}{cccc}1 & 1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \\ \ldots & \ldots & \ldots & 1 \\ 1 & 1 & \ldots & 1\end{array}\right)$,
(f) $X=\left(\begin{array}{cc}1+a & b \\ -2 a & 1-2 b\end{array}\right)$, (g) X does not exist.
482. It is sufficient to multiply the equation $A B=B A$ on the right and on the left by A^{-1}.
483. $\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right)$.
484. If $A^{3}=E$, then $|A|^{3}=1$, and, by virtue of its real nature, $|A|=1$. Set $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then, equating A^{-1} and A^{2}, we readily find that $A=E$ or $a+d=-1, a d-b c=1$.
485. $A= \pm E$ or $A=\left(\begin{array}{rr}a & b \\ c & -a\end{array}\right), a^{2}+b c= \pm 1$.
486. $\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)=a E+b I$, where $I=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$.

Then $I^{2}=-E$ and, hence, the correspondence $a E+b I \rightarrow a+b i$ is an isomorphism.
487. Set $\left(\begin{array}{rr}a+b i & c+d i \\ -c+d i & a-b i\end{array}\right)=a E+b I+c J+d K$,
where $I=\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right), \quad J=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), \quad K=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$. Then
$I^{2}=J^{2}=K^{2}=-E, I J=-J I=K, J K=-K J=I, K I=-I K=J$. Whence it follows that the product of two matrices of the form $a+b I+c J+d K$ is a matrix of the same type. The same holds true for a sum and a difference so that the
set of matrices at hand is a ring. \langle Furthermore, $| A\left|=\left|\begin{array}{rr}a+b i & c+d i \\ -c+d i & a-b i\end{array}\right|=\right.$ $=a^{2}+b^{2}+c^{2}+d^{2} \neq 0$ as soon as $A \neq 0$. Hence, every nonzero matrix has an inverse, and from the equality $A_{1} A_{2}=0$ (or $A_{2} A_{1}=0$) for $A_{1} \neq 0$, it follows that $A_{2}=0$. The ring of matrices under consideration is a realization of what is called the algebra of quaternions.
488. $\left(a_{1} E+b_{1} I+c_{1} J+d_{1} K\right)\left(a_{2} E+b_{2} I+c_{2} J+d_{2} K\right)=\left(a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-\right.$ $\left.-d_{1} d_{2}\right) E+\left(a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{2}-d_{1} c_{2}\right) I+\left(a_{1} c_{2}-b_{1} d_{3}+c_{1} a_{2}+d_{1} b_{8}\right) J+\left(a_{1} d_{2}+\right.$ $\left.+b_{1} c_{2}-c_{1} b_{8}+d_{1} a_{2}\right) K$. Taking determinants, we get $\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}\right)\left(a_{2}^{3}+b_{2}^{2}+\right.$ $\left.+c_{2}^{2}+d_{2}^{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2}\right)^{2}+\left(a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{3}-d_{1} c_{2}\right)^{2}+\left(a_{1} c_{2}-\right.$ $\left.-b_{1} d_{2}+c_{1} a_{2}+d_{1} b_{2}\right)^{2}+\left(a_{1} d_{2}+b_{1} c_{2}-c_{1} b_{2}+d_{1} a_{2}\right)^{2}$.
489. Interchanging two rows of a matrix is accomplished by premultiplication of the matrix

Operation b is accomplished by premultiplication of the matrix

Operation c is accomplished by premultiplication of the matrix

$$
\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& \cdot & & & & & & \\
& & \cdot & & & & & \\
\\
& & & \cdot & & & & \\
& & \\
& & & 1 & & & & \\
\\
& & & & \alpha & & & \\
\\
& & & & & 1 & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& \\
& & & \\
&
\end{array}\right) .
$$

The operations a, b, c on columns'are accomplished by postmuitiplication of the same matrices.
490. Any matrix A can be reduced to diagonal form R by elementary transformations a, b, c on the rows and columns. Therefore,' for 'the given matrix A there is a matrix of the form R such that $R=U_{1} U_{2} \ldots U_{m} A V_{1} V_{2} \ldots V_{k}$, where $U_{1}, \ldots, U_{m}, V_{1}, \ldots, V_{k}$ are matrices of elementary transformations. They are all nonsingular and have inverses.

Consequently, $A=P R Q$, where P and Q are nonsingular matrices.
491. By virtue of the results of Probiems 489,490 , it will suffice to prove the theorem for diagonal matrices and for matrices corresponding to the operation a, because matrices corresponding to the operation b have the required form. It is easy to see that the operation a reduces to the operations b and c. Indeed, to interchange two rows, we can add the first to the second, and then from the first subtract the second, then add the first to the second and, finally, multiply the first by -1 . This is equivalent to the matrix identity $E-e_{i t}-e_{k k}+$ $+e_{i k}+e_{k i}=\left(E-2 e_{k k}\right)\left(E+e_{i k}\right)\left(E-e_{k k}\right)\left(E+e_{i k}\right)$. The theorem is obvious for diagonal matrices:

$$
\begin{aligned}
a_{1} e_{11}+a_{2} e_{22}+\ldots & +a_{n} e_{n n} \\
& =\left(E+\left(a_{1}-1\right) e_{11}\right)\left(E+\left(a_{2}-1\right) e_{22}\right) \ldots\left(E+\left(a_{n}-1\right) e_{n n}\right) .
\end{aligned}
$$

492. Let $A=P_{1} R_{1} Q_{1}, B=P_{2} R_{2} Q_{2}$, where $P_{1}, Q_{1}, P_{2}, Q_{2}$ are nonsingular matrices and R_{1} and R_{2} are matrices having, respectively, r_{1} and r_{2} units on the principal diagonal and zero elsewhere. Then $A B=P_{1} R_{1} Q_{1} P_{2} R_{2} Q_{2}$ and the rank of $A B$ is equal to the rank of $R_{1} C R_{2}$, where $C=Q_{1} P_{2}$ is a nonsingular matrix. The matrix $R_{1} C R_{2}$ is obtained from the matrix C by replacing all elements of the last $n-r_{1}$ rows and $n-r_{2}$ columns by zeros. Since striking out one row or one column reduces the rank of a matrix by no more than unity, the rank of $R_{1} C R_{2}$ is not less than $n-\left(n-r_{1}\right)-\left(n-r_{2}\right)=r_{1}+r_{2}-n$.
493. It follows directly from the proportionality of ail rows of a matrix of rank 1 .
494. On the basis of the results of Problem 492, the rank of the desired matrix A is equal to 1 or 0 . Hence

$$
A=\left(\begin{array}{lll}
\lambda_{1} \mu_{1} & \lambda_{1} \mu_{2} & \lambda_{1} \mu_{3} \\
\lambda_{2} \mu_{1} & \lambda_{2} \mu_{2} & \lambda_{2} \mu_{3} \\
\lambda_{3} \mu_{1} & \lambda_{3} \mu_{2} & \lambda_{3} \mu_{3}
\end{array}\right) .
$$

Direct multiplication yields

$$
0=A^{2}=\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}\right) A
$$

whence it follows that $\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}=0$.
495. Let A yield a solution to the problem different from the trivial $A= \pm E$. Then one of the matrices $A-E$ or $A+E$ has rank 1. Let

$$
A+E=\left(\begin{array}{lll}
\lambda_{1} \mu_{1} & \lambda_{1} \mu_{2} & \lambda_{1} \mu_{3} \\
\lambda_{2} \mu_{1} & \lambda_{2} \mu_{2} & \lambda_{2} \mu_{3} \\
\lambda_{3} \mu_{1} & \lambda_{3} \mu_{2} & \lambda_{3} \mu_{3}
\end{array}\right)=B
$$

Then $A^{2}=E-2 B+B^{2}=E+\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}-2\right) B$, whence it follows that for $A^{2}=E$ it is necessary and sufficient that the condition $\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\lambda_{3} \mu_{8}=2$ be fulfilled. The second case is considered in similar fashion.
496. Let there be adjoined to the matrix (A, B), where

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
a_{m 1} & \ldots & 1 \\
a_{m k} & \ldots & a_{m k}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 s} \\
\ldots & \ldots & 1 \\
b_{m 1} & \ldots & b_{m s}
\end{array}\right),
$$

the column $C=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ . \\ c_{m}\end{array}\right)$, the adjoining of which to the matrix B does not
increase its rank. Then the system of linear equations

$$
\begin{gathered}
b_{11} y_{1}+\ldots+b_{1 s} y_{s}=c_{1}, \\
b_{m 1} y_{1}+\ldots+b_{m s} y_{s}=c_{m}
\end{gathered}
$$

is consistent, but then also consistent is the system

$$
\begin{aligned}
& a_{11} x_{1}+\ldots+a_{1 k} x_{k}+b_{11} y_{1}+\ldots+b_{13} y_{s}=c_{1}, \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\
& a_{m 1} x_{1}+\ldots+a_{m k} x_{k}+b_{m 1} y_{1}+\ldots+b_{m s} y_{s}=c_{m} .
\end{aligned}
$$

Consequently, the rank of the matrix (A, B) is equal to the rank of the matrix (A, B, C).

Now suppose that the columns of the matrix B are adjoined to the matrix A gradually, one at a time. The rank can then increase by unity by virtue of what has just been proved only when the rank of B increases. Hence, the rank of $(A, B) \leqslant$ the rank of $A+$ the rank of B.
497. Let the rank of $(E+A)=r_{1}$, the rank of $(E-A)=r_{2}$. Since $(E+A)+$ $+(E-A)=2 E, r_{1}+r_{2} \geqslant n$. On the other hand, $(E+A)(E-A)=0$, therefore $0 \geqslant r_{1}+r_{2}-n$. Hence, $r_{1}+r_{2}=n$.
498. The rank of the matrix $(E+A, E-A)$ is equal to n. From this matrix choose a nonsingular square matrix P of order n and let its first r columns belong to the matrix $E+A$, and let the other $n-r$ columns belong to $E-A$. Then, by virtue of the fact that $(E+A)(E-A)=0$ we have

$$
\begin{aligned}
& (E+A) P=\left(\begin{array}{cccccc}
q_{11} & \ldots & q_{1 r} & 0 & \ldots & 0 \\
\ddots_{n 1} & \cdots & q_{n r} & \cdots & \ldots & 0 \\
q_{n 1} & \cdots & q_{n r} & 0 & \ldots & 0
\end{array}\right), \\
& (E-A) P=\left(\begin{array}{ccccccc}
0 & \ldots & 0 & q_{1, r+1} & \ldots & q_{1 n} \\
\hdashline & \ldots & \cdots & \cdots & \ldots & 1 \\
0 & \ldots & 0 & q_{n, r+1} & \ldots & q_{n n}
\end{array}\right) .
\end{aligned}
$$

Combining these equations, we get

$$
2 P=\left(\begin{array}{cccccc}
q_{11} & \ldots & q_{1 r} & q_{1, r+1} & \ldots & q_{1 n} \\
\cdots & \ldots & \cdots & \cdots & \ddots & \cdots
\end{array}\right) \cdot .
$$

Subtracting them, we obtain
$2 A P=\left(\begin{array}{ccccc}q_{11} & \cdots & q_{1 r}-q_{1, r+1} & \ldots & -q_{1 n} \\ \cdots & \cdots & \cdots & \cdots & \cdots\end{array}\right)$

$$
=2 P\left(\begin{array}{lllllll}
1 & & & & & & \\
& \cdot & & & & & \\
& & \cdot & & & & \\
& & & & & & \\
& & & 1 & & & \\
& & & -1 & & & \\
& & & & & \cdot & \\
& & & & & \cdot & \\
& & & & & & \cdot \\
& & & & & & -1
\end{array}\right) .
$$

Whence follows immediately what we sought to prove.
499. If $A A^{-1}=E$ and both matrices are integral, then $|A| \times\left|A^{-1}\right|=1$, whence it follows that $|A|= \pm 1$ because $|A|$ and $|\boldsymbol{A}|^{-1}$ are integers. The condition $|A|= \pm 1$ is obviously also sufficient for the matrix A^{-1} to be integral.
500. Let A be an integral nonsingular matrix. There will be nonzero elements in its first column. By multiplying certain rows of the matrix \boldsymbol{A} by -1 , we can make all elements of the first column nonnegative. Choose the smallest positive one and subtract its corresponding row from some other row containing a positive element in the first column. We again get a matrix with nonnegative elements in the first column, but one of them will be less than in the original matrix. Continue the process as long as possible. In a finite number of steps, we arrive at a matrix in which all elements of the first column, except a positive one, are zero. Then, by interchanging two rows, carry the nonzero element of the first column into the first row. Next, leaving the first row fixed, use the same operations to obtain a positive element on the diagonal in the second column, all elements below it being zero. Next turn to the third column, etc. The matrix will finally become triangular. Then, by adding each row an appropriate number of times to the above-lying rows (or subtracting each row from them), we reach a situation in which the elements above the principal diagonal satisfy our requirements.

The foregoing operations are equivalent to premultiplication by certain unimodular matrices, whence immediately follows the desired result.
501. Let $A=P_{1} R_{1}=P_{2} R_{2}$, where the matrices $P_{1} R_{1}$ and $P_{2} R_{2}$ satisfy the requirements of Problem 500. Then from the equation $P_{2}^{-1} P_{1}=R_{2} R_{1}^{-1}$ it follows that the integral unimodular matrix $C=\boldsymbol{P}_{2}^{-1} \boldsymbol{P}_{1}$ is also of triangular form.

Let

$$
\begin{aligned}
& R_{1}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
& a_{22} & \ldots & a_{2 n} \\
& & & \cdot \\
\cdot & \cdot \\
& & & \cdots
\end{array}\right), \quad R_{2}=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
& b_{22} & \ldots & b_{2 n} \\
& & & \cdot \\
& & & \cdot \\
& & & \\
& & & \\
& & & b_{n n}
\end{array}\right), \\
& \boldsymbol{C}=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
& c_{22} & \ldots & c_{2 n} \\
& & & \cdot \\
& & & \cdot \\
& & & c_{n n}
\end{array}\right) .
\end{aligned}
$$

Then from the equation $R_{2}=C R_{1}$ we first of all conclude that $b_{11}=c_{11} a_{11}$, $\ldots, b_{n n}=c_{n n} a_{n n}$, whence it follows that all $c_{i j}$ are positive. But $c_{11} c_{22} \ldots c_{n n}=$ $=|c|= \pm 1$, hence $c_{11}=c_{22}=\ldots=c_{n n}=1$ and $a_{i i}=b_{i i}$.

Furthermore, $b_{12}=c_{11} a_{12}+c_{12} a_{22}=a_{12}+c_{12} a_{22}$, whence $c_{12}=\frac{b_{12}-a_{12}}{a_{22}}$. But $0 \leqslant b_{12}<b_{22}=a_{22}, 0 \leqslant a_{12}<a_{22}$, hence, $\left|c_{12}\right|<1$, and therefore $c_{12}=0$. Thus, comparing successively (by columns) the other elements in the matrix equation $C R_{1}=R_{2}$, we come to the conclusion that all $c_{l k}=0$ for $k>i$, that is, $C=E$. Consequently, $R_{1}=R_{2}, P_{1}=P_{2}$. Thus, in each class there will be one and only one matrix of the form R.

The number of matrices R. with given diagonal elements $d_{1}, d_{2}, \ldots, d_{n}$ is evidently equal to $d_{2} d_{3}^{2} \ldots d_{n}^{n-1}$ and so the number of matrices R with a given determinant k is equal to $F_{n}(k)=\Sigma d_{2} d_{3}^{2} \ldots d_{n}^{n-1}$, where the summation sign Σ is extended over all positive integers $d_{1}, d_{2}, \ldots, d_{n}$ satisfying the condition $d_{1} d_{2} \ldots d_{n}=k$. If $k=a b,(a, b)=1$, then each factor d_{i} in the equation $k=$ $=d_{1} d_{2} \ldots d_{n}$ is uniquely factored into two factors α_{i}, β_{i} so that $\alpha_{1} \alpha_{2} \ldots \alpha_{n}=a$, $\beta_{1} \beta_{2} \ldots \beta_{n}=b$. Hence,

$$
\begin{aligned}
& F_{n}(k)=\sum_{d_{1} d_{2} \ldots d_{n}=k} d_{2} d_{3}^{2} \ldots d_{n}^{n-1} \\
& \quad=\sum_{\substack{\alpha_{2} \alpha_{3} \ldots \alpha_{n}=a \\
\beta_{1} \beta_{2} \ldots \beta_{n}=b}} \alpha_{2} \alpha_{3}^{2} \ldots \alpha_{n}^{n-1} \beta_{2} \beta_{3}^{2} \ldots \beta_{n}^{n-1} \\
& =\sum_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}=a} \alpha_{2} \alpha_{3}^{2} \ldots \alpha_{n}^{n-1} \cdot \sum_{\beta_{1} \beta_{2} \ldots \beta_{n}=b} \beta_{2} \beta_{3}^{2} \ldots \beta_{n}^{n-1}=F_{n}(a) \cdot F_{n}(b) .
\end{aligned}
$$

From this we conclude that if $k=p_{1}^{m_{1}} \ldots p_{s}^{m_{s}}$ is a canonical factorization of k into simple factors, then $F_{n}(k)=F_{n}\left(p_{1}^{m_{1}}\right) \ldots F_{n}\left(p_{s}^{m_{s}}\right)$.

It remains to compute $F_{n}\left(p^{m}\right)$. To do this, break up the sum for the computation of $F_{n}\left(p^{m}\right)$ into two parts, in the first of which $d_{n}=1$ and in the second of which d_{n} is divisible by $p, d_{n}=p d^{\prime}{ }_{n}$. This yields the formula $F_{n}\left(p^{m}\right)=$
$=F_{n-1}\left(p^{m}\right)+p^{n-1} F_{n}\left(p^{m-1}\right)$, from which we readily establish, via mathematical induction, that

$$
F_{n}\left(p^{m}\right)=\frac{\left(p^{m+1}-1\right)\left(p^{m+2}-1\right) \ldots\left(p^{m+n-1}-1\right)}{(p-1)\left(p^{2}-1\right) \ldots\left(p^{n-1}-1\right)}
$$

502. Choose the smallest (in absolute value) nonzero element of the matrix and carry it into the upper left corner by interchanging rows and columns. Then add the first row and the first column to all other rows and columns or subtract them as many times as is needed for all elements of the first row and the first column to be less than the corner element in absolute value. Then repeat the process. It will terminate after a finite number of steps because after each step the element which arrives in the upper left-hand corner is less in absolute value than the preceding one was. However, the process can only terminate in the fact that allelements of the first row and the first column (except the corner one) will become 0 . In the same fashion, transform the matrix formed by the 2nd... nth rows and columns. The matrix will finally be reduced to diagonal form. By virtue of the result of Problem 489, all the above-described transformations are equivalent to postmultiplication and premultiplication of unimodular matrices.
503. Premultiplication of the matrix A^{m} is equivalent to adding the second row multiplied by m to the first. Premultiplication of B^{m} is equivalent to adding the first row multiplied by m to the second row.

Let $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a given integral matrix with determinant 1. Divide a by $c: a=m c+a_{1}, \quad 0 \leqslant a_{1}<|c|$, then divide c by $a_{1}: c=m_{1} a_{1}+c_{2}, \quad 0 \leqslant c_{2}<a_{1}$, etc., until the division is exact. Then $A^{-m} U=U_{1}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c & d\end{array}\right), B^{-m} U_{1}=$ $=U_{2}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{2} & d_{2}\end{array}\right)$, etc. We finally arrive at the matrix U_{k+1} of the form $\left(\begin{array}{ll}a_{k} & b_{k} \\ 0 & d_{k+1}\end{array}\right)$ or $\left(\begin{array}{ll}0 & b_{k+1} \\ c_{k} & d_{k}\end{array}\right)$. Then, by virtue of the positivity of all a_{k}, c_{k} and the unimodularity of U_{k+1}, we have $a_{k}=d_{k+1}=1$ in the first case, and $c_{k}=-b_{k+1}=1$ in the second. Thus, $U_{k+1}=\left(\begin{array}{cc}1 & b_{k} \\ 0 & 1\end{array}\right)=A^{b_{k}}$ in the first case, and $U_{k+1}=\left(\begin{array}{cc}0 & -1 \\ 1 & d_{k}\end{array}\right)=A^{-1} B A^{d}{ }^{k-1}$ in the second. The proof of the theorem is complete.
504. A matrix with determinant -1 is transformed into a matrix with determinant 1 by multiplication by \boldsymbol{C}. Each such matrix is a product of the powers of A and B. But $B=C A C$.
505. Let $|A|=1, A^{2}=E, A \neq E$. Then (Problem 498)

$$
A=P\left(\begin{array}{lll}
1 & & \\
& -1 & \\
& & -1
\end{array}\right) P^{-1}
$$

for some nonsingular matrix P. Define matrix \boldsymbol{P} so that it is integral with the smallest possible determinant. Since $A+E=P\left(\begin{array}{ll}2 & \\ & 0 \\ & 0\end{array}\right) P^{-1}$, the matrix $A+$ $+E$ is of rank 1 and, hence,

$$
A+E=\left(\begin{array}{lll}
\lambda_{1} \mu_{1} & \lambda_{1} \mu_{2} & \lambda_{1} \mu_{3} \\
\lambda_{2} \mu_{1} & \lambda_{2} \mu_{2} & \lambda_{2} \mu_{3} \\
\lambda_{3} \mu_{1} & \lambda_{3} \mu_{2} & \lambda_{3} \mu_{3}
\end{array}\right) \text {. }
$$

Here, $\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}=2$ (Problem 495). Since the matrix $A+E$ is integral, the numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and the numbers $\mu_{1}, \mu_{2}, \mu_{3}$ may be taken to be integers.

Forming a system of equations for the components of the matrix P, it is easy to verify that for P we can take the matrix

$$
P=\left(\begin{array}{ccc}
\lambda_{1} & 0 & -\delta \\
\lambda_{2} & \frac{\mu_{3}}{\delta} & u \mu_{1} \\
\lambda_{3} & -\frac{\mu_{2}}{\delta} & v \mu_{1}
\end{array}\right)
$$

where δ is the greatest common divisor of μ_{2}, μ_{3} and u, v are integers such that $u \mu_{2}+v \mu_{3}=\delta$.

The determinant of the matrix P is equal to 2 .
On the basis of the result of Problem 500, $P=Q R$, where Q is unimodular and R is one of the seven possible triangular matrices of determinant 2.

Consequently, $Q^{-1} A Q$ is equal to one of the seven matrices

$$
R\left(\begin{array}{cc}
1 & \\
& -1 \\
& -1
\end{array}\right) R^{-1}
$$

Of these matrices, there are only three distinct ones, and two of them pass into one another by a transformation via the unimodular matrix. That leaves the two indicated in the hypothesis of the problem.
506.
(a) $\left(\begin{array}{rr}9 & 3 \\ 10 & 3\end{array}\right), \quad$ (b) $\binom{10}{8}, ~$
(c) $\left(\begin{array}{lll}2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 6 & 9\end{array}\right)$,
(d) 13.
507. 45.
508. As a result we get Euler's identity:
$\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}\right)=\left(a a_{1}+b b_{1}+c c_{1}\right)^{2}$

$$
+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+\left(a_{1} c_{2}-a_{2} c_{1}\right)^{2}+\left(b_{1} c_{2}-b_{3} c_{1}\right)^{2} .
$$

509. The minor made up of the elements of rows with indices $i_{1}, i_{2}, \ldots, i_{m}$ and of columns with indices $k_{1}, k_{2}, \ldots, k_{m}$ is the determinant of the product of the matrix made up of rows $i_{1}, i_{2}, \ldots, i_{m}$ of the first factor by a matrix composed of the columns $k_{1}, k_{2}, \ldots, k_{m}$ of the second factor. It is therefore equal to the sum of all possible minors of m th order made up of the rows of the first matrix with indices $i_{1}, i_{2}, \ldots, i_{m}$ multiplied by minors made up of the columns of the second matrix with indices $k_{1}, k_{2}, \ldots, k_{m}$.
510. The diagonal minor of the matrix $\bar{A} A$ is equal to the sum of the squares of all minors of the matrix A of the same order made up of the elements of the columns having the same indices as the columns of the matrix $A A$, which columns contain the given minor. It is therefore nonnegative.
511. If all principal minors of order k of the matrix $\bar{A} A$ are 0 , then, by virtue of the result of Problem 510, all minors of order k of the matrix A are equal to 0 . Hence, the rank of the matrix A, and also the rank of the matrix $\bar{A} A$, is less than k.
512. The sum of all diagonal minors of order k of the matrix $\bar{A} A$ is equal to the sum of the squares of all minors of order k of the matrix A. Also equal to this number is the sum of all diagonal minors of order k of the matrix $A \bar{A}$.
513. It is obtained by applying the theorem on the determinant of a product of two matrices to the product of the matrix $\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n} \\ b_{1} & b_{2} & \ldots & b_{n}\end{array}\right)$ into its transpose.
514. It is obtained by applying the theorem on the determinant of a product to

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1}^{\prime} & b_{1}^{\prime} \\
a_{2}^{\prime} & b_{2}^{\prime} \\
\cdots & \cdots \\
a_{n}^{\prime} & b_{n}^{\prime}
\end{array}\right)
$$

515. It follows directly from the identity of Problem 513. The equal sign is only possible if the rank of the matrix $\left(\begin{array}{ccc}a_{1} a_{2} & \ldots & a_{n} \\ b_{1} b_{2} & \ldots & b_{n}\end{array}\right)$ is less than two, that is, if the numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are proportional.
516. It follows directly from the identity of Problem 514. The equal sign is only possible if the numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are proportional.
517. Let matrix B have m columns, and matrix C, k columns. By the Laplace theorem, $|A|=\Sigma B_{i} C_{i}$, where B_{i} are all possible determinants of order m constructed from the matrix B, and C_{i} are their cofactors, which are equal (to within sign) to the determinants of order k constructed from the matrix C. By virtue of the Bunyakovsky inequality (Problem 515), $|A|^{2} \leqslant \Sigma B_{i}^{2} \Sigma C_{i}^{2}$. But, $\Sigma B_{i}^{2}=|\bar{B} B|, \Sigma C_{i}^{2}=|\bar{C} C|$.
518. Let

$$
B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 m} \\
\cdots & \cdots & \cdots \\
b_{n 1} & \ldots & b_{n m}
\end{array}\right), \quad C=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1} k \\
\cdots & \cdots & \cdots \\
c_{n 1} & \ldots & c_{n k}
\end{array}\right) ; \quad A=(B, C)
$$

The inequality being proved is trivial if $m+k>n$; for the case $m+k=n$, it is established in Problem 517. There remains the case $m+k<n$. First assume

$$
\begin{aligned}
& \text { that } \sum_{i=1}^{n} b_{i j} c_{i s}=0 \text { for arbitrary } j, s \text {. Then } \\
& \quad \overline{A A}=\left(\begin{array}{ll}
\bar{B} B & 0 \\
0 & \bar{C} C
\end{array}\right) \text { and, consequently, }|\bar{A} A|=|\bar{B} B| \cdot|\bar{C} C| .
\end{aligned}
$$

In the general case, it suffices to solve the problen on the assumption that the rank of the matrix A is equal to $m+k$, for otherwise the inequality is trivial.

Complete the construction of the matrix A to the square matrix (A, D) so that the rank of the matrix D is equal to $n-m-k$, and the sums of the products of the elements of any column of D by elements of any column of A are 0 . For example, this can be done as follows. First complete construction of A to the nonsingular square matrix $\varepsilon^{\prime}=\left(A, D^{\prime}\right)$, which is evidently possible, and then replace all elements of the matrix D^{\prime} by their cofactors in $\left|\varepsilon^{\prime}\right|$. The rank of the thus constructed matrix D will be equal to the number
of its columns $n-m-k$, for it is a part of the matrix made up of the cofactors of the matrix ε^{\prime}, which differs from the nonsingular matrix $\left(\varepsilon^{\prime}\right)^{-1}$ in the sole factor | $\varepsilon^{\prime} \mid$.

Denote (A, D) by $P,(C, D)$ by Q. Then, by virtue of the result of Problem 517, $|\widetilde{P} P| \leqslant|\bar{B} B| \cdot|\overline{Q Q}|$. But $|\overline{P P}|=|\bar{A} A| \cdot|\bar{D} D|$ and $|\bar{Q} Q|=|\vec{C} C|$ $\cdot|\bar{D} D|$. Whence it follows that since $|\bar{D} D|>0$,

$$
|\bar{A} A| \leqslant|\bar{B} B| \cdot|\bar{C} C|
$$

519. Tbis follows directly from the result of Problem 518 as applied to the matrix \bar{A}.
520. The determinant of $A^{*} A$ is the sum of the squares of the moduli of all minors of order m of the matrix A, where m is the number of columns of A.
521. This solution is similar to the solution of Problems 517, 518. For a square matrix, the question is resolved by applying the Laplace theorem and the Bunyakovsky inequality. It is advisable to complete the rectangular matrix to a square matrix so that the sum of the products of the elements of any column of the matrix A by the conjugates of the elements of any column of the complementary matrix is equal to 0.
522. Applying the result of Problem 521 several times to the matrix A and taking, for B, a matrix consisting of one column, we get

$$
\left|A^{*} A\right|=\|A\|^{2} \leqslant \sum_{i=1}^{n}\left|a_{i 1}\right|^{2} \cdot \sum_{i=1}^{n}\left|a_{i 2}\right|^{2} \ldots \sum_{i=1}^{n}\left|a_{i n}\right|^{2} \leqslant n^{n} M^{2 n}
$$

whence it follows that

$$
\|A\| \leqslant n^{\frac{n}{2}} M^{n}
$$

523. Complete the given determinant Δ to a determinant Δ_{1} of order $n+1$ by adjoining on the left a column all elements of which are equal to $\frac{M}{2}$, and a row of zeros on top. Then $\Delta=\frac{2}{M} \Delta_{1}$, Subtract the first column from all columns of the determinant Δ_{1}. We get a determinant, all elements of which do not exceed $\frac{M}{2}$. Using the result of Problem 522 yields what we set out to prove.
524. The bound $n^{\frac{n}{2}} M^{n}$ is attained, for example, for the modulus of the determinant

$$
\left|\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & \varepsilon & \ldots & \varepsilon^{n-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & \varepsilon^{n-1} & \ldots & \varepsilon^{(n-1)^{2}}
\end{array}\right| \text { where } \varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}
$$

525. Construct a matrix of order $n=2^{m}$ as follows. First construct the $\operatorname{matrix}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$. Then replace each element equal to 1 by the matrix
$\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$ and each element equal to -1 by the matrix $-\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)=$ $=\left(\begin{array}{rr}-1 & -1 \\ -1 & 1\end{array}\right)$. We obtain a fourth-order matrix,

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) .
$$

Operating on this matrix in the same way, we obtain an eighth-order matrix, etc.

It is readily seen that for the matrices thus constructed the sums of the products of the corresponding elements of two distinct columns are zero. Consequently,

$$
\bar{A} A=\left(\begin{array}{cccc}
n & 0 & \ldots & 0 \\
0 & n & \ldots & 0 \\
0 & \ldots & \ldots & . \\
0 & 0 & \ldots & n
\end{array}\right), \quad|\bar{A} A|=n^{n}, \quad\|A\|=n^{\frac{2}{n}} .
$$

The following equation holds for the matrix $M A$:

$$
\|M A\|=M^{n^{\frac{n}{2}}} .
$$

526. We prove that all the elements of a matrix, the absolute value of the determinant of which has a maximal value, are equal to ± 1. Indeed, if $-1<$ $<a_{i k}<1, \Delta \geqslant 0$ and $A_{i k}>0$, then the determinant will be increased by substituting 1 for $a_{i k}$, but if $\Delta \geqslant 0$ and $A_{i k}<0$, the determinant will increase due to -1 replacing $a_{i k}$. If $\Delta<0$, then the absolute value of the determinant will increase when $a_{i k}$ is replaced by unity with sign opposite that of $A_{i k}$. Finally, if $A_{i k}=0$, then the absolute value of the determinant will not change upon $a_{i k}$ being replaced by 1 or -1 . We can say, without loss of generality, that all the elements of the first row and the first column of a maximal determinant are equal to 1 ; this can be achieved by multiplying the rows and columns by -1 . Now subtract the first row of the maximal determinant from all other rows. The determinant then reduces to one of order $n-1$, all elements of which are 0 or -2 . This latter determinant is equal to $2^{n-1} N$, where N is some integer.
527. 4 for $n=3,48$ for $n=5$.
528. For a singular matrix A the result is trivial. Let A be a nonsingular matrix and let \bar{A} be its transpose, Δ its determinant and A^{\prime} its adjoint.
Then $A^{\prime}=\Delta C A^{-1} C$? where $C=\left(\begin{array}{lll}-1 & & \\ & & \\ & & -1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \end{array}\right)$; this follows directly
from the rule for constructing an inverse matrix. Therefore, $\left|A^{\prime}\right|=\Delta^{n-1}$ and $\left(A^{\prime}\right)^{\prime}=\Delta^{n-1} \cdot C\left(\bar{A}^{\prime}\right)^{-1} C=\Delta^{n-1} \cdot \Delta^{-1} A=\Delta^{n-2} A$.
529. Let the minor of the matrix A^{\prime}, which is the adjoint of the nonsingular matrix A, be made up of rows with indices $i_{1}<i_{2}<\ldots<i_{m}$ and columns with indices $k_{1}<k_{\mathbf{2}}<\ldots<k_{m}$. Let $i_{m+1}<i_{m+2}<\ldots<i_{n}$ be indices of the rows
not in the minor, let $k_{m+1}<k_{n_{+2}}<\ldots<k_{n}$ be indices of columns not in the minor. Multiply the minor at hand by the determinant Δ of the matrix A :
$\Delta \cdot\left|\begin{array}{cccc}\Delta_{i_{1}} k_{1} & \ldots & \Delta_{i_{1}} & k_{m} \\ \dot{\Delta}_{i_{m}} k_{1} & \ldots & \dot{\Delta}_{i_{m}} & k_{m}\end{array}\right|$

$$
=(-1)^{i_{1}+\ldots+i_{m}+k_{1}+\ldots+k_{m}} \Delta \cdot\left|\begin{array}{ccc}
A_{i_{1}} k_{1} & \ldots & A_{i_{m}} k_{1} \\
\cdots & \cdots & \cdots \\
A_{i_{1}} k_{m} & \cdots & A_{i_{m}} k_{m}
\end{array}\right|
$$

whence follows what we sought to prove.

$$
\left.=\Delta^{m} \cdot \left\lvert\, \begin{array}{cccc}
a_{i_{m+1}} k_{m+1} & \ldots & a_{i_{n+1}} k_{n} \\
\cdots \cdots & \cdots & \cdots & \cdots
\end{array}\right.\right] \cdot\left[\left.\begin{array}{lll}
\\
a_{i_{n}} k_{m+1} & \cdots & a_{i_{n}} k_{n}
\end{array} \right\rvert\,\right.
$$

530, 531. This follows directly from the theorem on the determinant of a product of two rectangular matrices.
532. It is necessary to establish alphabetical ordering of the combinations, i.e., consider the combination $i_{1}<i_{2}<\ldots<i_{m}$ as preceding the combination $j_{1}<j_{2}<\ldots<j_{m}$ if the first nonzero difference in the sequence $i_{1}-j_{1}$, $i_{2}-j_{2} \ldots$, is negatic. Then each minor of the triangular matrix, the indices of the columns of which form a combination preceding the combination of the indices of the rows, is equal to 0 .
533. By virtue of the results of Problems 531,491 it suffices to prove the theorem for triangular matrices. By virtue of the result of Problem 532, we have for the triangular matrix A,

$$
\left|A_{m}^{\prime}\right|=\prod_{i_{1}<i_{3}<\ldots<i_{m}} a_{i_{1} i_{1}} a_{i_{2} i_{2}} \ldots a_{i_{m} i_{n}}=|A|^{C_{n-1}^{m-1}}
$$

534. Properties (a) and (b) follow directly from the definition. To establish Property (c), it is convenient to denote the elements of the Kronecker product, using for suffixes not the indices of the pairs but the pairs themselves. Let

$$
C=\left(A^{\prime} \cdot A^{\prime \prime}\right) \times\left(B^{\prime} \cdot B^{\prime \prime}\right), A^{\prime} \times B^{\prime}=G, A^{\prime \prime} \times B^{\prime \prime}=H .
$$

Then

$$
\begin{aligned}
& c_{i_{1} k_{1}, i_{2} k_{2}}^{n} \\
& =\sum_{i=1}^{n} a_{i_{1} i}^{\prime} a_{i i_{2}}^{\prime \prime} \cdot \sum_{k=1}^{m} b_{k_{1} k}^{\prime} b_{k k_{2}}^{\prime \prime}=\sum_{i, k} a_{i_{1} i}^{\prime} b_{k_{1} k}^{\prime} a_{i i_{2}}^{\prime \prime} b_{k k_{2}}^{\prime \prime}=\sum_{i, k} g_{i_{1} k_{1}, i k} h_{i k, i_{2} k_{2}}
\end{aligned}
$$

whence $C=G \cdot H$, which completes the proof.
535. The determinant of the matrix $A \times B$ does not depend on the way the pairs are numbered, because a change in the numbering results in identical interchanges of rows and columns. Furthermore,

$$
A \times B=\left(A \times E_{m}\right) \cdot\left(E_{n} \times B\right) .
$$

Given an appropriate numbering of the pairs, the matrix $A \times E_{m}$ is of the form ${ }^{A} A$. \int_{A}, the matrix A being repeated m times. Consequently, the determinant of $A \times E_{m}$ is equal to $|A|^{m}$. In the same way (but with the pairs numbered differently), we see that the determinant of $E_{n} \times B$ is equal to $|B|^{n}$. Hence, $|A \times B|=|A|^{m} \cdot|B|^{n}$.
536. An element of a row with index α and of a column with index β of the matrix $C_{i k}$ is

$$
\begin{aligned}
c_{(i-1) m+\alpha,(k-1) m+\beta} & =\sum_{s=1}^{m n} a_{(i-1) m+\alpha, s} b_{s,(k-1) m+\beta} \\
& =\sum_{j=1}^{n} \sum_{v=1}^{m} a_{(i-1) m+\alpha,(j-1) m+v} b_{(j-1) m+v,(k-1) m+\beta}
\end{aligned}
$$

But the inner sum in the last expression is an element of the matrix $A_{i j} B_{j k}$ taken from a row with index α and a column with index β. Thus

$$
C_{i k}=\sum_{j=1}^{n} A_{i j} B_{j k}
$$

537. For $n=1$ the theorem is trivial. Assume that the theorem is proved for matrices of "order" $n-1$ and prove it for matrices of "order" n.

First consider the case when A_{11} is a nonsingular matrix:

$$
C=\left(\begin{array}{cccc}
A_{11} & A_{13} & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\hdashline & \cdots & \ldots & A_{n} \\
A_{n 1} & A_{n 2} & \ldots & A_{n n}
\end{array}\right) .
$$

Multiply matrix C on the right by matrix D, where

$$
D=\left(\begin{array}{cccc}
E-A_{17}^{-2} & A_{3} & \ldots-A_{11}^{-1} & A_{1 n} \\
E & & & \\
& \cdot & & \\
& & & \\
& & & E
\end{array}\right) .
$$

Then $C^{\prime}=C D$ will be of the form

$$
C^{\prime}=\left(\begin{array}{llll}
A_{11} & 0 & \ldots & 0 \\
A_{21} & A_{22}^{\prime} & \ldots & A_{2 n}^{\prime} \\
\ldots & \ldots & \ldots & \cdots \\
A_{n 1} & A_{n 2}^{\prime} & \ldots & A_{n n}^{\prime}
\end{array}\right)
$$

where $A_{i k}^{\prime}=A_{i k}-A_{i_{1}} A^{-1}{ }_{11} A_{i_{k}}$.
All submatrices of C, D and C^{\prime} commute with one another. It is easy to see that when this condition is fulfilled the theorem on the determinant of a product of two matrices is also true for formal determinants.

The matrix D has a formal determinant E, the actual determinant of D is equal to 1 .

Hence, $|C|=\left|C^{\prime}\right|=\left|A_{11}\right| \cdot\left|\begin{array}{cccc}A_{22}^{\prime} & \ldots & A_{2 n}^{\prime} \\ A_{n}^{\prime} & \ldots & A_{2}^{\prime} \\ A_{n} & \ldots & A_{n}^{\prime}\end{array}\right|$
and for the formal determinant of B we will have $B=A_{11} \cdot B^{\prime}$, where B^{\prime} is the formal determinant of the matrix

$$
\left(\begin{array}{ccc}
A_{22}^{\prime} & \ldots & A_{2 n}^{\prime} \\
\hdashline A_{n 2}^{\prime} & \ldots & A_{n n}^{\prime}
\end{array}\right) .
$$

By the induction hypothesis,

$$
\left|B^{\prime}\right|=\left|\begin{array}{ccc}
A_{22}^{\prime} & \ldots & A_{2 n}^{\prime} \\
-A_{n^{2}}^{\prime} & \ldots & A_{n n}^{\prime}
\end{array}\right|
$$

and, consequently, $|B|=\left|A_{11}\right| \cdot\left|B^{\prime}\right|=|C|$, which completes the proof.
In order to get rid of the restriction $\left|A_{11}\right| \neq 0$, the following can be done. Introduce the matrix

$$
C(\lambda)=\left(\begin{array}{llll}
A_{11}+\lambda E_{m} & A_{12} & \ldots & A_{1 n} \\
A_{21} & & A_{2 n} & \ldots \\
A_{n} \\
\hdashline \ldots & \ldots & \ldots & A_{n} \\
A_{n 1} & & A_{n 2} & \ldots
\end{array} A_{n n}, ~(1)\right.
$$

and denote its formal determinant by $B(\lambda)$.
Since $\left|A_{11}+\lambda E_{m}\right|=\lambda^{m}+\ldots \neq 0,|C(\lambda)| .=|B(\lambda)|$. Both these determinants are polynomials in λ. Comparing their constant terms, we obtain $|C|=|B|$. This completes the proof.

CHAPTER 5

POLYNOMIALS AND RATIONAL FUNCTIONS OF ONE VARIABLE

538. (a) $2 x^{6}-7 x^{5}+6 x^{4}-3 x^{3}-x^{2}-2 x+1$,
(b) $x^{5}-x^{4}-4 x^{3}+3 x+1$.
539. (a) The quotient is $2 x^{2}+3 x+11$, the remainder, $25 x-5$.
(b) The quotient is $\frac{3 x-7}{9}$, the remainder, $\frac{-26 x-2}{9}$.
540. $p=-q^{2}-1, m=q$.
541. (1) $q=p-1, m=0$; (2) $q=1, m= \pm \sqrt{2-p}$.
542. $(-1)^{n} \frac{(x-1)(x-2) \ldots(x-n)}{1 \cdot 2 \cdot 3 \ldots n}$.
543. (a) $(x-1)\left(x^{3}-x^{2}+3 x-3\right)+5$,
(b) $(x+3)\left(2 x^{4}-6 x^{3}+13 x^{2}-39 x+109\right)-327$,
(c) $(x+1+i)\left[4 x^{2}-(3+4 i) x+(-1+7 i)\right]+8-6 i$,
(d) $(x-1+2 i)\left[x^{2}-2 i x-5-2 i\right]-9+8 i$.
544. (a) 136 , (b) $-1-44 i$.
545. (a) $(x+1)^{4}-2(x+1)^{3}-3(x+1)^{2}+4(x+1)+1$,
(b) $(x-1)^{5}+5(x-1)^{4}+10(x-1)^{8}+10(x-1)^{2}+5(x-1)+1$,
(c) $(x-2)^{4}-18(x-2)+38$,
(d) $(x+i)^{4}-2 i(x+i)^{3}-(1+i)(x+i)^{2}-5(x+i)+7+5 i$,
(e) $(x+1-2 i)^{4}-(x+1-2 i)^{3}+2(x+1-2 i)+1$.
546. (a) $\frac{1}{(x-2)^{2}}+\frac{6}{(x-2)^{3}}+\frac{11}{(x-2)^{4}}+\frac{7}{(x-2)^{5}}$,
(b) $\frac{1}{x+1}-\frac{4}{(x+1)^{2}}+\frac{4}{(x+1)^{3}}+\frac{2}{(x+1)^{5}}$.
547. (a) $x^{4}+11 x^{3}+45 x^{2}+81 x+55$,
(b) $x^{4}-4 x^{3}+6 x^{2}+2 x+8$
548. (a) $f(2)=18, f^{\prime}(2)=48, f^{\prime \prime}(2)=124, \quad f^{\prime \prime \prime}(2)=216, \quad f^{\mathrm{IV}}(2)=240$, $f^{\vee}(2)=120$;
(b) $f(1+2 i)=-12-2 i, f^{\prime}(1+2 i)=-16+8 i, f^{\prime \prime}(1+2 i)=-8+$ $+30 i, f^{\prime \prime \prime}(1+2 i)=24+30 i, f^{\mathrm{VV}}(1+2 i)=24$.
549. (a) 3, (b) 4.
550. $a=-5$.
551. $A=3, B=-4$.
552. $A=n, B=-(n+1)$.
553. For $f(x)$ to be divisible by $(x-1)^{k+1}$, it is necessary and sufficient hat $f(1)=a_{0}+a_{1}+\ldots+a_{n}=0$ and $f^{\prime}(x)$ be divisible by $(x-1)^{k}$; for this it is in turn necessary and sufficient, given the condition $f(1)=0$, that $f_{1}(x)=n f(x)$ -$-x f^{\prime}(x)$ be divisible by $(x-1)^{k}$. Regarding $f_{1}(x)$ formally as a polynomial of degree n, we repeat the same reasoning k times.
554. a is a root of multiplicity $k+3$, where k is the multiplicity of a as a root of $f^{\prime \prime \prime}(x)$.
555. $3125 b^{2}+108 a^{5}=0, a \neq 0$.
556. $b=9 a^{2}, 1728 a^{5}+c^{2}=0$.
557. The derivative $x^{n-m-1}\left[n x^{m}+(n-m) a\right]$ does not have multiple roots other than 0 .
558. Setting the greatest common divisor of m and n equal to $d, m=d m_{1}$, $n=d n_{1}$, we get the condition in the form

$$
(-1)^{n_{1}}\left(n_{1}-m_{1}\right)^{n_{1}-m_{1}} m_{1}^{m_{1}} a^{n_{1}}=b^{m_{1}} n_{1}^{n_{1}}
$$

562. A nonzero root of multiplicity $k-1$ of the polynomial

$$
a_{1} x^{p_{1}}+a_{2} x^{p_{2}}+\ldots+a_{k} x^{p_{k}}
$$

satisfies the equations

$$
\begin{array}{r}
a_{1} x^{p_{1}}+a_{2} x^{p_{2}}+\ldots+a_{k} x^{p_{k}}=0, \\
p_{1} a_{1} x^{p_{1}}+p_{2} a_{2} x^{p_{2}}+\ldots+p_{k} a_{k} x^{p_{k}}=0, \\
p_{1}^{2} a_{1} x^{p_{1}}+p_{2}^{2} a_{2} x^{p_{2}}+\ldots+p_{k}^{2} a_{k} x^{p_{k}}=0, \\
\cdot \\
p_{1}^{k-2} a_{1} x^{p_{1}}+p_{2}^{k-2} a_{2} x^{p_{2}}+\ldots+p_{k}^{k-2} a_{k} x^{p_{k}}=0
\end{array}
$$

whence it follows that the numbers $a_{1} x^{p_{1}}, a_{2} x^{p_{2}}, \ldots, a_{k} x^{p_{k}}$ are proportional to the cofactors of the elements of the last row of the Vandermonde determinant

$$
\Delta=\left|\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
p_{1} & p_{2} & p_{3} & \ldots & p_{k} \\
\cdots \ldots & \cdots & \cdots & \ldots & \ldots \\
p_{1}^{k-1} & p_{2}^{k-1} & p_{3}^{k-1} & \ldots & p_{k}^{k-1}
\end{array}\right| .
$$

It is easy to verify that

$$
\frac{\Delta}{\Delta_{i}}=\prod_{s \neq i}\left(p_{i}-p_{s}\right)=\varphi^{\prime}\left(p_{i}\right)
$$

From this it follows that the numbers $a_{i} x^{p_{i}}$ are inversely proportional to $\varphi^{\prime}\left(p_{i}\right)$, i.e.

$$
a_{1} x^{p_{1}} \varphi^{\prime}\left(p_{1}\right)=a_{2} x^{p_{2}} \varphi^{\prime}\left(p_{2}\right)=\ldots=a_{k} x^{p_{k}} \varphi^{\prime}\left(p_{k}\right) .
$$

All the foregoing reasoning is invertible.
563. If $f(x)$ is divisible by $f^{\prime}(x)$, then the quotient is a polynomial of degree one with leading coefficient $\frac{1}{n}$, where n is the degree of $f(x)$. Therefore, $n f(x)=\left(x-x_{0}\right) f^{\prime}(x)$. Differentiating, we get $(n-1) f^{\prime}(x)=\left(x-x_{0}\right) f^{\prime \prime}(x)$, and so on, whence

$$
f(x)=\frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}(x)=a_{0}\left(x-x_{0}\right)^{n} .
$$

The converse is obvious.
564. A multiple root of the polynomial $f(x)=1+\frac{x}{1}+\ldots+\frac{x^{n}}{n!}$ must also be a root of its derivative

$$
f^{\prime}(x)=1+\frac{x}{1}+\ldots+\frac{x^{n-1}}{(n-1)!}=f(x)-\frac{x^{n}}{n!} .
$$

Hence, if $f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0$, then $x_{0}=0$, but 0 is not a root of $f(x)$.
565. If $f(x)=\left(x-x_{0}\right)^{k} f_{1}(x)$, where $f_{1}(x)$ is a fractional rational function which does not vanish for $x=x_{0}$, then direct differentiation yields

$$
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=\ldots=f^{(k-1)}\left(x_{0}\right)=0, f^{(k)}\left(x_{0}\right) \neq 0 .
$$

Conversely, if $f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=\ldots=f^{(k-1)}\left(x_{0}\right)=0$ and $f^{(k)}\left(x_{0}\right) \neq 0$, then $f(x)=$ $=\left(x-x_{0}\right)^{k} f_{1}(x), f_{1}\left(x_{0}\right) \neq 0$ because if it were true that $f(x)=\left(x-x_{0}\right)^{m} q(x)$, $q\left(x_{0}\right) \neq 0$ for $m \neq k$, then the sequence of successive derivatives vanishing for $x=x_{1}$ would be shorter or longer.
566. The function
$g(x)=\frac{\psi(x)}{w(x)}=f(x)-f\left(x_{0}\right)-\frac{f^{\prime}\left(x_{0}\right)}{1}\left(x-x_{0}\right)-\ldots-\frac{f^{(n)}(x)}{n!}\left(x-x_{0}\right)^{n}$
satisfies the condition

$$
g\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)=\ldots=g^{(n)}\left(x_{0}\right)=0 .
$$

Consequently, $\psi(x)=\left(x-x_{0}\right)^{n+1} F(x)$, where $F(x)$ is a polynomial. This completes the proof.
567. If $f_{1}(x) f_{2}\left(x_{0}\right)-f_{2}(x) f_{1}\left(x_{0}\right)$ is not identically zero, then we can take it that $f_{1}\left(x_{0}\right) \neq 0$. Consider the fractional rational function $\frac{f_{2}(x)}{f_{1}(x)}-\frac{f_{2}\left(x_{0}\right)}{f_{1}\left(x_{0}\right)}$. It is not identically zero and has x_{0} as a root. The multiplicity of this root is higher by unity than the multiplicity of x_{0} as a root of the derivative equal to $\frac{f_{1}(x) f_{2}^{\prime}(x)-f_{2}(x) f_{1}^{\prime}(x)}{\left[f_{1}(x)\right]^{2}}$ whence immediately follows the truth of the assertion being proved.
568. Let x_{0} be a root of multiplicity k for $\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)$. Then $f\left(x_{0}\right) \neq$ $\neq 0$ because otherwise x_{0} would be a common root of $f(x)$ and $f^{\prime}(x)$. From the preceding problem, x_{0} will be a root of multiplicity $k+1$ of the polynomial $f(x) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right) f^{\prime}(x)$, the degree of which does not exceed n. Hence, $k+1 \leqslant$ $\leqslant n, k \leqslant n-1$.
569. The polynomial $f(x) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right) f^{\prime}(x)$ must have x_{0} as a root of multiplicity n, that is, it must be equal to $A\left(x-x_{0}\right)^{n}$, where A is a constant. An expansion in powers of $x-x_{0}$, after the substitution $x-x_{0}=z$, yields $\left(a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}\right) a_{1}-\left(a_{1}+2 a_{2} z+3 a_{3} z^{2}+\ldots+n a_{n} z^{n-1}\right) a_{0}=A z^{n}$ and

$$
a_{0}=f\left(x_{0}\right) \neq 0 .
$$

Whence $a_{2}=\frac{a_{1}^{2}}{2 a_{0}}, a_{3}=\frac{a_{1}^{3}}{a_{0}^{2} 3!}, \ldots, a_{n}=\frac{a_{1}^{n}}{a_{0}^{n-1} n!}$.
Substituting $\frac{a_{1}}{a_{0}}=\alpha$, we get

$$
f(x)=a_{0}\left[1+\frac{\alpha\left(x-x_{0}\right)}{1}+\frac{\alpha^{2}\left(x-x_{0}\right)^{2}}{1 \cdot 2}+\ldots+\frac{\alpha^{n}\left(x-x_{0}\right)^{n}}{n!}\right] .
$$

570. For example, $\delta=\frac{1}{21}\left(\frac{1}{20}\right.$ is not suitable $)$.
571. For example, $\delta=\frac{1}{25}\left(\frac{1}{24}\right.$ is not suitable $)$.
572. For example, $M=6$.
573. For example,
(a) $x=p i, 0<p<7 / \frac{\overline{4}}{3}$;
(b) $x=p, 0<p<\sqrt{\frac{4}{3}}$.
574. For example, (a) $x=1-\rho, 0<\rho<\frac{1}{8}$;
(b) $x=1+\rho\left(\cos \frac{(2 k-1) \pi}{4}+i \sin \frac{(2 k-1) \pi}{4}\right), \rho<\sqrt[4]{8}$;
(c) $x=1+\rho i, \rho<\frac{1}{\sqrt{3}}$.
575. Expansion of the polynomial $f(z)$ in powers of $z-i=h$ yields

$$
f(z)=(2-i)\left[1+(1-i) h^{3}-\frac{4+2 i}{5} h^{4}+\frac{1+3 i}{5} h^{5}\right]
$$

Setting $h=a(1-i)$, we get

$$
f(z)=(2-i)\left[1-4 a^{3}+4 a^{3}\left(\frac{4+2 i}{5} a-\frac{4+2 i}{5} a^{2}\right)\right]
$$

whence

$$
|f(z)| \leqslant \sqrt{5}\left(\left|1-4 a^{3}\right|+4 a^{3} \frac{1}{4} \sqrt{\frac{4}{5}}\right)<\sqrt{5}
$$

for $0<a<\frac{1}{2}$.
576. Representing the polynomial in the form

$$
f(z)=f\left(z_{0}\right)\left\{1+r(\cos \varphi+i \sin \varphi)\left(z-z_{0}\right)^{k}\left[1+\left(z-z_{0}\right) \psi(z)\right]\right\}
$$

set $z-z_{0}=\rho(\cos \Theta+i \sin \Theta)$, take $\Theta=\frac{2 m \pi-\varphi}{k}$ and take ρ so small that $\left|\left(z-z_{0}\right) \psi(z)\right|<1$. Then

$$
|f(z)|=\left|f\left(z_{0}\right)\right|\left|1+r \rho^{k}+r \rho^{k}\left(z-z_{0}\right) \psi(z)\right|>f\left(z_{0}\right) .
$$

577. The proof is like that for a polynomial, with use made of Taylor's formula for a fractional rational function (Problem 566) which should be terminated after the first term with nonzero coefficient, not counting $f\left(x_{0}\right)$.
578. Denote by M the greatest lower bound of $|f(z)|$ as z varies in the region under consideration.

By dividing the region into parts, we prove the existence of a point z_{0}, in any neighbourhood of which the greatest lower bound of $|f(z)|$ is equal to M. If necessary, cancel from the fraction the highest possible power of $z-z_{0}$. After the cancellation, let $f(z)=\frac{\varphi(z)}{\psi(z)}$. Then $\psi\left(z_{0}\right) \neq 0$, for otherwise, in a sufficiently small neighbourhood of $z_{0},|f(z)|$ would be arbitrarily great and the lower bound of $|f(z)|$ could not be equal to M in a sufficiently small neighbourhood of z_{0}. Consequently, $f(z)$ is continuous for $z=z_{0}$ also by virtue of the continuity of $\left|f\left(z_{0}\right)\right|=M$, which completes the proof.
579. The lemma on the increase of the modulus is lacking.
580. Under the hypothesis,

$$
f(a) \neq 0, f^{\prime}(a)=\ldots=f^{(k-1)}(a)=0, f^{(k)}(a) \neq 0
$$

and by Taylor's formula,

$$
f(z)=f(a)+\frac{f^{(k)}(a)}{k!}(z-a)^{k}[1+\varphi(z)], \varphi(a)=0 .
$$

Set

$$
\frac{1}{f(a)} \cdot \frac{f^{(k)}(a)}{k!}=r(\cos \varphi+i \sin \varphi), z-a=\rho(\cos \Theta+i \sin \Theta) .
$$

Take ρ so small that $|\varphi(z)|<1, r \rho^{k}<1$. Then
$|f(z)|=|f(a)| \cdot\left|1+r \rho^{k}[\cos (\varphi+k \Theta)+i \sin (\varphi+k \Theta)]+r \rho^{k} \lambda\right|$, where $|\lambda|<1$.
For $\Theta=\frac{(2 m-1) \pi-\varphi}{k}, m=1,2, \ldots, k,|f(z)|<|f(a)|$.
For $\Theta=\frac{2 m \pi-\varphi}{k}, m=1,2, \ldots, k,|f(z)|>|f(a)|$.
Thus, as Θ varies from $\frac{\pi-\varphi}{k}$ to $\frac{\pi-\varphi}{k}+2 \pi$, the function $|f(z)|-|f(a)|$ changes sign $2 k$ times. Since $|f(z)|-|f(a)|$, as a function of Θ is continuous, $|f(z)|-|f(a)|$ vanishes $2 k$ times, thus completing the proof.
581. As in Problem 580, show that $\operatorname{Re}(f(z))-\operatorname{Re}(f(a))$ and $\operatorname{Im}(f(z))-$ $-\operatorname{Im}(f(a))$ for $z=\rho(\cos \Theta+i \sin \Theta)$ changes sign $2 k$ times as Θ varies through 2π, provided only that ρ is sufficiently small. Setting $\frac{1}{k!} f^{(k)}(a)=r(\cos \varphi+$ $+i \sin \varphi$), we obtain, by Taylor's formula, $f(z)-f(a)=r \rho^{k}[\cos (\varphi+k \Theta)+$ $+i \sin (\varphi+k \Theta)][1+\varphi(z)], \varphi(a)=0$. Choosing ρ so that $|\varphi(z)|<1$, we obtain the following, setting $\varphi(z)=\varphi_{1}(z)+i \varphi_{2}(z)$:
$\operatorname{Re}(f(z))-\operatorname{Re}(f(a))=r \rho^{k}\left[\cos \left(\varphi+k^{\Theta}\right)\left(1+\varphi_{1}(z)\right)-\sin \left(\varphi+k^{\Theta}\right) \varphi_{2}(z)\right]$, $\operatorname{Im}(f(z))-\operatorname{Im}(f(a))=r \rho^{k}\left[\sin (\varphi+k \Theta)\left(1+\varphi_{1}(z)\right)+\cos \left(\varphi+k^{\Theta}\right) \varphi_{2}(z)\right]$.
Putting $\varphi+k \Theta=m \pi, m=0,1,2, \ldots, 2 k$, we get

$$
\operatorname{Re}(f(z))-\operatorname{Re}(f(a))=r \rho^{k}(-1)^{m}\left(1+\varepsilon_{m}\right)
$$

where ε_{m} is the corresponding value of $\varphi_{1}(z),\left|\varepsilon_{m}\right|<1$.
Whence it follows that $\operatorname{Re}(f(z))-\operatorname{Re}(f(a))$ changes sign $2 m$ times as z traverses the circle $|z-a|=\rho$. A similar result is obtained for $\operatorname{Im}(f(z))-$ $-\operatorname{Im}(f(a))$ by putting $\varphi+k^{\Theta}=\frac{\pi}{2}+m \pi, m=0,1, \ldots, 2 k$.
582. (a) $(x-1)(x-2)(x-3)$;
(b) $(x-1-i)(x-1+i)(x+1-i)(x+1+i)$;
(c) $\left(x+1-\sqrt{\frac{\sqrt{2}+1}{2}}-i \sqrt{\frac{\sqrt{2}-1}{2}}\right)\left(x+1-\sqrt{\frac{\sqrt{2}+1}{2}}\right.$

$$
\begin{aligned}
\left.+i \sqrt{\frac{\sqrt{2}-1}{2}}\right) & \left(x+1+\sqrt{\frac{\sqrt{2}+1}{2}}+i \sqrt{\frac{\sqrt{2}-1}{2}}\right) \\
& \times\left(x+1+\sqrt{\frac{\sqrt{2}+1}{2}}-i \sqrt{\frac{\sqrt{2}-1}{2}}\right)
\end{aligned}
$$

(d) $(x-\sqrt{3}-\sqrt{2})(x-\sqrt{3}+\sqrt{2})(x+\sqrt{3}-\sqrt{2})(x+\sqrt{3}+\sqrt{2})$.
583. (a) $2^{n-1} \prod_{k=1}^{n}\left(x-\cos \frac{(2 k-1) \pi}{2 n}\right)$;
(b) $2 \prod_{k=1}^{n}\left(x+\frac{\sin \left(\Theta+\frac{(2 k-1) \pi}{2 n}\right)}{\sin \frac{(2 k-1) \pi}{2 n}}\right) ;$ (c) $\prod_{k=1}^{m}\left(x-\tan ^{2} \frac{(2 k-1) \pi}{4 m}\right)$.
584. (a) $\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)$;
(b) $\left(x^{2}+3\right)\left(x^{2}+3 x+3\right)\left(x^{2}-3 x+3\right)$;
(c) $\left(x^{2}+2 x+1+\sqrt{2}-2(x+1) \sqrt{\frac{\sqrt{2}+1}{2}}\right)$

$$
\times\left(x^{2}+2 x+1+\sqrt{2}+2(x+1) \sqrt{\frac{\sqrt{2}+1}{2}}\right)
$$

(d) $\prod_{k=0}^{n-1}\left(x^{2}-2 \sqrt[2 n]{2} x \cos \frac{(8 k+1) \pi}{4 n}+\sqrt{2}^{2}\right)$;
(e) $\left.\left(x^{2}-x\right\rceil^{\prime} \overline{a+2}+1\right)\left(x^{2}+x \sqrt{a+2}+1\right)$;
(f) $\prod_{k=0}^{n-1}\left(x^{2}-2 x \cos \frac{(3 k+1) 2 \pi}{3 n}+1\right)$.
585. (a) $(x-1)^{2}(x-2)(x-3)(x-1-i)=x^{5}-(8+i) x^{4}+(24+7 i) x^{3}$ $-(34+17 i) x^{3}+(23+17 i) x-(6+6 i)$;
(b) $(x+1)^{3}(x-3)(x-4)=x^{5}-4 x^{4}-6 x^{3}+16 x^{2}+29 x+12$;
(c) $(x-i)^{2}(x+1+i)=x^{3}+(1-i) x^{2}+(1-2 i) x-1-i$.
586. $\prod_{k=1}^{n} X_{k}(x)$.
587. (a) $(x-1)^{2}(x-2)(x-3)\left(x^{2}-2 x+2\right)=x^{6}-9 x^{5}+33 x^{4}-65 x^{3}$ $+74 x^{3}-46 x+12$;
(b) $\left(x^{3}-4 x+13\right)^{3}=x^{6}-12 x^{5}+87 x^{4}-376 x^{3}+1131 x^{2}-2028 x+2197$;
(c) $\left(x^{2}+1\right)^{2}\left(x^{2}+2 x+2\right)=x^{6}+2 x^{5}+4 x^{4}+4 x^{3}+5 x^{2}+2 x+2$.
588. (a) $(x-1)^{2}(x+2) ;$ (b) $(x+1)^{2}\left(x^{2}+1\right)$; (c) $(x-1)^{3}$.
589. $x^{d}-1$, where d is the greatest common divisor of m and n.
590. $x^{d}+a^{d}$ if the numbers $\frac{m}{d}$ and $\frac{n}{d}$ are odd; 1 if at least one of them is even; d denotes the greatest common divisor of m and n.
591. (a) $(x-1)^{2}(x+1)$, (b) $(x-1)^{3}(x+1)$,
(c) $x^{d}-1$ (d is the greatest common divisor of m and n).
592. Denote $\lambda_{0}=\frac{u\left(x_{0}\right)}{v\left(x_{0}\right)}$ and factor $f(x)$ into linear factors: $f(x)=$ $=\left(x-\lambda_{0}\right)\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k-1}\right)$. Then $\lambda_{j} \neq \lambda_{0}$ for $j \neq 0$. Furthermore,

$$
f\left(\frac{u(x)}{v(x)}\right)=\frac{1}{[v(x)]^{k}}\left(u(x)-\lambda_{0} v(x)\right) \ldots\left(u(x)-\lambda_{k-1} v(x)\right) .
$$

By virtue of the hypothesis and also of the fact that $u\left(x_{0}\right)-\lambda_{j} v\left(x_{0}\right)=v\left(x_{0}\right)$ $\left(\lambda_{0}-\lambda_{j}\right) \neq 0$, the polynomial $u(x)-\lambda_{0} v(x)$ has x_{0} as root of multiplicity $k>1$. Hence, $u^{\prime}(x)-\lambda_{0} v^{\prime}(x)$ has x_{0} as a root of multiplicity $k-1$. Furthermore,

$$
f\left(\frac{u^{\prime}(x)}{v^{\prime}(x)}\right)=\frac{1}{\left[v^{\prime}(x)\right]^{k}}\left(u^{\prime}(x)-\lambda_{0} v^{\prime}(x)\right) \ldots\left(u^{\prime}(x)-\lambda_{k-1} v^{\prime}(x)\right) .
$$

All $u^{\prime}(x)-\lambda_{j} v^{\prime}(x), j \neq 0$, do not, obviously, vanish for $x=x_{0}$. Consequently, $f\left(\frac{u^{\prime}(x)}{v^{\prime}(x)}\right)$ has x_{0} as a root of multiplicity $k-1$, which is what we set out to prove.
593. If w is a root of the polynomial $x^{\mathbf{3}}+x+1$, then $w^{8}=1$. Hence, $w^{3 m}+$ $+w^{3 n+1}+w^{3 p+3}=1+w+w^{2}=0$.
594. The root λ of the polynomial $x^{2}-x+1$ satisfies the equation $\lambda^{3}=-1$. Hence,

$$
\begin{aligned}
\lambda^{3 m}-\lambda^{3 n+1}+\lambda^{3 p+2}=(-1)^{m}-(-1)^{n} \lambda & +(-1)^{p} \lambda^{2} \\
& =(-1)^{m}-(-1)^{p}+\lambda\left[(-1)^{p}-(-1)^{n}\right] .
\end{aligned}
$$

This expression can equal zero provided only that $(-1)^{m}=(-1)^{p}=(-1)^{n}$, that is, if m, n, p are simultaneously even or simultaneously odd.
1 595. $x^{4}+x^{3}+1=\left(x^{3}+x+1\right)\left(x^{2}-x+1\right)$. These factors are relatively prime, $x^{2}+x+1$ is always a divisor of $x^{3 m}+x^{3 n+1}+x^{3 p+2}$ (Problem 593). It remains to find out when divisibility by $x^{2}-x+1$ occurs. Substitution of the root λ of this polynomial yields

$$
(-1)^{m}+(-1)^{n} \lambda+(-1)^{p} \lambda^{2}=(-1)^{m}-(-1)^{p}+\lambda\left[(-1)^{n}+(-1)^{p}\right] .
$$

This will yield 0 provided only that $(-1)^{m}=(-1)^{p}=-(-1)^{n}$, that is, if the numbers m, p and $n+1$ are simultaneously even or odd.
596. If m is not divisible by 3 .
597. All roots of the polynomial $x^{k-1}+x^{k-2}+\ldots+1$ are k th roots of 1 . Hence, $\xi^{k a_{1}}+\xi^{k a_{2}+1}+\ldots+\xi^{k a_{k}+k-1}=1+\xi+\ldots+\xi^{k-1}=0$, whence follows the divisibility, since all roots of $x^{k-1}+\ldots+1$ are prime.
598. Substitution of the root w of the polynomial $x^{2}+x+1$ into $f(x)=$ $=(1+x)^{m}-x^{m}-1$ yields $(1+w)^{m}-w^{m}-1$. But $1+w=-w^{2}=\lambda$, which is a primitive sixth root of unity. Furthermore, $w=\lambda^{9}$, whence $f(w)=\lambda^{m}-\lambda^{2 m}-1$.

For

$$
\begin{aligned}
& m=6 n \quad f(w)=-1 \neq 0 \\
& m=6 n+1 f(w)=\lambda-\lambda^{2}-1=0 \\
& m=6 n+2 f(w)=\lambda^{2}+\lambda-1 \neq 0 \\
& m=6 n+3 f(w)=-3 \neq 0 \\
& m=6 n+4 f(w)=-\lambda+\lambda^{2}-1 \neq 0 \\
& m=6 n+5 f(w)=-\lambda^{2}+\lambda-1=0
\end{aligned}
$$

Divisibility of $f(x)$ by $x^{2}+x+1$ occurs when $m=6 n+1$ and $m=6 n+5$.
599. For $m=6 n+2$ and $m=6 n+4$.
600. $f(w)=m(1+w)^{m-1}-m w^{m-1}=m\left[\lambda^{m-1}-\lambda^{2(m-1)}\right], f^{\prime}(w)=0$ only for $m=6 n+1$.
601. For $m=6 n+4$.
602. No, because the first and second derivatives do not vanish at the same time.
603. For $x=k, 1 \leqslant k \leqslant n$,

$$
f(k)=1-\frac{k}{1}+\frac{k(k-1)}{1 \cdot 2}-\ldots+(-1)^{k} \frac{k(k-1) \ldots 1}{1 \cdot 2 \ldots k}=(1-1)^{k}=0 .
$$

Consequently, the polynomial is divisible by $(x-1)(x-2) \ldots(x-n)$. A comparison of the leading coefficients yields

$$
f(x)=\frac{\left\ulcorner(-1)^{n}\right.}{n!}(x-1)(x-2) \ldots(x-n)
$$

604. For m relatively prime to n.
605. If $f\left(x^{n}\right)$ is divisible by $x-1$, then $f(1)=0$, and, hence, $f(x)$ is divisible by $x-1$, whence it follows that $f\left(x^{n}\right)$ is divisible by $x^{n}-1$.
t 606. If $F(x)=f\left(x^{n}\right)$ is divisible by $(x-a)^{\prime k}$, then $F^{\prime}(x)=f^{\prime}\left(x^{n}\right) n x^{n-1}$ is divisible by $(x-a)^{k-1}$, whence it follows that $f^{\prime}\left(x^{n}\right)$ is divisible by $(x-a)^{k-1}$. In the same way, $f^{\prime \prime}\left(x^{n}\right)$ is divisible by $(x-a)^{k-2}, \ldots, f^{(k-1)}\left(x^{n}\right)$ is divisible by $x-a$. From the foregoing we conclude that $f\left(a^{n}\right)=f^{\prime}\left(a^{n}\right)=\ldots=f^{(k-1)}\left(a^{n}\right)=0$ and, hence, $f(x)$ is divisible by $\left(x-a^{n}\right)^{k}, f\left(x^{n}\right)$ is divisible by $\left(x^{n}-a^{n}\right)^{k}$.
606. If $F(x)=f_{1}\left(x^{3}\right)+x f_{2}\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then $F(w)=f_{1}(1)+$ $+w f_{2}(1)=0$ (w is a root of $x^{2}+x+1$) and $F\left(w^{2}\right)=f_{1}(1)+w^{2} f_{2}(1)=0$, whence $f_{1}(1)=0, f_{2}(1)=0$.
607. The polynomial $f(x)$ has no real roots of odd multiplicity, for otherwise it would change sign. Hence, $f(x)=\left[f_{1}(x)\right]^{2} f_{2}(x)$, where $f_{2}(x)$ is a polynomial without real roots. Separate the complex roots of the polynomial f_{2} into two groups, putting conjugate roots in different groups. The products of the linear factors corresponding to the roots of each group form polynomials with conjugate coefficients $\psi_{1}(x)+i \psi_{2}(x)$ and $\psi_{1}(x)-i \psi_{2}(x)$. Hence,
$f_{2}(x)=\psi_{1}^{2}(x)+\psi_{2}^{2}(x)$ and $f(x)=\left(f_{1} \psi_{1}\right)^{2}+\left(f_{1} \psi_{2}\right)^{2}$.
608.

(a) $-x_{1},-x_{2}, \ldots,-x_{n}$,
(b) $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{n}}$,
(c) $x_{1}-a, x_{2}-a, \ldots, x_{n}-a$, (d) $b x_{1}, b x_{2}, \ldots, b x_{n}$.
610. One of the roots must be equal to $-\frac{p}{2}$. The desired frelation is $8 r=4 p q-p^{2}$.
611. $x_{1}=\frac{1}{6}, x_{2}=\frac{1}{2}, x_{3}=-\frac{1}{3}$.
612. $a^{3}-4 a b+8 c=0$.

5 13. The relationship among the roots is preserved for arbitrary α. Taking $x=-\frac{a}{4}$, we get $y^{4}+a^{\prime} y^{3}+b^{\prime} y^{2}+c^{\prime} y+d^{\prime}=0, a^{\prime}=0, a^{\prime 3}-4 a^{\prime} b^{\prime}+8 c^{\prime}=0$, for the transformed equation, whence $c^{\prime}=0$.
614. $a^{2} d=c^{2}$.
615. Division by x^{2} yields $x^{2}+\frac{d}{x^{2}}+a\left(x+\frac{c}{a x}\right)+b=0$.

Making the substitution $x+\frac{c}{a x}=z$, we get $x^{2}+\frac{d}{x^{2}}=x^{2}+\frac{c}{a^{2} x^{2}}=z^{2}-$ $-2 \frac{c}{a}$, whence, for z, we get the quadratic equation $z^{2}+a z+b-2 \frac{c}{a}=0$. Having found z, it is easy to find x (generalized reciprocal equations).
616. (a) $x=1 \pm \sqrt{3}, 1 \pm i \sqrt{2}$;
(b) $x=: \pm 2 i,-2 \pm i$;
(c) $x=\frac{-1 \pm \sqrt{5}}{2}, \frac{-1 \pm i \sqrt{11}}{2}$;
(d) $x=1 \pm \sqrt{3}, \frac{-3 \pm \sqrt{17}}{2}$.
617. $\lambda= \pm 6$.
618. (1) $b=c=0$, (any a), (2) $a=-1, b=-1, c=1$.
619. (1) $a=b=c=0$; (2) $a=1, \mathrm{~b}=-2, c=0$; (3) $a=1, b=-1, c=-1$;
(4) $b=\lambda, a=-\frac{1}{\lambda}, c=\frac{2-\lambda^{3}}{\lambda}$, where $\lambda^{3}-2 \lambda+2=0$.
620. $\lambda=-3$.
621. $q^{3}+p q+q=0$. 622. $a_{1}^{2}-2 a_{2}$.
623. $x_{i}=-\frac{a_{1}}{n}+\frac{2 i-n-1}{2} h, i=1,2, \ldots, n$ where

$$
h=\frac{1}{n} \sqrt{\frac{12(n-1) a_{1}^{2}-24 n a_{2}}{n^{2}-1}} .
$$

624. If the roots formed an arithmetic progression, then, by the formula of Problem 623, they would be:
(a) $-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$; they indeed satisfy the equation;
(b) $-\frac{5}{2},-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}$; they do not satisfy the equation.
625. Let $y=A x+B$ be the equation of the desired straight line. Then the roots of the equation $x^{4}+a x^{3}+b x^{2}+c x+d=A x+B$ form an arithmetic progression. We find them in accordance with Problem 623:

$$
x_{i}=-\frac{a}{4}+\frac{2 i-5}{2} h, i=1,2,3,4
$$

where

$$
h=\frac{1}{2} \sqrt{\frac{9 a^{2}-24 b}{15}}=\frac{1}{2} \sqrt{\frac{3 a^{2}-8 b}{5}} .
$$

Whence

$$
\begin{aligned}
& A-c=x_{1} x_{4}\left(x_{2}+x_{3}\right)+x_{2} x_{3}\left(x_{1}+x_{4}\right) \\
&=-\left(\frac{a^{2}}{16}-\frac{9}{4} h^{2}\right) \frac{a}{2}-\left(\frac{a^{2}}{16}-\frac{1}{4} h^{2}\right) \frac{a}{2}=\frac{a^{3}-4 a b}{8} . \\
& d-B=x_{1} x_{2} x_{3} x_{4}= \frac{1}{1600}\left(36 b-11 a^{2}\right)\left(4 b+a^{2}\right) .
\end{aligned}
$$

Consequently

$$
A=\frac{a^{3}-4 a b+8 c}{8}, B=d-\frac{1}{1600}\left(36 b-11 a^{2}\right)\left(4 b+a^{2}\right)
$$

The intersection points will be real and noncoincident if $3 a^{2}-8 b>0$, that is, if the second derivative of $2\left(6 x^{2}+3 a x+b\right)$ changes sign as x varies along the real axis.
626. $x^{4}-a x^{2}+1=0$ where $a=\frac{\alpha^{4}+1}{\alpha^{2}}$.
627. $\left(x^{2}-x+1\right)^{3}-a\left(x^{2}-x\right)^{2}=0, a=\frac{\left(\alpha^{2}-\alpha+1\right)^{3}}{\left(\alpha^{2}-\alpha\right)^{2}}$.
628. $f^{\prime}\left(x_{i}\right)=\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right) ; f^{\prime \prime}\left(x_{i}\right)=2$ [$\left(x_{i}\right.$ $\left.-x_{2}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)+\left(x_{i}-x_{1}\right)\left(x_{i}-x_{3}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}\right.$ $\left.-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)+\ldots+\left(x_{i}-x_{1}\right)\left(x_{i}-x_{2}\right) \quad \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}\right.$ $\left.\left.-x_{n-1}\right)\right]=2 f^{\prime}\left(x_{i}\right) \sum_{\substack{s=1 \\(s \neq i)}}^{n} \frac{1}{x_{i}-x_{s}}$ (if $\left.x_{s} \neq x_{i}\right)$.
629. It follows directly from Problem 628.
630. Let $x_{i}=x_{1}+(i-1) h_{0}$ Then

$$
f^{\prime}\left(x_{i}\right)=(-1)^{n-i}(i-1)!(n-i)!h^{n-1}
$$

631. (a) $x+1$, (b) $x^{2}+1$, (c) $x^{3}+1$, (d) $x^{2}-2 x+2$, (e) $x^{3}-x+1$, (f) $x+3$,
(g) $x^{2}+x+1$, (h) $x^{2}-2 x \sqrt{2}-1$, (i) $x+2$, (j) 1 , (k) $2 x^{2}+x-1$, (l) $x^{2}+x+1$.
632. (a) $(-x-1) f_{1}(x)+(x+2) f_{2}(x)=x^{2}-2$,
(b) $-f_{1}(x)+(x+1) f_{2}(x)=x^{3}+1$,
(c) $(3-x) f_{1}(x)+\left(x^{2}-4 x+4\right) f_{2}(x)=x^{2}+5$,
(d) $\left(1-x^{2}\right) f_{1}(x)+\left(x^{3}+2 x^{2}-x-1\right) f_{2}(x)=x^{3}+2$,
(e) $\left(-x^{2}+x+1\right) f_{1}(x)+\left(x^{3}+2 x^{2}-5 x-4\right) f_{2}(x)=3 x+2$,
(f) $-\frac{x-1}{3} f_{1}(x)+\frac{2 x^{2}-2 x-3}{3} f_{2}(x)=x-1$.
633. (a) $M_{2}(x)=x$,
$M_{1}(x)=-3 x^{2}-x+1 ;$
(b) $M_{2}(x)=-x-1$,
$M_{1}(x)=x^{3}+x^{2}-3 x-2 ;$
(c) $M_{2}(x)=\frac{-x^{2}+3}{2}$,
$M_{1}(x)=\frac{x^{4}-2 x^{2}-2}{2} ;$
(d) $M_{2}(x)=-\frac{2 x^{2}+3 x}{6}$,
$M_{1}(x)=\frac{2 x^{3}+5 x^{2}-6}{6} ;$
(e) $\quad M_{2}(x)=3 x^{2}+x-1, \quad M_{1}(x)=-3 x^{3}+2 x^{2}+x-2 ;$
(f) $M_{2}(x)=-x^{3}-3 x^{2}-4 x-2$,
$M_{1}(x)=x^{4}+6 x^{3}+14 x^{2}+15 x+7$.
634. (a) $M_{2}(x)=\frac{-16 x^{2}+37 x+26}{3}, M_{1}(x)=\frac{16 x^{3}-53 x^{2}-37 x-23}{3}$;
(b) $M_{2}(x)=4-3 x, \quad M_{1}(x)=1+2 x+3 x^{2}$;
(c) $M_{2}(x)=35-84 x+70 x^{2}-20 x^{3}$,
$M_{1}(x)=1+4 x+10 x^{2}+20 x^{3}$.
635. (a) $M_{1}(x)=9 x^{2}-26 x-21$,

$$
M_{2}(x)=-9 x^{8}+44 x^{2}-39 x-7
$$

(b) $\quad M_{1}(x)=3 x^{3}+3 x^{2}-7 x+2$,

$$
M_{2}(x)=-3 x^{3}-6 x^{2}+x+2
$$

636. (a) $4 x^{4}-27 x^{3}+66 x^{2}-65 x+24$;
(b) $-5 x^{7}+13 x^{6}+27 x^{5}-130 x^{4}+75 x^{3}+266 x^{2}-440 x+197$.
637. $N(x)=1+\frac{n}{1} x+\frac{n(n+1)}{1 \cdot 2} x^{2}$

$$
+\ldots+\frac{n(n+1) \ldots(n+m-2)}{1 \cdot 2 \ldots(m-1)} x^{m-1}
$$

$M(x)=1+\frac{m}{1}(1-x)+\frac{m(m+1)}{1 \cdot 2}(1-x)^{2}$

$$
+\ldots+\frac{m(m+1) \ldots(m+n-2)}{1 \cdot 2 \ldots(n-1)}(1-x)^{n-1}
$$

$$
=\frac{(m+1)(m+2) \ldots(m+n-1)}{(n-1)!}-\frac{m}{1} \frac{(m+2) \ldots(m+n-1)}{(n-2)!} x
$$

$$
+\frac{m(m+1)}{1 \cdot 2} \frac{(m+3) \ldots(m+n-1)}{(n-3)!} x^{2}
$$

638. 639.

$$
-\ldots+(-1)^{n-1} \frac{m(m+1) \ldots(m+n-2)}{(n-1)!} x^{n-1}
$$

639. (a) $(x+1)^{4}(x-2)^{2}$,
(b) $(x+1)^{4}(x-4)$,
(c) $(x-1)^{2}(x+3)^{2}(x-3)$,
(d) $(x-2)\left(x^{2}-2 x+2\right)^{2}$,
(e) $\left(x^{3}-x^{3}-x-2\right)^{2}, \quad$ (f) $\left(x^{2}+1\right)^{2}(x-1)^{3}$,
(g) $\left(x^{4}+x^{9}+2 x^{2}+x+1\right)^{2}$.
640. (a) $f(x)=x+1+\frac{1}{24} x(x-1)(x-2)(x-3)$;
(b) $f(x)=-x^{4}+4 x^{3}-x^{2}-7 x+5$;
(c) $f(x)=1+\frac{2}{5}(x-1)-\frac{1}{105}(x-1)(4 x-9)$
$+\frac{1}{945}(x-1)(4 x-9)(x-4)$,
$f(2)=1 \frac{389}{945}=1.4116 \ldots(\sqrt{2}=1.4142 \ldots)$;
(d) $f(x)=x^{3}-9 x^{2}+21 x-8$.
641. (a) $y=-\frac{1}{3}(x-2)(x-3)(x-4)$

$$
\begin{aligned}
& +\frac{1}{2}(x-1)(x-3)(x-4)-2(x-1)(x-2)(x-4) \\
& +\frac{1}{2}(x-1)(x-2)(x-3)=-\frac{4}{3} x^{3}+10 x^{2}-\frac{65}{3} x+15
\end{aligned}
$$

(b) $y=\frac{1}{2}\left[5-(1-i) x-x^{2}-(1+i) x^{3}\right]$.
642. $f(x)=\frac{n+1}{2}-\frac{1}{2} \sum_{k=1}^{n-1}\left(1-i \cot \frac{k \pi}{n}\right) x^{k}$.

Solution. $f(x)=\sum_{s=0}^{n-1} \frac{(s+1)\left(x^{n}-1\right)}{\left(x-\varepsilon_{s}\right) n \varepsilon_{s}^{n-1}}$

$$
\begin{aligned}
& =\frac{1}{n} \sum_{s=0}^{n-1} \frac{(s+1)\left(1-x^{n}\right)}{1-x \varepsilon_{s}^{-1}}=\frac{1}{n} \sum_{s=0}^{n-1} \sum_{k=0}^{n-1}(s+1) x^{k} \varepsilon_{1}^{-k s} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} x^{k} \sum_{s=0}^{n-1}(s+1) \varepsilon_{1}^{-k s}=\frac{1}{n} \sum_{s=0}^{n-1}(s+1) \\
& +\frac{1}{n} \sum_{k=1}^{n-1} x^{k} \sum_{s=0}^{n-1}(s+1) \varepsilon_{k}^{-s}=\frac{n+1}{2}-\sum_{k=1}^{n-1} \frac{x^{k}}{1-\varepsilon_{k}^{-1}} \\
& =\frac{n+1}{2}-\frac{1}{2} \sum_{k=1}^{n-1}\left(1-i \cot \frac{k \pi}{n}\right) x^{k} .
\end{aligned}
$$

643. $f(x)=\sum_{k=1}^{n} \frac{y_{k}\left(x^{n}-1\right)}{\left(x-\varepsilon_{k}\right) n \varepsilon_{k}^{n-1}}=\frac{1}{n} \sum_{k=1}^{n} \frac{y_{k}\left(1-x^{n}\right)}{1-x \varepsilon_{k}^{-1}}$.

$$
f(0)=\frac{1}{n} \sum_{k=1}^{n} y_{k}
$$

644. Set $\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$.

Let $f(x)$ be an arbitrary polynomial of degree not higher than $n-1$, let $y_{1}, y_{2}, \ldots, y_{n}$ be its values for $x=x_{1}, x_{2}, \ldots, x_{n}$. Then

$$
f\left(x_{0}\right)=\frac{y_{1}+y_{2}+\ldots+y_{n}}{n}=\sum_{k=1}^{n} \frac{y_{k} \varphi\left(x_{0}\right)}{\varphi^{\prime}\left(x_{i}\right)\left(x_{0}-x_{i}\right)}
$$

Since $y_{1}, y_{2}, \ldots, y_{n}$ are arbitrary,

$$
\frac{\varphi\left(x_{0}\right)}{\varphi^{\prime}\left(x_{k}\right)\left(x_{0}-x_{k}\right)}=\frac{1}{n} .
$$

We consider the polynomial

$$
F(x)=n\left[\varphi\left(x_{0}\right)-\varphi(x)\right]-\left(x_{0}-x\right) \varphi^{\prime}(x) .
$$

Its degree is less than n and it vanishes for $x=x_{1}, x_{2}, \ldots, x_{n}$. Hence, $F(x)=0$. Expand $\varphi(x)$ in powers of $\left(x-x_{0}\right)$:

$$
\varphi(x)=\sum_{k=0}^{n} c_{k}\left(x-x_{0}\right)^{k} .
$$

We have $\sum_{k=1}^{n}(n-k) c_{k}\left(x-x_{0}\right)^{k}=0$. Consequently, $c_{1}=c_{2}=\ldots=c_{n-1}=0$.

$$
\varphi(x)=\left(x-x_{0}\right)^{n}+c_{0}, x_{i}=x_{0}+V^{-c_{0}} .
$$

645. $x^{s}=\sum_{i=1}^{n} \frac{x_{i}^{s} \varphi(x)}{\left(x-x_{i}\right) \varphi^{\prime}\left(x_{i}\right)}$. A comparison of the coefficients of x^{n-1} yields

$$
\sum_{i=1}^{n} \frac{x_{i}^{s}}{\varphi^{\prime}\left(x_{i}\right)}=0
$$

646. $x^{n-1}=\sum_{i=1}^{n} \frac{x_{i}^{n-1} \varphi(x)}{\left(x-x_{i}\right) \varphi^{\prime}\left(x_{i}\right)}$. A comparison of the coefficients of x^{n-1} yields

$$
\sum_{i=1}^{n} \frac{x_{i}^{n-1}}{\varphi^{\prime}\left(x_{i}\right)}=1
$$

647. $a_{i}=\frac{1}{\Delta} \sum_{k=1}^{n} y_{k} \Delta_{k i}$ where $\Delta=\left|\begin{array}{cccc}1 & x_{1} & \ldots & x_{1}^{n-1} \\ 1 & x_{2} & \ldots & x_{2}^{n-1} \\ \ldots & \ldots & \ldots & . \\ 1 & x_{n} & \ldots & x_{n}^{n-1}\end{array}\right|$,
$\Delta_{k i}$ is the cofactor of the element of the k th row and $(i+1)$ th column of the determinant Δ.

$$
f(x)=\sum_{i=0}^{n-1} a_{i} x^{i}=\frac{1}{\Delta} \sum_{k=1}^{n} y_{k} \sum_{i=0}^{n-1} \Delta_{k i} x^{i}=\sum_{k=1}^{n} y_{k} \frac{\Delta_{k}}{\Delta}
$$

where Δ_{k} is the determinant obtained from Δ by substituting $1, x, \ldots, x^{n-1}$ for the elements of the k th row.

Evaluating the determinants Δ_{k} and Δ as Vandermonde determinants yields

$$
\begin{aligned}
& \frac{\Delta_{k}}{\Delta}=\frac{\left(x-x_{1}\right) \ldots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{1}\right) \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots\left(x_{k}-\overline{\left.x_{n}\right)}\right.} \\
&=\frac{\varphi(x)}{\left(x-x_{k}\right) \varphi^{\prime}\left(x_{k}\right)}
\end{aligned}
$$

where $\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$.
Whence $f(x)=\sum \frac{y_{k} \varphi(x)}{\left(x-x_{k}\right) \varphi^{\prime}\left(x_{k}\right)}$, which is what we set out to prove.
648. $f(x)=1+\frac{x}{1!}+\frac{x(x-1)}{2!}+\ldots+\frac{x(x-1)}{\ldots(x-n+1)} \frac{n!}{n!}$
649. $f(x)=1+\frac{(a-1) x}{1}+\frac{(a-1)^{2} x(x-1)}{1 \cdot 2}$

$$
+\ldots+\frac{(a-1)^{n} x(x-1) \ldots(x-n+1)}{n!}
$$

650. $f(x)=1-\frac{2 x}{1}+\frac{2 x(2 x-2)}{1 \cdot 2}+\ldots+\frac{2 x(2 x-2) \ldots(2 x-4 n+2)}{(2 n)!}$.
651. $f(x)=1-\frac{x-1}{2!}+\frac{(x-1)(x-2)}{3!}$

$$
\begin{aligned}
&-\ldots+(-1)^{n} \frac{(x-1)(x-2) \ldots(x-n+1)}{n!} \\
&=\frac{n!-(1-x)(2-x) \ldots(n-x)}{n!x} .
\end{aligned}
$$

652. $f(x)=\frac{\varphi(a)-\varphi(x)}{\varphi(a)(x-a)}$ where $\varphi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$.
653. We seek $f(x)$ in the form

$$
\begin{aligned}
& f(x)=A_{0}+A_{1} \frac{x-m}{1}+A_{2} \frac{(x-m)(x-m-1)}{1 \cdot 2} \\
&+\ldots+A_{n} \underline{(x-m)(x-m-1) \ldots(x-m-n+1)} \\
& n!
\end{aligned}
$$

where $m, m+1, \ldots, m+n$ are integral values of x for which, by hypothesis, $f(x)$ assumes integral values.

Successively setting $x=m, m+1, \ldots, m+n$, we get equations for deter$\operatorname{mining} A_{0}, A_{1}, \ldots, A_{n}$:

$$
\begin{gathered}
A_{0}=f(m), \\
A_{k}=f(m+k)-A_{0}-\frac{k}{1} A_{1}-\frac{k(k-1)}{1 \cdot 2} A_{2}-\ldots-k A_{k-1}, \\
k=1,2, \ldots, n
\end{gathered}
$$

from which it follows that all coefficients A_{k} are integral. For integral values of x, all terms of $f(x)$ become binomial coefficients with integral factors A_{k} and for this reason are integers. Hence, $f(x)$ assumes integral values for integral values of x; this completes the proof.
654. The polynomial $F(x)=f\left(x^{2}\right)$ of degree $2 n$ takes on integral values for $2 n+1$ values of $x=-n,-(n-1), \ldots,-1,0,1, \ldots, n$ and, by virtue of the preceding problem, assumes integral values for all integral values of x.
655. (a) $\frac{1}{12(x-1)}-\frac{4}{3(x+2)}+\frac{9}{4(x+3)}$;
(b) $-\frac{1}{6(x-1)}+\frac{1}{2(x-2)}-\frac{1}{2(x-3)}+\frac{1}{6(x-4)}$;
(c) $\frac{2}{x-1}+\frac{-2+i}{2(x-i)}+\frac{-2-i}{2(x+i)}$;
(d) $\frac{1}{4(x-1)}-\frac{1}{4(x+1)}-\frac{i}{4(x-i)}+\frac{i}{4(x+i)}$;
(e) $\frac{1}{3}\left(\frac{1}{x-1}+\frac{\varepsilon}{x-\varepsilon}+\frac{\varepsilon^{2}}{x-\varepsilon^{2}}\right), \quad \varepsilon=-\frac{1}{2}+\frac{i \sqrt{3}}{2}$;
(f) $-\frac{1}{16}\left(\frac{1+i}{x-1-i}+\frac{1-i}{x-1+i}+\frac{-1+i}{x+1-i}+\frac{-1-i}{x+1+i}\right)$;
(g) $\quad \sum_{k=0}^{n-1} \frac{\varepsilon_{k}}{x-\varepsilon_{k}}, \quad \varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$;
(h) $-\frac{1}{n} \sum_{k=1}^{n} \frac{\eta_{k}}{x-\eta_{k}}, \quad \eta_{k}=\cos \frac{(2 k-1) \pi}{n}+i \sin \frac{(2 k-1) \pi}{n}$;
(i) $\sum_{k=0}^{n} \frac{C_{n}^{k}(-1)^{n-k}}{x-k} ;$ (j) $\sum_{k=-n}^{n} \frac{(-1)^{n-k} C_{2 n}^{n+k}}{x-k}$;
(k) $\frac{1}{n} \sum_{k=1}^{n} \frac{(-1)^{k-1} \sin \frac{2 k-1}{2 n} \pi}{x-\cos \frac{2 k-1}{2 n} \pi}$.
656. (a) $\frac{1}{3(x-1)}-\frac{x+2}{3\left(x^{2}+x+1\right)}$;
(b) $\frac{1}{8(x-2)} \rightarrow \frac{1}{8(x+2)}+\frac{1}{2\left(x^{2}+4\right)}$;
(c) $\frac{1}{8} \frac{x+2}{x^{2}+2 x+2}-\frac{1}{8} \frac{x-2}{x^{2}-2 x+2}$;
(d) $\frac{1}{18}\left(\frac{1}{x^{2}+3 x+3}+\frac{1}{x^{2}-3 x+3}-\frac{2}{x^{2}+3}\right)$;
(e) $\frac{1}{2 n+1}\left[\frac{1}{x-1}+2 \sum_{k=1}^{n} \frac{x \cos \frac{2 k(m+1) \pi}{2 n+1}-\cos \frac{2 k m \pi}{2 n+1}}{x^{2}-2 x \cos \frac{2 k \pi}{2 n+1}+1}\right]$;
(f) $\frac{(-1)^{m}}{2 n+1}\left[\frac{1}{x+1}+2 \sum_{k=1}^{n} \frac{x \cos \frac{2 k(m+1) \pi}{2 n+1}+\cos \frac{2 k m \pi}{2 n+1}}{x^{2}+2 x \cos \frac{2 k \pi}{2 n+1}+1}\right]$;
(g) $\frac{1}{2 n}\left[\frac{1}{x-1}-\frac{1}{x+1}+2 \sum_{k=1}^{n-1} \frac{x \cos \frac{k \pi}{n}-1}{x^{2}-2 x \cos \frac{k \pi}{n}+1}\right]$;
(h) $\frac{1}{n} \sum_{k=1}^{n} \frac{\cos \frac{(2 k-1) m \pi}{n}-x \cos \frac{(2 k-1)(2 m+1) \pi}{2 n}}{x^{2}-2 x \cos \frac{(2 k-1) \pi}{2 n}+1}$;
(i) $\frac{1}{(n!)^{2} x}+2 \sum_{k=1}^{n} \frac{(-1)^{k} x}{(n+k)!(n-k)!\left(x^{2}+k^{2}\right)}$.
657. (a) $\frac{1}{4(x-1)^{2}}-\frac{1}{4(x+1)^{2}}$;
(b) $\frac{1}{4(x+1)}-\frac{1}{4(x-1)}+\frac{1}{4(x-1)^{2}}+\frac{1}{4(x+1)^{2}}$;
(c) $\frac{3}{(x-1)^{3}}-\frac{4}{(x-1)^{2}}+\frac{1}{x-1}-\frac{1}{(x+1)^{2}}-\frac{2}{x+1}+\frac{1}{x-2}$;
(d) $\frac{1}{n^{2}}\left[\sum_{k=0}^{n-1} \frac{\varepsilon_{k}^{2}}{\left(x-\varepsilon_{k}\right)^{2}}-(n-1) \sum_{k=0}^{n-1} \frac{\varepsilon_{k}}{x-\varepsilon_{k}}\right]$,
$\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n} ;$
(e) $\frac{1}{x^{m}}+\frac{\frac{n}{1}}{x^{m-1}}+\frac{\frac{n(n+1)}{1 \cdot 2}}{x^{m-2}}+\ldots+\frac{\frac{n(n+1) \ldots(n+m-2)}{1 \cdot 2 \ldots(m-1)}}{x}-$

$$
\begin{aligned}
& +\frac{1}{(1-x)^{n}}+\frac{\frac{m}{1}}{(1-x)^{n-1}}+\frac{\frac{m(m+1)}{1 \cdot 2}}{(1-x)^{n-2}} \\
& \quad+\ldots+\frac{\frac{m(m+1) \ldots(m+n-2)}{1 \cdot 2 \ldots(n-1)}}{1-x} \\
& \text { (f) } \frac{1}{\left(-4 a^{2}\right)^{n}} \sum_{k=0}^{n-1}(2 a)^{n-k} \frac{n(n+1) \ldots(n+k-1)}{k!} \\
& \quad \times\left[\frac{1}{(a-x)^{n-k}}+\frac{1}{(a+x)^{n-k}}\right] ;
\end{aligned}
$$

(g) $\frac{1}{\left(4 a^{2}\right)^{n}} \sum_{k=0}^{n-1}(2 a)^{n-k} \frac{n(n+1)}{\ldots(n+k-1)}$

$$
\times\left[\frac{1}{(a-i x)^{n-k}}+\frac{1}{(a+i x)^{n-k}}\right] ;
$$

(h) $\sum_{k=1}^{n} \frac{g\left(x_{k}\right)}{\left[f^{\prime}\left(x_{k}\right)\right]^{2}\left(x-x_{k}\right)^{2}}+\sum_{k=1}^{n} \frac{g^{\prime}\left(x_{k}\right) f^{\prime}\left(x_{k}\right)-g\left(x_{k}\right) f^{\prime \prime}\left(x_{k}\right)}{\left[f^{\prime}\left(x_{k}\right)\right]^{3}\left(x-x_{k}\right)}$.
658. (a) $-\frac{1}{4(x+1)}+\frac{x-1}{4\left(x^{9}+1\right)}+\frac{x+1}{2\left(x^{2}+1\right)^{2}}$;
(b) $-\frac{1}{x}+\frac{7}{x+1}+\frac{3}{(x+1)^{2}}-\frac{6 x+2}{x^{2}+x+1}-\frac{3 x+2}{\left(x^{2}+x+1\right)^{2}}$;
(c) $\frac{1}{16(x-1)^{2}}-\frac{3}{16(x-1)}+\frac{1}{16(x+1)^{2}}+\frac{3}{16(x+1)}$

$$
+\frac{1}{4\left(x^{2}+1\right)}+\frac{1}{4\left(x^{2}+1\right)^{2}} ;
$$

(d) $\frac{1}{4 n^{2}}\left[\frac{1}{(x-1)^{2}}+\frac{1}{(x+1)^{2}}-\frac{2 n-1}{x-1}+\frac{2 n-1}{x+1}\right]$

$$
\begin{aligned}
& +\frac{1}{n^{2}} \sum_{k=1}^{n-1} \frac{\sin ^{2} \frac{k \pi}{n}\left(1-2 x \cos \frac{k \pi}{n}\right)}{\left(x^{2}-2 x \cos \frac{k \pi}{n}+1\right)^{2}} \\
& \quad+\frac{1}{n^{2}} \sum_{k=1}^{n-1} \frac{n-\sin ^{2} \frac{k \pi}{n}-\left(n-\frac{1}{2}\right) x \cos \frac{k \pi}{n}}{x^{2}-2 x \cos \frac{k \pi}{n}+1} .
\end{aligned}
$$

659. (a) $\frac{\varphi^{\prime}(x)}{\varphi(x)}$,
(b) $\frac{x \varphi^{\prime}(x)-n \varphi(x)}{\varphi(x)}$,
(c) $\frac{\left[\varphi^{\prime}(x)\right]^{2}-\varphi(x) \varphi^{\prime \prime}(x)}{[\varphi(x)]^{2}}$.
660. (a) 9 ,
(b) $-\frac{\varphi^{\prime}(2)}{\varphi(2)}+\frac{\varphi^{\prime}(1)}{\varphi(1)}=-\frac{17}{5}$,
(c) 17.
661. $0.51 x+2.04$. $\quad 662 . y=\frac{1}{7}\left[0.55 x^{2}+2.35 x+6.98\right]$.
662. Substituting $\frac{p}{q}$ into $f(x)$, we obtain, after multiplication by q^{n},
$a_{0} p^{n}+a_{1} p^{n-1} q+\ldots+a_{n-1} p q^{n-1}+a_{n} q^{n}=0$,
whence
$\frac{a_{0} p^{n}}{q}=-\left(a_{1} p^{n-1}+\ldots+a_{n-1} p q^{n-2}+a_{n} q^{n-1}\right)$,
$\frac{a_{n} q^{n}}{p}=-\left(a_{0} p^{n-1}+a_{1} p^{n-2} q+\ldots+a_{n-1} q^{n-1}\right)$.

The right sides of these equations contain integers. The numbers p and q are relatively prime. Hence, a_{0} is divisible by q, and a_{n} is divisible by p.

Now arrange $f(x)$ in powers of $x-m$:

$$
f(x)=a_{0}(x-m)^{n}+c_{1}(x-m)^{n-1}+\ldots+c_{n-1}(x-m)+c_{n}
$$

The coefficients $c_{1}, c_{2}, \ldots, c_{n}$ are integers, since m is an integer, $c_{n}=f(m)$. Substituting $x=\frac{p}{q}$, we get
$a_{0}(p-m q)^{n}+c_{1}(p-m q)^{n-1} q+\ldots+c_{n-1}(p-m q) q^{n-1}+c_{n} q^{n}=0$
whence we conclude that $\frac{c_{n} q^{n}}{p-m q}$ is an integer.
Since the fraction $\frac{p-m q}{q}=\frac{p}{q}-m$ is in lowest terms, the numbers $p-m q$ and q are relatively prime. Hence, $c_{n}=f(m)$ is divisible by $p-m q$, which is what we set out to prove.
664. We give a detailed solution of (a).

Possible values for $p: 1,-1,2,-2,7,-7,14,-14$. Only 1 for q (we take the sign to be attached to the numerator).
is) $f(1)=-4$. Hence, $p-1$. must be a divisor of 4 . We reject the possibilities $p=1,-2,7,-7,14,-14$. It remains to test -1 and 2 .
$f(-1) \neq 0, f(2)=0$. The only rational root is $x_{1}=2$.
(b) $x_{1}=-3$; (c) $x_{1}=-2, x_{2}=3 ;$ (d) $x_{1}=-3, x_{2}=\frac{1}{2}$;
(e) $\frac{5}{2},-\frac{3}{4}$;
(f) $1,-2,3$;
(g) $\frac{1}{2},-\frac{2}{3}, \frac{3}{4}$;
(h) no rational roots; (i) $-1,-2,-3,+4$;
(j) $\frac{1}{2}$; (k) $x_{1}=x_{2}=-\frac{1}{2}$; (l) $x_{1}=x_{2}=1$,
$x_{3}=x_{4}=-3$; (m) $x_{1}=3, x_{2}=x_{3}=x_{4}=x_{5}=-1$; (n) $x_{1}=x_{2}=x_{3}=2$.
665. According to Problem 663, p and $p-q$ are odd at the same time. Hence, q is even and cannot equal unity.
666. By Problem 663, $p-x_{1} q= \pm 1, p-x_{2} q= \pm 1$, whence $\left(x_{2}-x_{1}\right) q= \pm 2$ or 0 . The value 0 is dropped because $q>0, x_{2} \neq x_{1}$. Putting $x_{2}>x_{1}$ for definiteness, we get $\left(x_{2}-x_{1}\right) q=2$. This equation is impossible for $x_{2}-x_{1}>2$. Now put $x_{2}-x_{1}=1$ or 2. The only possible values for p and q, for which equation $\left(x_{2}-x_{1}\right) q=2$ is possible, are $p=x_{1} q+1, q=\frac{2}{x_{2}-x_{1}}$, whence the sole possibility for a rational root $\frac{p}{q}=x_{1}+\frac{1}{q}=\frac{x_{1}+x_{2}}{2}$. The proof is complete.
667. The Eisenstein criterion holds:
(a) for $p=2$, (b) for $p=3$, (c) for $p=3$ after expanding the polynomial in powers of $x-1$.
668. $X_{p}(x)=(x-1)^{p-1}+\frac{p}{1}(x-1)^{p-2}+\frac{p(p-1)}{1 \cdot 2}(x-1)^{p-a}+\ldots+p$.

All coefficients $C_{k}=\frac{p(p-1) \ldots(p-k+1)}{1.2 \ldots k}, k \leqslant p-1$, are divisible by p because $k!C_{k}=p(p-1) \ldots(p-k+1)$ is divisible by p, and $k!$ is relatively prime to p. Thus, after the expansion of $X_{p}(x)$ in powers of $x-1$, the Eisenstein criterion holds for $X_{p}(x)$ for p prime.
669. Apply the Eisenstein criterion for the number p, setting $x=y+1$:

$$
X_{p^{k}}(x)=\varphi(y)=\frac{(y+1)^{p^{k}}-1}{(y+1) p^{k-1}-1}
$$

The leading coefficient of the polynomial φ is equal to 1 . The constant term of $\varphi(y)$, equal to $\varphi(0)=X_{p^{k}}(1)=p$, is divisible by p and is not divisible by p^{2}. It remains to prove that the remaining coefficients are divisible by p. To do this, we prove by induction that all the coefficients of the polynomial $(y+1)^{p^{n}}-$ -1 , except the leading coefficient, are divisible by p. This is true for $n=1$. Suppose it is true for the exponent p^{n-1}, that is, $(y+1)^{p^{n-1}}=y^{p^{n-1}}+1+$ $+p w_{n-1}(y)$ where $w_{n-1}(y)$ is a polynomial with integral coefficients. Then $(y+1)^{p^{n}}=\left(y^{p^{n-1}}+1+p w_{n-1}(y)\right)^{p}=\left(y^{p^{n-1}}+1\right)^{p}+p \psi(y)=y^{p^{n}}+1+p w_{n}(y) ;$ $\psi(y)$ and $w_{n}(y)$ are polynomials with integral coefficients. Thus,

$$
\begin{array}{r}
\varphi(y)=\frac{y^{p^{k}}+p w_{k}(y)}{y^{p^{k-1}}+p w_{k-1}(y)}=y^{p^{k}-p^{k-1}}+p-\frac{w_{k}(y)-y^{p^{k}-p^{k-1}} w_{k-1}(y)}{y p^{k-1}+p w_{k-1}(y)} \\
=y^{p^{k}-p^{k-1}}+p \chi(y) .
\end{array}
$$

The coefficients of the polynomial $\chi(y)$ are integral, since $\chi(y)$ is the quotient obtained in the division of polynomials with integral coefficients, and the leading coefficient of the divisor is equal to unity. Hence, all coefficients of the polynomial $\varphi(y)$, except the leading coefficient, are divisible by p. The conditions of the Eisenstein theorem are fulfilled.
670. Suppose the polynomial is reducible: $f(x)=\varphi(x) \psi(x)$.

Then both factors have integral coefficients and their degrees are greater than 1 , since $f(x)$ does not have, by hypothesis, rational roots. Let

$$
\begin{aligned}
& \varphi(x)=b_{0} x^{k}+b_{1} x^{k-1}+\ldots+b_{k} \\
& \psi(k)=c_{0} x^{m}+c_{1} x^{m-1}+\ldots+c_{m}
\end{aligned}
$$

$k \geqslant 2, m \geqslant 2, k+m=n$. Since $b_{k} c_{m}=a_{n}$ is divisible by p and is not divisible by p^{2}, we can take it that b_{k} is divisible by p, c_{m} is not divisible by p.

Let b_{i} be the first coefficient of $\varphi(x)$ from the end that is not divisible by p, $i \geqslant 0$. Such exists since $a_{0}=b_{0} c_{0}$ is not divisible by p. Then $a_{m+i}=b_{i} c_{m}$ $+b_{i+1} c_{m-1}+\ldots$ is not divisible by p, since $b_{i} c_{m}$ is not divisible by p, and b_{i+1}, b_{i+2}, \ldots are divisible by p. This contradicts the hypothesis because $m+i \geqslant 2$.
671. Factoring $f(x)$ into irreducible factors with integral coefficients we consider the irreducible factor $\varphi(x)$, the constant term of which is divisible by p. Such exists since a_{n} is divisible by p. We denote the quotient after the division of $f(x)$ by $\varphi(x)$, by $\psi(x)$. Let

$$
\begin{aligned}
& \varphi(x)=b_{0} x^{m}+b_{1} x^{m-1}+\ldots+b_{m}, \\
& \psi(x)=c_{0} x^{h}+c_{1} x^{h-1}+\ldots+c_{h}
\end{aligned}
$$

and b_{i} be the first (from the end) coefficient of $\varphi(x)$ not divisible by $p ; c_{h}$ is not divisible by p since $a_{n}=b_{m} c_{h}$ is not divisible by p^{2}.

For this reason $a_{h+i}=b_{i} c_{h}+b_{i+1} c_{h-1}+\ldots$ is not divisible by p, whence follows $h+i \leqslant k$. Consequently, $m \geqslant m+h+i-k=n+i-k \geqslant n-k$.
672. (a) $f(0)=1, f(1)=-1, f(-1)=-1$.

If $f(x)=\varphi(x) \psi(x)$ and the degree of $\varphi(x) \leqslant 2$, then $\varphi(0)= \pm 1, \varphi(1)= \pm 1$, $\varphi(-1)= \pm 1$, that is, $\varphi(x)$ is represented by one of the tables:

| \boldsymbol{x} | $\varphi(x)$ | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| 0 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |
| 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 |

The last 5 tables may be omitted since the last 4 define polynomials that differ only in sign from the polynomials represented by the first four tables, and the fourth defines a polynomial identically equal to unity. The first three yield the following possibilities:

$$
\varphi(x)=-\left(x^{2}+x-1\right), \varphi(x)=x^{3}-x-1, \varphi(x)=2 x^{2}-1 .
$$

Tests by means of division yield
$f(x)=\left(x^{2}+x-1\right)\left(x^{2}-x-1\right)$.
(b) Irreducible,
(c) irreducible,
(d) $\left(x^{3}-x-1\right)\left(x^{2}-2\right)$.
673. A reducible polynomial of degree three has a linear factor with rational coefficients and therefore has a rational root.
674. The polynomial $x^{4}+a x^{3}+b x^{2}+c x+d$ has no rational roots and can be factored (in case of reducibility) only into quadratic factors with integral coefficients:

$$
x^{4}+a x^{8}+b x^{2}+c x+d=\left(x^{2}+\lambda x+m\right)\left(x^{2}+\mu x+n\right) .
$$

The number m must obviously be a divisor of $d ; m n=d$. A comparison of the coefficients of x^{3} and x yields

$$
\lambda+\mu=a, \quad n \lambda+m \mu=c .
$$

This system is indeterminate only if $m=n, c=a m$, that is, if $c^{2}=a^{2} d$ (see Problem 614).

But if $m \neq n$, then $\lambda=\frac{c-a m}{n-m}=\frac{c m-a m^{2}}{d-m^{2}}$ and this completes the proof.
675. In case of reducibility, it is necessary that

$$
x^{6}+a x^{4}+b x^{3}+c x^{8}+d x+e=\left(x^{2}+\lambda x+m\right)\left(x^{3}+\lambda^{\prime} x^{2}+\lambda^{\prime \prime} x+n\right) .
$$

The coefficients of the factors must be integral.
A comparison of the coefficients yields $m n=e$, whence it follows that m is a divisor of e. Furthermore,

$$
\begin{aligned}
\lambda+\lambda^{\prime} & =a, \\
n \lambda+m \lambda^{\prime \prime} & =d, \\
m+\lambda \lambda^{\prime}+\lambda^{\prime \prime} & =b, \\
n+\lambda \lambda^{\prime \prime}+m \lambda^{\prime} & =c
\end{aligned}
$$

whence

$$
\begin{gathered}
m \lambda^{\prime \prime}-n \lambda^{\prime}=d-a n, \\
\lambda\left(m \lambda^{\prime \prime}-n \lambda^{\prime}\right)+m^{2} \lambda^{\prime}-n \lambda^{\prime \prime}=c m-b n
\end{gathered}
$$

and, consequently, ($d-a n$) $\lambda+m^{2} \lambda^{\prime}-n \lambda^{\prime \prime}=c m-b n$. Solving this equation and $\lambda+\lambda^{\prime}=a, n \lambda+m \lambda^{\prime \prime}=d$ simultaneously, we get

$$
\lambda=\frac{a m^{3}-c m^{9}-d n+b e}{m^{3}-n^{2}+a e-d m}
$$

which completes the proof.
676. (a) $\left(x^{2}-2 x+3\right)\left(x^{2}-x-3\right)$, (b) irreducible, (c) $\left(x^{2}-x-4\right)\left(x^{2}+5 x+3\right)$, (d) $\left(x^{2}-2 x+2\right)\left(x^{3}+3 x+3\right)$.
677. Without loss of generality, we can seek conditions under which $x^{4}+$ $+p x^{2}+q$ can be factored into quadratic factors with rational coefficients, because if the polynomial has a rational root x_{1}, then $-x_{1}$ will also be a rational root and the linear factors corresponding to it can be combined.

Let $x^{4}+p x^{2}+q=\left(x^{2}+\lambda_{1} x+\mu_{1}\right)\left(x^{3}+\lambda_{2} x+\mu_{2}\right)$.
Then

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}=0, \quad \lambda_{1} \mu_{2}+\lambda_{2} \mu_{1}=0 \\
& \mu_{1}+\lambda_{1} \lambda_{2}+\mu_{2}=p, \mu_{1} \mu_{2}=q .
\end{aligned}
$$

If $\lambda_{1}=0$, then $\lambda_{2}=0$ too. In this case, for the existence of rational μ_{1} and μ_{2} it is necessary and sufficient that the discriminant $p^{2}-4 q$ be the square of a rational number.

Let $\lambda_{1} \neq 0$. Then $\lambda_{2}=-\lambda_{1}, \mu_{2}=\mu_{1}$ and furthermore

$$
q=\mu_{1}^{2}, 2 \mu_{1}-p=\lambda_{1}^{2}
$$

Thus, for the reducibility of the polynomial $x^{4}+p x^{2}+q$ it is necessary and sufficient that one of the following two conditions be fulfilled:
(a) $p^{2}-4 q$ is the square of a rational number;
(b) q is the square of the rational number $\mu_{1}, 2 \mu_{1}-p$ is the square of the rational number λ_{1}.
678. If $x^{4}+a x^{3}+b x^{2}+c x+d=\left(x^{2}+p_{1} x+q_{1}\right)\left(x^{2}+p_{2} x+q_{2}\right)$, then, since $p_{1}+p_{2}=a$, we can write

$$
x^{4}+a x^{3}+b x^{2}+c x+d=\left(x^{2}+\frac{1}{2} a x+\frac{\lambda}{2}\right)^{2}-\left(\frac{p_{1}-p_{2}}{2} x+\frac{q_{1}-q_{2}}{2}\right)^{2}
$$

where $\lambda=q_{1}+q_{2}$. Whence it follows that the auxiliary cubic equation has the rational root $\lambda=q_{1}+q_{2}$.
679. Let $f(x)=\varphi(x) \psi(x)$ and $\varphi(x), \psi(x)$ have integral coefficients. Since $f\left(a_{i}\right)=-1$, it must be true that $\varphi\left(a_{i}\right)=1, \psi\left(a_{i}\right)=-1$ or $\varphi\left(a_{i}\right)=-1, \psi\left(a_{i}\right)=1$ and, hence, $\varphi\left(a_{i}\right)+\psi\left(a_{i}\right)=0, i=1,2, \ldots, n$.

If $\varphi(x)$ and $\psi(x)$ are both nonconstants, then the degree of $\varphi(x)+\psi(x)$ is less than n, whence it follows that $\varphi(x)+\psi(x)$ is identically zero. Thus, we must have $f(x)=-[\varphi(x)]^{2}$. This is impossible since the leading coefficient of $f(x)$ is positive.
680. If $f(x)=\varphi(x) \psi(x)$, then $\varphi\left(a_{i}\right)=\psi\left(a_{i}\right)= \pm 1$ since $f\left(a_{i}\right)=1$. Hence, if φ and ψ are nonconstants, $\varphi(x)$ is identically equal to $\psi(x)$ and

$$
f(x)=[\varphi(x)]^{2} .
$$

This is only possible for even n.
Thus, the only possible factorization is

$$
\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+1=[\varphi(x)]^{2} .
$$

From this we conclude (considering the leading coefficient of $\varphi(x)$ positive) that

$$
\begin{aligned}
& \varphi(x)+1=\left(x-a_{1}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n-1}\right), \\
& \varphi(x)-1=\left(x-a_{2}\right)\left(x-a_{4}\right) \ldots\left(x-a_{n}\right)
\end{aligned}
$$

(In order to have the permission to write these equations, we must change the ordering of the numbers $a_{1}, a_{2}, \ldots, a_{n}$.) And, finally,

$$
\left(x-a_{1}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n-1}\right)-\left(x-a_{2}\right)\left(x-a_{4}\right) \ldots\left(x-a_{n}\right)=2 .
$$

Put $a_{1}>a_{3}>\ldots>a_{n-1}$. Substituting $x=a_{2 k}, k=1,2, \ldots, \frac{n}{2}$ in the lątter equation, we get

$$
\left(a_{2 k}-a_{1}\right)\left(a_{2 k}-a_{3}\right) \ldots\left(a_{2 k}-a_{n-1}\right)=2
$$

which is to say that the number 2 must be factorable in $\frac{n}{2}$ ways into $\frac{n}{2}$ integral factors arranged in increasing order. This is only possible when $\frac{n}{2}=2$, $2=-2 \cdot(-1)=1 \cdot 2$, and when $\frac{n}{2}=1$. These two possibilities lead to the two cases of reducibility of the polynomial $f(x)$ that are mentioned in the hypothesis of the problem.
681. If an n th-degree polynomial $f(x)$ is reducible for $n=2 m$ or $n=2 m+1$, then the degree of one of its factors $\varphi(x)$ does not exceed m. If $f(x)$ assumes the values ± 1 for more than $2 m$ integral values of the variable, then $\varphi(x)$ also assumes the values ± 1 for the same values of the variable. Among these values, there will exist for $\varphi(x)$ more than m values equal to +1 or -1 . But then $\varphi(x)=+1$ or -1 identically.
682. The polynomial $f(x)$ has no real roots. Hence, if it is reducible, its factors $\varphi(x)$ and $\psi(x)$ do not have real roots and therefore do not change sign for real values of x. It may be taken that $\varphi(x)>0, \psi(x)>0$ for all real values of x. Since $f\left(a_{k}\right)=1$, it follows that $\varphi\left(a_{k}\right)=\psi\left(a_{k}\right)=1, k=1,2, \ldots, n$. If the degree of $\varphi(x)$ [or $\psi(x)]$ is less than n, then $\varphi(x)=1[$ or $\psi(x)=1]$ identically. Hence, the degrees of $\varphi(x)$ and $\psi(x)$ are equal to n. Then $\varphi(x)=1+$ $+\alpha\left(x-a_{1}\right) \ldots\left(x-a_{n}\right), \psi(x)=1+\beta\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)$, where α and β are some integers. But then
$f(x)=\left(x-a_{1}\right)^{2} \ldots\left(x-a_{n}\right)^{2}+1=1+(\alpha+\beta)\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)+\alpha \beta\left(x-a_{1}\right)^{2} \ldots$ $\left(x-a_{n}\right)^{8}$.
A comparison of the coefficients of $x^{2 n}$ and x^{n} yields a system of equations, $\alpha \beta=1, \alpha+\beta=0$, that has no integral solutions. Consequently, $f(x)$ is irreducible.
683. Let $f(x)$ assume the value 1 more than three times. Then $f(x)-1$ has at least four integral roots, i. e.,

$$
f(x)-1=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right) h(x)
$$

where $a_{1}, a_{2}, a_{3}, a_{4}$ and the coefficients of the polynomial $h(x)$ are integers. For integral values of x, the expression $\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)$ is a product of distinct integers. Two of them can be equal to +1 and -1 , the remaining two differ from ± 1. Hence, their product cannot be equal to a prime number, in particular, -2 . Thus, $f(x)^{\circ}-1 \neq-2$ for integral values of x and, hence, $f(x) \neq-1$.
684. Let $f(x)=\varphi(x) \psi(x)$. One of the factors, $\varphi(x)$, is of degree $\leqslant \frac{n}{2}$ and assumes the values ± 1 for more than $\frac{n}{2}$ integral values of x. Since $\frac{n}{2} \geqslant 6$, it follows that $+\varphi(x)$ or $-\varphi(x)$ takes on the value 1 more than three times and, by virtue of the result of Problem 683, it cannot take on the value -1 . Thus, $\varphi(x)$ or $-\varphi(x)$ assumes the value +1 more than $\frac{n}{2}$ times, and hence, $\varphi(x)$ or $-\varphi(x)$ is identically unity. Consequently, $f(x)$ is irreducible.

Sharpening the reasoning, we can prove the validity of the result for $n \geqslant 8$. 685. Let

$$
a[\varphi(x)]^{2}+b \varphi(x)+1=\psi(x) w(x) .
$$

One of the factors is of degree $\leqslant n ; \psi(x)$ takes on the values ± 1 for $x=a_{1}$, a_{2}, \ldots, a_{n} and since $n \geqslant 7$, all these values of $\psi(x)$ must be of like sign. Hence

$$
\psi(x)= \pm 1+\alpha\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)= \pm 1+\alpha \varphi(x) .
$$

If $\alpha \neq 0$, then $w(x)$ also has degree n and $w(x)= \pm 1+\beta \varphi(x)$. But the equation

$$
a[\varphi(x)]^{2}+b \varphi(x)+1=[\pm 1+\alpha \varphi(x)][\pm 1+\beta \varphi(x)]
$$

is impossible since the polynomial $a x^{3}+b x+1$ is irreducible by hypothesis.
686. (a) $f(x)=a_{0} x^{n}\left(1+\frac{a_{1}}{a_{0} x}+\ldots+\frac{a_{n}}{a_{0} x^{n}}\right)$.

Let max $\left|\frac{a_{k}}{a_{0}}\right|=A$. Then for $|x|>1$
$|f(x)| \geqslant\left|a_{0} x^{n}\right|\left[1-\frac{A}{|x|-1}\right]=\left|a_{0} x^{n}\right| \frac{|x|-1-A}{|x|-1}>0$
for $|x|>1+A$.
(b) $\frac{1}{\rho^{n}} f(x)=a_{0}\left(\frac{x}{\rho}\right)^{n}+\frac{a_{1}}{\rho}\left(\frac{x}{\rho}\right)^{n-1}+\frac{a_{2}}{\rho^{2}}\left(\frac{x}{\rho}\right)^{n-2}+\ldots+\frac{a_{n}}{\rho^{n}}$.

By virtue of (a), for all roots
$\frac{|x|}{\rho} \leqslant 1+\max \left|\frac{a_{k}}{a_{0} \rho^{k}}\right|$, whence $|x| \leqslant \rho+\max \left|\frac{a_{k}}{a_{0} \rho^{k-1}}\right|$.
(c) Put $\rho=\max \sqrt[k]{\left|\frac{a_{k}}{a_{0}}\right|}$. Then

$$
\left|\frac{a_{k}}{a_{0}}\right| \leqslant \rho^{k}, \quad\left|\frac{a_{k}}{a_{0} \rho^{k-1}}\right| \leqslant \rho, \quad \max \left|\frac{a_{k}}{a_{0} \rho^{k-1}}\right| \leqslant \rho .
$$

Consequently, the moduli of all roots do not exceed

$$
\rho+\rho=2 \rho=2 \max \sqrt[k]{\left.\sqrt{\frac{a_{k}}{a_{0}}} \right\rvert\,} .
$$

$$
k-1
$$

(d) Put $\left.\rho=\max \sqrt{\left\lvert\, \frac{a_{k}}{a_{1}}\right.} \right\rvert\,$. Then $\left|a_{k}\right| \leqslant\left|a_{1}\right| \rho^{k-1},\left|\frac{a_{k}}{a_{0} \rho^{k-1}}\right| \leqslant\left|\frac{a_{1}}{a_{0}}\right|$.

Hence, the moduli of the roots do not exceed

$$
\rho+\left|\frac{a_{1}}{a_{0}}\right|=\left|\frac{a_{1}}{a_{0}}\right|+\max \sqrt[k-1]{\left|\frac{a_{k}}{a_{1}}\right|} .
$$

687. Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$,

$$
\varphi(x)=b_{0} x^{n}-b_{1} x^{n-1}-\ldots-b_{n},
$$

$0<b_{0} \leqslant\left|a_{0}\right|, b_{1} \geqslant\left|a_{1}\right|, \ldots, b_{n} \geqslant\left|a_{n}\right|$. Obviously, $|f(x)| \geqslant \varphi(|x|)$.
Furthermore, $\varphi(x)=b_{0} x^{n}\left(1-\frac{b_{1}}{b_{0} x}-\frac{b_{2}}{b_{0} x^{2}}-\ldots-\frac{b_{n}}{b_{0} x^{n}}\right)$.

The expression in the brackets increases from $-\infty$ to 1 for x varying from 0 to $+\infty$.

Hence, $\varphi(x)$ has a unique positive root ξ and $\varphi(x)>0$ for $x>\xi$. Because of this, for $|x|>\xi$ we have $|f(x)| \geqslant \varphi(|x|)>0$, whence it follows that the moduli of all roots of $f(x)$ do not exceed ξ.
688. (a) Let $A=\max \left|\frac{a_{k}}{a_{0}}\right|$. It is obvious that

$$
|f(x)| \geqslant\left|a_{0} x^{n}\right|\left(1-\frac{A}{|x|^{n}}-\frac{A}{|x|^{++1}}-\ldots-\frac{A}{|x|^{n}}\right)
$$

whence for $|x|>1$,

$$
\begin{aligned}
& |f(x)|>\left|a_{0} x^{n}\right|\left(1-\frac{A}{|x|^{r-1}(|x|-1)}\right) \\
& =\frac{\left|a_{0} x^{n-r+1}\right|}{|x|-1}\left[|x|^{r-1}(|x|-1)-A\right]>\frac{\left|a_{0} x\right|^{n-r+1}}{|x|-1}\left[(|x|-1)^{r}-A\right] .
\end{aligned}
$$

For $|x|>1+V^{r} A$ we have $|f(x)|>0$.
(b) $\frac{1}{\rho^{n}} f(x)=a_{0}\left(\frac{x}{\rho}\right)^{n}+\frac{a_{r}}{\rho^{r}}\left(\frac{x}{\rho}\right)^{n-r}+\ldots+\frac{a_{n}}{\rho^{n}}$.

By virtue of (a), for all roots of $f(x)$ we have

$$
\left.\left|\frac{x}{\rho}\right|<1+\sqrt[r]{\max \left\lvert\, \frac{a_{k}}{a_{0} \rho^{k}}\right.} \right\rvert\, \text { whence }|x|<\rho+\sqrt[r]{\max \left|\frac{a_{k}}{a_{0} \rho^{k-r}}\right|} .
$$

$$
k-r
$$

(c) Set $\rho=\max \sqrt{\left|\frac{a_{k}}{a_{r}}\right|}$. Then $\left|a_{k}\right| \leqslant\left|a_{r}\right| \rho^{k-r}$ and the moduli of all roots of the polynomial do not exceed

$$
\sqrt[r]{\left|\frac{a_{r}}{a_{0}}\right|}+\rho=\sqrt[r]{\left|\frac{a_{r}}{a_{0}}\right|}+\max \sqrt[k-r]{\left|\frac{a_{k}}{a_{r}}\right|} .
$$

689. For negative roots of the polynomial the assertion is obvious. For the sake of definiteness, set $a_{0}>0$ and denote $\varphi(x)=a_{0} x^{n}-b_{1} x^{n-1}-b_{2} x^{n-3}-$ $-\ldots-b_{n}$, where $b_{k}=0$ for $a_{k}>0, b_{k}=-a_{k}$ for $a_{k}<0$. Then, for positive x, it is obvious that

$$
f(x) \geqslant \varphi(x) .
$$

Furthermore, $\varphi(x)$ has a unique nonnegative root ξ (see Problem 687) and $\varphi(x)>0$ for $x>\xi$. Hence, for $x>\xi, f(x) \geqslant \varphi(x)>0$.
690. This follows directly from $688,689,686$ (c).
692. Expanding $f(x)$ in powers of $x-a$, we get, for $x \geqslant a$,

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1}(x-a)+\frac{f^{\prime \prime}(a)}{1 \cdot 2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}>0 .
$$

693. We obtain the upper bound of the roots by using the results of Problems 690, 692. To determine the lower bound, substitute $-x$ for x :
(a) $0<x_{i}<3$,
(b) $0<x_{i}<1$,
(c) $-11<x_{i}<11$,
(d) $-6<x_{i}<2$.
694. (a) $f=x^{3}-3 x-1, f_{1}=x^{2}-1, f_{2}=2 x+1, f_{3}=+1$.

Three real roots in the intervals $(-2,-1),(-1,0),(1, \delta)$.
(b) $f=x^{3}+x^{2}-2 x-1, f_{1}=3 x^{2}+2 x-2, f_{2}=2 x+1, f_{3}=+1$. Three real roots in the intervals $(-2,-1),(-1,0),(1,2)$.
(c) $f=x^{3}-7 x+7, f_{1}=3 x^{2}-7, f_{2}=2 x-3, f_{3}=+1$. Three real roots in the intervals $(-4,-3),\left(1, \frac{3}{2}\right),\left(\frac{3}{2}, 2\right)$.
(d) $f=x^{3}-x+5, f_{1}=3 x^{2}-1, f_{2}=2 x-15, f_{3}=-1$. One real root in the interval $(-2,-1)$.
(e) $f=x^{3}+3 x-5, f_{1}=x^{2}+1$. One real root in the interval $(1,2)$.
695. (a) $f=x^{4}-12 x^{2}-16 x-4, \quad f_{1}=x^{3}-6 x-4, \quad f_{2}=3 x^{2}+6 x+2, \quad f_{3}=$ $=x+1, f_{4}=1$. Four real roots in the intervals $(-3,-2),(-2,-1),(-1,0)$, $(4,5)$.
(b) $f=x^{4}-x-1, f_{1}=4 x^{2}-1, f_{2}=3 x+4, f_{3}=+1$. Two real roots in the intervals ($-1,0$) and (1,2).
(c) $f=2 x^{4}-8 x^{3}+8 x^{2}-1, f_{1}=x^{3}-3 x^{2}+2 x, f_{2}=2 x^{2}-4 x+1, f_{3}=x-1$, $f_{4}=1$. Four real roots in the intervals $(-1,0),(0,1),(1,2),(2,3)$.
(d) $f=x^{4}+x^{2}-1, f_{1}=2 x^{3}+x, f_{2}=-x^{2}+2, f_{3}=-x, f_{4}=-1$. Two real roots in the intervals $(-1,0)$ and $(0,1)$.
(e) $f=x^{4}+4 x^{3}-12 x+9, \quad f_{1}=x^{3}+3 x^{2}-3, \quad f_{2}=x^{2}+3 x-4, \quad f_{8}=-4 x+3$, $f_{4}=1$. There are no real roots.
696. (a) $f=x^{4}-2 x^{3}-4 x^{2}+5 x+5, \quad f_{1}=4 x^{3}-6 x^{2}-8 x+5, \quad f_{2}=22 x^{2}-22 x-$ $-45, f_{\mathrm{a}}=2 x-1, f_{4}=1$. Four real roots in the intervals $(1,2),(2,3),(-1,0)$, ($-2,-1$).
(b) $f=x^{4}-2 x^{3}+x^{2}-2 x+1, \quad f_{1}=2 x^{3}-3 x^{2}+x-1, \quad f_{2}=x^{2}+5 x-3, \quad f_{2}=$ $=-9 x+5, f_{4}=-1$. Two real roots in the intervals $(0,1),(1,2)$.
(c) $f=x^{4}-2 x^{3}-3 x^{2}+2 x+1, f_{1}=2 x^{3}-3 x^{2}-3 x+1, f_{2}=9 x^{2}-3 x-5, f_{3}=9 x+$ $+1, f_{4}=+1$. Four real roots in the intervals $(-2,-1),(-1,0),(0,1),(2,3)$.
(d) $f=x^{4}-x^{3}+x^{2}-x-1, \quad f_{1}=4 x^{3}-3 x^{2}+2 x-1, \quad f_{2}=-5 x^{2}+10 x+17$, $f_{3}=-8 x-5, f_{4}=-1$. Two real roots in the intervals $(1,2),(-1,0)$.
(e) $f=x^{4}-4 x^{3}-4 x^{2}+4 x+1, f_{1}=x^{3}-3 x^{2}-2 x+1, f_{2}=5 x^{3}-x-2, f_{3}=18 x+$ $+1, f_{4}=+1$. Four real roots in the intervals $(-2,-1),(-1,0),(0,1),(4,5)$.
697. (a) $f=x^{4}-2 x^{3}-7 x^{2}+8 x+1, f_{1}=2 x^{3}-3 x^{2}-7 x+4, f_{2}=17 x^{2}-17 x-8$, $f_{8}=2 x-1, f_{4}=1$. Four real roots in the intervals $(-3,-2),(-1,0),(1,2)$, (3, 4).
(b) $f=x^{4}-4 x^{2}+x+1, \quad f_{1}=4 x^{3}-8 x+1, \quad f_{2}=8 x^{2}-3 x-4, \quad f_{3}=87 x-28$, $f_{4}=+1$. Four real roots in the intervals $(-3,-2),(-1,0),(0,1),(1,2)$,
(c) $f=x^{4}-x^{3}-x^{2}-x+1, f_{1}=4 x^{3}-3 x^{2}-2 x-1, f_{2}=11 x^{2}+14 x-15, f_{3}=$ $=-8 x+7, f_{4}=-1$. Two real roots in the intervals $(0,1)$ and $(1,2)$.
(d) $f=x^{4}-4 x^{3}+8 x^{2}-12 x+8, \quad f_{1}=x^{8}-3 x^{2}+4 x-3, \quad f_{8}=-x^{2}+5 x-5$, $f_{3}=-9 x+13, f_{4}=-1$. Two real roots $x_{1}=2,1<x_{2}<2$.
(e) $f=x^{4}-x^{3}-2 x+1, f_{1}=4 x^{3}-3 x^{2}-2, f_{2}=3 x^{2}+24 x-14, f_{3}=-56 x+31$, $f_{4}=-1$. Two real roots in the intervals $(0,1)$ and $(1,2)$.
698. (a) $f=x^{4}-6 x^{2}-4 x+2, f_{1}=x^{3}-3 x-1, f_{2}=3 x^{2}+3 x-2, f_{3}=4 x+5$, $f_{4}=1$. Four real roots in the intervals $\left(-2,-\frac{3}{2}\right),\left(-\frac{3}{2},-1\right),(0,1)$, $(2,3)$.
(b) $f=4 x^{4}-12 x^{2}+8 x-1, \quad f_{1}=2 x^{3}-3 x+1, \quad f_{2}=6 x^{8}-6 x+1, \quad f_{2}=2 x-1$, $f_{4}=1$. Four real roots in the intervals $(-3,-2),\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, 1\right)$ and (1, 2).
(c) $f=3 x^{4}+12 x^{3}+9 x^{2}-1, f_{1}=2 x^{3}+6 x^{2}+3 x, f_{2}=9 x^{2}+9 x+2, f_{3}=13 x+8$, $f_{4}=1$. Four real roots in the intervals $(-4,-3),\left(-1,-\frac{2}{3}\right),\left(-\frac{2}{3},-\frac{1}{2}\right)$, (0,1).
(d) $f=x^{4}-x^{3}-4 x^{2}+4 x+1, f_{1}=4 x^{3}-3 x^{2}-8 x+4, f_{2}=7 x^{2}-8 x-4, f_{3}=$ $=4 x-5, f_{4}=1$. Four real roots in the intervals $\left(1, \frac{3}{2}\right),\left(\frac{3}{2}, 2\right),(-2$, $-1),(-1,0)$.
(e) $f=9 x^{4}-126 x^{2}-252 x-140, \quad f_{1}=x^{3}-7 x-7, \quad f_{2}=9 x^{2}+27 x+20, \quad f_{3}=$ $=2 x+3, f_{4}=1$. Four real roots in the intervals $(4,5),\left(-\frac{4}{3},-1\right),\left(-\frac{5}{3}\right.$, $\left.-\frac{4}{3}\right),\left(-2,-\frac{5}{3}\right)$.
699. (a) $f=2 x^{5}-10 x^{3}+10 x-3, \quad f_{1}=x^{4}-3 x^{2}+1, \quad f_{2}=4 x^{3}-8 x+3, \quad f_{3}=$ $=4 x^{2}+3 x-4, f_{4}=x, f_{5}=1$. Five real roots in the intervals $\left(-2,-\frac{3}{2}\right)$, $\left(-\frac{3}{2},-1\right),\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, 1\right),(1,2)$.
(b) $f=x^{6}-3 x^{6}-3 x^{4}+11 x^{3}-3 x^{2}-3 x+1, f_{1}=2 x^{5}-5 x^{4}-4 x^{3}+11 x^{2}-2 x-1$, $f_{2}=3 x^{4}-6 x^{3}-x^{2}+4 x-1, \quad f_{3}=4 x^{3}-6 x^{2}+1, \quad f_{4}=26 x^{2}-26 x+5, \quad f_{5}=2 x-1$, $f_{6}=1$. Six real roots in the intervals $(-2,-1),(-1,0),\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, 1\right)$, $(1,2),(2,3)$.
(c) $f=x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1, \quad f_{1}=5 x^{4}+4 x^{3}-12 x^{3}-6 x+3, \quad f_{2}=4 x^{8}+$ $+3 x^{2}-6 x-2, f_{3}=3 x^{2}+2 x-2, f_{4}=2 x+1, f_{6}=1$. Five real roots in the intervals $\left(-2,-\frac{3}{2}\right),\left(-\frac{3}{2},-1\right),(-1,0),(0,1),(1,2)$.
(d) $f=x^{5}-5 x^{3}-10 x^{2}+2, f_{1}=x^{4}-3 x^{2}-4 x, \quad f_{2}=x^{3}+3 x^{2}-1, \quad f_{8}=-2 x^{2}+$ $+x+1, f_{4}=-3 x-1, f_{5}=-1$. Three real roots in the intervals $(-1,0),(0,1)$, $(2,3)$.
700. (a) $f=x^{4}+4 x^{2}-1, f_{1}=x, f_{2}=1$. Two real roots in the intervals $(-1,0)$, $(0,1)$.
(b) $f=x^{4}-2 x^{3}+3 x^{2}-9 x+1, f_{1}=2 x-3, f_{2}=1$. Two real roots in the intervals $(0,1)$ and $(2,3)$.
(c) $f=x^{4}-2 x^{3}+2 x^{2}-6 x+1, f_{1}=2 x-3, f_{2}=1$. Two real roots in the intervals $(0,1)$ and $(2,3)$.
(d) $f=x^{5}+5 x^{4}+10 x^{2}-5 x-3, f_{1}=x^{2}+4 x-1, f_{2}=5 x-1, f_{3}=1$. Three real roots in the intervals $(0,1),(-1,0),(-6,-5)$.
701. The Sturm sequence is formed by the polynomials $x^{3}+p x+q, 3 x^{2}+p$, $-2 p x-3 q,-4 p^{3}-27 q^{2}$. If $-4 p^{3}-27 q^{2}>0$, then $p<0$. All leading coefficients of the Sturm polynomials are positive and so all the roots of $x^{8}+p x+q$ are real. If $-4 p^{3}-27 q^{2}<0$, then, irrespective of the sign of p, the Sturm sequence has, for $-\infty$, two changes of sign, and for $+\infty$, one change of sign. In this case, $x^{2}+p x+q$ has one real root.
702. The Sturm sequence is formed by the polynomials
$x^{n}+p x+q, n x^{n-1}+p,-(n-1) p x-n q,-p-n\left(\frac{-n q}{(n-1) p}\right)^{n-1}$.
For odd n, the sign of the last expression coincides with the sign of $\Delta=$ $=-(n-1)^{n-1} p^{n}-n^{n} q^{n-1}$. If $\Delta>0$, then necessarily $p<0$. In this case, the polynomial has three real roots. If $\Delta<0$, then, irrespective of the sign of p, the polynomial has one real root.

For even n, the sign of the last expression in the Sturm sequence coincides with the sign of $-p \Delta$, where $\Delta=(n-1)^{n-1} p^{n}-n^{n} q^{n-1}$. The distribution of signs in the Sturm sequence is given in the following table for various combinations of the signs of p and Δ :

| | | | f | f_{1} | f_{2} | f_{3} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. $p>0$ | $\Delta>0$ | $-\infty$ | + | - | + | - |
| | | $+\infty$ | $+$ | $+$ | - | - |
| 2. $p<0$ | $\Delta>0$ | $-\infty$ | $+$ | - | - | $+$ |
| | | $+\infty$ | $+$ | $+$ | $+$ | + |
| 3. $p>0$ | $\Delta<0$ | $-\infty$ | + | - | + | + |
| | | $+\infty$ | $+$ | + | - | $+$ |
| 4. $p<0$, | $\Delta<0$ | $-\infty$ | + | - | - | - |
| | | $+\infty$ | $+$ | $+$ | $+$ | - |

From this table it follows that for $\Delta>0$ the polynomial has two real roots, for $\Delta<0$ there are no real roots.
703. The Sturm sequence is formed by the polynomials $f=x^{6}-5 a x^{5}+$ $+5 a^{2} x+2 b, f_{1}=x^{4}-3 a x^{2}+a^{2}, \quad f_{2}=a x^{3}-2 a^{2} x-b, f_{8}=a\left(a^{2} x^{2}-b x-a^{3}\right), f_{4}=$ $=a\left(a^{5}-b^{2}\right) x, f_{5}=1$.

If $\Delta=a^{5}-b^{2}>0$, then $a>0$, and all leading coefficients of the Sturm polynomials are positive. In this case, all five roots of the polynomial f are real. If $\Delta<0$, then, depending on the sign of a, the distribution of signs looks like this:

Consequently, for $\Delta<0$, the polynomial f has one real root.
704. Let f_{λ} and $f_{\lambda+1}$ be two consecutive polynomials of a "complete" Sturm sequence. If their leading coefficients have the same signs, then their values, for $+\infty$, do not constitute a cbange of sign, while the values for $-\infty$ yield a change of sign, since the degree of one of the polynomials is even, while the degree of the other is odd. Now if the leading coefficients have opposite signs, then the values of f_{λ} and $f_{\lambda+1}$ for $+\infty$ yield a change of sign, and for $-\infty$ do not. Therefore, denoting by v_{1} and v_{2} the number of variations of sign in the Sturm sequence, for $-\infty$ and $+\infty$, we have that $v_{1}+\nu_{2}=\eta$. On the other hand, $\nu_{1}-v_{2}$ is equal to the number N of real roots of the polynomial. Consequently, $v_{2}=\frac{n-N}{2}$, which is what we set out to prove.
705. This is proved like the Sturm theorem, with the sole difference that we have to see that there is an increase (not a decrease) in the number of variations of sign per unit when passing through a root of the original polynomial.
706. The sequence of polynomials thus constructed is a Sturm sequence for the interval $x_{0} \leqslant x<+\infty$ and satisfies the conditions of Problem 705 for the interval $-\infty<x \leqslant x_{0}$. Hence, the number of roots of f in the interval $\left(x_{0}, \infty\right)$ is equal to $v\left(x_{0}\right)-v(+\infty)$, the number of roots of f in the interval $\left(-\infty, x_{0}\right)$ is equal to $v\left(x_{0}\right)-v(-\infty)$, where v is the number of variations of sign of the corresponding values of the polynomials.

The total number of real roots is equal to

$$
2 v\left(x_{0}\right)-v(+\infty)-v(-\infty) .
$$

707. Applying the Euler theorem to

$$
P_{n}=(-1)^{n} e^{\frac{x^{2}}{2}} \frac{d^{n} e^{-\frac{x^{2}}{2}}}{d x^{n}}=(-1)^{n} e^{\frac{x^{2}}{2}}-\frac{d^{n-1}\left(-x e^{-\frac{x^{2}}{2}}\right)}{d x^{n-1}}
$$

yields

$$
P_{n}=(-1)^{n-1} e^{\frac{x^{2}}{2}}\left(x \frac{d^{n-1} e^{-\frac{x^{2}}{2}}}{d x^{n-1}}+(n-1) \frac{d^{n-2} e^{-\frac{x^{2}}{2}}}{d x^{n-2}}\right)
$$

whence

$$
P_{n}=x P_{n-1}-(n-1) P_{n-2}
$$

On the other hand, differentiating the equation defining P_{n-1}, we get

$$
P_{n-1}^{\prime}=(-1)^{n-1} x e^{\frac{x^{2}}{2}} \frac{d^{n-1} e^{-\frac{x^{2}}{2}}}{d x^{n-1}}+(-1)^{n-1} e^{\frac{x^{2}}{2}} \frac{d^{n} e^{-\frac{x^{2}}{2}}}{d x^{n}}
$$

whence

$$
P_{n-1}^{\prime}=x P_{n-1}-P_{n}
$$

Comparing this with the previous formula, we get

$$
P_{n-1}^{\prime}=(n-1) P_{n-2} \text { and so } P_{n}^{\prime}=n P_{n-1}
$$

It follows from the derived formulas that the sequence $P_{n}, P_{n-1}, \ldots, P_{1}$, $P_{0}=I$ is a Sturm sequence for the polynomials P_{n} since P_{n-1} differs from P_{n}^{\prime} in the factor n alone, and $P_{\lambda-1}$ is, to within a positive factor, the remainder (taken with sign reversed) after division of $P_{\lambda+1}$ by P_{λ}.

All the leading coefficients of the polynomials P_{n} are equal to +1 . Hence, all the roots of P_{n} are real.
708. Differentiating the equation defining P_{n}, we obtain

$$
P_{n}^{\prime}=(-1)^{n} e^{x} \frac{d^{n}\left(x^{n} e^{-x}\right)}{d x^{n}}+(-1)^{n} e^{x} \frac{d^{n}\left(n x^{n-1} e^{-x}-x^{n} e^{-x}\right)}{d x^{n}}
$$

whence

$$
P_{n}^{\prime}=(-1)^{n} n e^{x} \frac{d^{n}}{-\frac{\left(x^{n-1} e^{-x}\right)}{d x^{n}}}
$$

Furthermore,

$$
\begin{aligned}
P_{n}= & (-1)^{n} e^{x} \frac{d^{n}\left(x \cdot x^{n-1} e^{-x}\right)}{d x^{n}} \\
& =(-1)^{n} e^{x}\left[x \quad \frac{d^{n}\left(x^{n-1} e^{-x}\right)}{d x^{n}}+n \frac{d^{n-1}\left(x^{n-1} e^{-x}\right)}{d x^{n-1}}\right]=\frac{x}{n} P_{n}^{\prime}-n P_{n-1}
\end{aligned}
$$

whence

$$
x P_{n}^{\prime}=n P_{n}+n^{2} P_{n-1}
$$

On the other hand,

$$
P_{n}^{\prime}=(-1)^{n} n e^{x} \frac{d^{n-1}\left[(n-1) x^{n-2} e^{-x}-x^{n-1} e^{-x}\right]}{d x^{n-1}}
$$

whence $P_{n}^{\prime}=-n P_{n-1}^{\prime}+n P_{n-1}$. Multiplying by x and substituting in place of $x P_{n}^{\prime}$ and $x P_{n-1}^{\prime}$ their expression in terms of $P_{n}, P_{n \rightarrow 1}, P_{n \rightarrow 2}$, we get

$$
P_{n}=(x-2 n+1) P_{n-1}-(n-1)^{2} P_{n-2}
$$

From these relations it is seen that consecutive polynomials P_{n} do not vanish simultaneously, and if $P_{n-1}=0$, then P_{n} and P_{n-2} have opposite signs. Furthermore, from $\frac{P_{n-1}}{P_{n}}=-\frac{1}{n}+\frac{x P_{n}^{\prime}}{n^{2} \frac{l_{n}}{n}}$ it follows that $\frac{P_{n-1}}{P_{n}}$ changes sign from minus to plus when going through a positive root of P_{n}. Thus, the sequence $P_{n}, P_{n-1}, \ldots, P_{1}, P_{0}=1$ is a Sturm sequence for P_{n} in the interval ($0, \infty$). The leading coefficients of all P_{n} are equal to unity. $P_{n}(0)=(-1)^{n} n$. Hence, $v(0)-v(+\infty)=n$, that is P_{n} has n positive roots.
709. $E_{n}^{\prime}=E_{n-1}$. Also, $E_{n}=E_{n-1}-\left(-\frac{x^{n}}{n!}\right)$.

Therefore, the polynomials E_{n}, E_{n-1} and $-\frac{x^{n}}{n!}$ form a Sturm sequence for E_{n} on the interval $(-\infty,-\varepsilon)$ for arbitrarily small ε. The distribution of signs is given by the following table:

$$
\frac{-\infty \mid(-1)^{n}(-1)^{n-1}(-1)^{n-1}}{-\varepsilon} \frac{1+\frac{1)^{n-1}}{+}}{\left(-\frac{1}{n}\right.}
$$

Hence, for even n, the polynomial E_{n} has no negative roots, for odd n, the polynomial E_{n} has one negative root. Furthermore, for $x \geqslant 0$, the polynomial $E_{n}(x)>0$.
710. Use the Euler formula to transform the identity

$$
\frac{d^{n+1}\left(x^{2} e^{\frac{1}{x}}\right)}{d x^{n+1}}=\frac{d^{n}\left[(2 x-1) e^{\frac{1}{x}}\right]}{d x^{n}}
$$

We get

$$
\begin{aligned}
x^{2} \frac{d^{n+1} e^{\frac{1}{x}}}{d x^{n+1}}+2(n+1) x \frac{d^{n} e^{\frac{1}{x}}}{d x^{n}} & +(n+1) n \frac{d^{n-1} e^{\frac{1}{x}}}{d x^{n-1}} \\
& =(2 x-1) \frac{d^{n} e^{\frac{1}{x}}}{d x^{n}}+2 n \frac{d^{n-1} e^{\frac{1}{x}}}{d x^{n-1}}
\end{aligned}
$$

whence $P_{n}=(2 n x+1) P_{n-1}-n(n-1) P_{n-2} x^{2}$. On the other hand, by differentiating the equation defining P_{n-1}, we get

$$
P_{n}=(2 n x+1) P_{n-1}-x^{2} P_{n-1}^{\prime}
$$

Comparing the results, we see that $P_{n-1}^{\prime}=n(n-1) P_{n-2}$ and, hence, $P_{n}^{\prime}=$ $=(n+1) n P_{n-1}$. By virtue of the established relations, the sequence of polyno-
mials $P_{n}, P_{n-1}, P_{n-2}, \ldots, P_{0}=1$ forms a Sturm sequence for P_{n}. The leading coefficients of all P_{n} are positive. Consequently, all the roots of P_{n} are real.
711. Computing

$$
\frac{d^{n}\left(\frac{x^{2}}{x^{2}} \frac{1+1}{}\right)}{d x^{n}}=-\frac{d^{n}\left(\frac{1}{x^{2}+1}\right)}{d x^{n}}
$$

by two methods, we obtain

$$
P_{n}-2 x P_{n-1}+\left(x^{2}+1\right) P_{n-2}=0
$$

Differentiation of the equation defining P_{n-1} yields $P_{n}=2 x P_{n-1}-\frac{x^{2}+1}{n}$ P_{n-1}^{\prime} whence $P_{n-1}^{\prime}=n P_{n-2}$ and, hence, $P_{n}^{\prime}=(n+1) P_{n-1}$.

It follows from the derived relations that $P_{n}, P_{n-1}, \ldots, P_{0}=1$ form a Sturm sequence for P_{n}. All the leading coefficients of the sequence are positive and so all the roots of P_{n} are real.

The solution of this problem is straight forward. Namely,

$$
\frac{1}{x^{2}+1}=\frac{1}{2 i}\left(\frac{1}{x-i}+\frac{1}{x+i}\right)
$$

whence we find that

$$
P_{n}(x)=-\frac{1}{2 i}\left[(x+i)^{n+1}-(x-i)^{n+1}\right]
$$

It is easy to compute that the roots of P_{n} are $\cot \frac{k \pi}{n+1}, k=1,2, \ldots, n$.
712. Using the Euler formula to expand the identity

$$
\frac{d^{n} \frac{x^{2}+1}{\sqrt{x^{2}+1}}}{d x^{n}}=\frac{d^{n-1}-\frac{x}{\sqrt{x^{2}+1}}}{d x^{n-1}}
$$

we get

$$
P_{n}-(2 n-1) x P_{n-1}+(n-1)^{2}\left(x^{2}+1\right) P_{n-2}=0 .
$$

Differentiating the equation defining P_{n-1}, we get

$$
P_{n}-(2 n-1) x P_{n-1}+\left(x^{2}+1\right) P_{n-1}^{\prime}=0
$$

whence

$$
P_{n-1}^{\prime}=(n-1)^{2} P_{n-2} \text { and } P_{n}^{\prime}=n^{2} P_{n-1}
$$

From the relations found, it follows that $P_{n}, P_{n-1}, \ldots, P_{0}=1$ form a Sturm sequence.

Since the leading coefficients are positive, all the roots of P_{n} are real.
713. The functions $F(x), F^{\prime}(x)$ and $\left[f^{\prime}(x)\right]^{2}$ form a Sturm sequence for F. The leading coefficients of the sequence, $3 a_{0}^{2}, 12 a_{0}^{2}$ and $9 a_{0}^{2}$, are positive. Hence, the number of lost changes of sign when x passes from $-\infty$ to $+\infty$ is equal to two.

If f has a double root, then F has one triple root and one simple root. If f has a triple root, then F has a quadruple root.
714. If some one of the polynomials in the Sturm sequence has a multiple root x_{0} or a complex root α, then this polynomial can be replaced by a polynomial of lower degree by dividing it by the positive quantity $\left(x-x_{0}\right)^{2}$ or $(x-$ $-\alpha)\left(x-\alpha^{\prime}\right)$. Subsequent polynomials can be replaced by remainders (taken
with reversed signs) in the Euclidean algorithm for the replaced polynomial and the preceding one. Then the number of variations of sign for $x=-\infty$ will be $\leqslant n-2$, where n is the degree of the polynomial. Hence, the number of real roots is surely $\leqslant n-2$.
715. Let $F(x)=\left(x^{2}-1\right)^{n} . F(x)$ has -1 and +1 as roots of multiplicity n. $F^{\prime}(x)$ has -1 and +1 as roots of multiplicity $n-1$ and, by Rolle's theorem, one more root in the interval $(-1,+1), F^{\prime \prime}(x)$ has -1 and +1 as roots of multiplicity $n-2$ and two roots in the open interval $(-1,+1)$ and so on. $F^{(n)}(x)=P_{n}(x)$ bas n roots in the open interval $(-1,1)$.
716. Let x_{1}, \ldots, x_{k} be distinct roots of $f(x)$ of multiplicity $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$, $x_{1}<x_{2}<x_{3}<\ldots<x_{k}$. The function $\varphi(x)=\frac{f^{\prime}(x)}{f(x)}$ is continuous in the open intervals $\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{k-1}, x_{k}\right)$ and $\left(x_{k},+\infty\right)$ and ranges from 0 to $-\infty$ in the interval $\left(-\infty, x_{1}\right)$, from $+\infty$ to $-\infty$ in each of the intervals $\left(x_{i-1}, x_{i}\right)$ and from $+\infty$ to 0 in the interval $\left(x_{k}, \infty\right)$ because $\varphi(x) \rightarrow \infty$ as $x \rightarrow$ x_{i} and changes sign from - to + when passing through x_{i}.

Consequently, $\varphi(x)+\lambda$ has a root in each of the intervals $\left(x_{i-1}, x_{i}\right)$ and, besides, for $\lambda>0$ one root in the interval ($-\infty, x_{1}$), and for $\lambda<0$, one root in the interval $\left(x_{k},+\infty\right)$.

Thus, $\varphi(x)+\lambda$ and, hence, $f(x)[\varphi(x)+\lambda]=\lambda f(x)+f^{\prime}(x)$ also has k roots different from $x_{1}, x_{2}, \ldots, x_{k}$ for $\lambda \neq 0$ or $k-1$ roots different from $x_{1}, x_{2}, \ldots, x_{k}$ for $\lambda=0$. Besides, $\lambda f(x)+f^{\prime}(x)$ has $x_{1}, x_{2}, \ldots, x_{k}$ as roots of multiplicity $\alpha_{1}-1$, $\alpha_{2}-1, \ldots, \alpha_{k}-1$. Thus, the total number of real roots (counting multiplicity) of the polynomial $\lambda f(x)+f^{\prime}(x)$ is equal to $\alpha_{1}+\alpha_{2}+\ldots,+\alpha_{k}$ for $\lambda \neq 0$ and $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}-1$ for $\lambda=0$, that is, it is equal to the degree of the polynomial $\lambda f(x)+f^{\prime}(x)$.
717. Let $g(x)=a_{0}\left(x+\lambda_{1}\right) \quad\left(x+\lambda_{2}\right) \ldots\left(x+\lambda_{n}\right), \quad F_{0}(x)=a_{0} f(x), \quad F_{1}(x)=$ $=F_{0}(x)+\lambda_{1} F_{0}^{\prime}(x)=a_{0} f(x)+a_{0} \lambda_{1} f^{\prime}(x), \quad F_{2}(x)=F_{1}(x)+\lambda_{2} F_{1}(x)=a_{0} f(x)+$ $+a_{0}\left(\lambda_{1}+\lambda_{2}\right) f^{\prime}(x)+a_{0} \lambda_{1} \lambda_{2} f^{\prime \prime}(x)$, etc. Then $F_{n}(x)=F_{n-1}(x)+\lambda_{n} F_{n-1}^{\prime}(x)=$ $=a_{0} f(x)+a_{1} f^{\prime}(x)+\ldots+a_{n} f^{(n)}(x)$ where $a_{0}, a_{1}, \ldots, a_{n}$ are coefficients of g. By virtue of Problem 715, all roots of all polynomials $F_{0}, F_{1}, \ldots, F_{n}$ are real.
718. The polynomial $a_{0} x^{n}+a_{1} m x^{n-1}+\ldots+m(m-1) \ldots(m-n+1) a_{n}=$ $=\left[a_{0} x^{m}+a_{1}\left(x^{m}\right)^{\prime}+\ldots+a_{n}\left(x^{m}\right)^{n}\right] x^{n-m}$ and all roots x^{m} are real.
719. The polynomial $a_{n} x^{n}+n a_{n-1} x^{n-1}+n(n-1) a_{n-2} x^{n-2}+\ldots+a_{0} n!$ has only real roots. Hence, all roots of $a_{0} n!x^{n}+a_{1} n(n-1) \ldots 2 x^{n-1}+\ldots$ $+n a_{n-1} x+a_{n}$ are real. Applying once again the result of Problem 718, we find that all roots of the polynomial $a_{0} n!x^{n}+a_{1} n \cdot n(n-1) \ldots 2 x^{n-1}+$ $+a_{2} n!(n-1) \cdot n(n-1) \ldots 3 x^{n-2}+\ldots+a_{n} n!$ are real. It remains to divide by n !.
720. All roots of the polynomial $(1+x)^{n}=1+\frac{n}{1} x+\frac{n(n-1)}{1 \cdot 2} x^{2}+\ldots$ $+x^{\prime}$ are real. It remains to use the result of Problem 719.
721. The polynomial $f(x)=n x^{n}-x^{n-1}-x^{n-2}-\ldots-1$ has a real root of 1 . Furthermore, let $F(x)=(x-1) f(x)=n x^{n+1}-(n+1) x^{n}+1$. Then $F^{\prime}(x)=$ $=n(n+1)(x-1) x^{n-1}$. For odd n, the polynomial $F(x)$ has a unique minimum for $x=1$ and, consequently, has no roots except the double root $x=1$. For even n, the polynomial $F(x)$ increases from $-\infty$ to 1 for $-\infty<x \leqslant 0$, decreases from 1 to 0 for $0 \leqslant x \leqslant 1$ and increases from 0 to ∞ for $1 \leqslant x<\infty$. Therefore, $F(x)$ in this case has a unique root other than the root $x=1$.
722. The derivative of the polynomial that interests us is positive for all real values of x. Hence, the polynomial has only one real root.
723. Let $a<b<c ; f(-\infty)<0 ; f(a)=B^{2}(b-a)+C^{2}(c-a)>0 ; f(c)=$ $=-A^{2}(c-a)-B^{2}(c-b)<0 ; f(+\infty)>0$. Consequently, f has real roots in the intervals $(-\infty, a) ;(a, c) ;(c,+\infty)$.
724. $\varphi(a+b i)$

$$
=B+\sum_{k=1}^{n} \frac{A_{k}^{2}}{a+b i-a_{k}}=B+\sum_{k=1}^{n} \frac{A_{k}^{2}\left(a-a_{k}-b i\right)}{\left(a-a_{k}\right)^{2}+b^{2}}
$$

$\operatorname{Im}(\varphi(a+b i))=-b \sum_{k=1}^{n} \frac{A_{k}^{2}}{\left(a-a_{k}\right)^{2}+b^{2}} \neq 0$ for $b \neq 0$ because all terms under the summation sign are positive. Hence, $\varphi(a+b i) \neq 0$ for $b \neq 0$. The same result may also be obtained from the fact that $\varphi(x)$ varies from $+\infty$ to $-\infty$ as x varies from a_{i} to $a_{i+1}, \varphi(x)$ ranges from 0 to $-\infty$ for $-\infty<x<a_{1}$, $\varphi(x)$ varies from $+\infty$ to 0 for $a_{n}<x<\infty$. It is assumed here that

$$
a_{1}<a_{2}<\ldots<a_{n}
$$

725. $\frac{f^{\prime}(x)}{f(x)}=\sum_{k=1}^{n} \frac{1}{x-x_{k}}$, where x_{k} are roots of the polynomial $f(x)$. Hence

$$
\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)=[f(x)]^{2} \sum_{k=1}^{n} \frac{1}{\left(x-x_{k}\right)^{2}}>0
$$

for all real values of x.
726. Let $x_{1}<x_{2}<\ldots<x_{n}$ be roots of the polynomial $f(x)$, and let $y_{1}<$ $<y_{2}<\ldots<y_{m}$ be roots of the polynomial $\varphi(x)$.

When the condition of the problem is fulfilled, $m=n, n-1$ or $n+1$. Without loss of generality, we can take it that $x_{1}<y_{1}<x_{2}<y_{2}<\ldots<y_{n-1}<x_{n}$ or $x_{1}<y_{1}<x_{2}<y_{2}<\ldots<y_{n \rightarrow 1}<x_{n}<y_{n}$. We assume $\lambda \neq 0$. Rewrite the equation as

$$
\psi(x)=\frac{f(x)}{\varphi(x)}=-\frac{\mu}{\lambda}
$$

If $m=n$, then $\psi(x)$ varies:
from $\frac{a_{0}}{b_{0}}$ to $-\infty$ for $-\infty<x<y_{1}$, vanishing for $x=x_{1}$;
from $+\infty$ to $-\infty$ for $y_{k}<x<y_{k+1}$, vanishing for $x=x_{k+1}$;
from $+\infty$ to $\frac{a_{0}}{b_{0}}$ for $y_{n}<x<+\infty$. Here, a_{0} and b_{0} are the leading coefficients of $f(x)$ and $\varphi(x)$, which we consider to be positive.

Due to the continuity of $\psi(x)$ in each of the intervals under consideration, the equation $\psi(x)=-\frac{\mu}{\lambda}$ has n real roots if $-\frac{\mu}{\lambda} \neq \frac{a_{0}}{b_{0}}$ and $n-1$ real roots if $-\frac{\mu}{\lambda}=\frac{a_{0}}{b_{0}}$. Thus, the number of real roots of the equation $\lambda f(x)+\mu \varphi(x)$ is equal to its degree.

The case of $m=n-1$ is regarded in similar fashion.
727. The roots of $f(x)$ and $\varphi(x)$ are necessarily all real since $f(x)$ and $\varphi(x)$ are obtained from $F(x)$ for $\lambda=1, \mu=0$ and for $\mu=1, \lambda=0$.

Suppose the roots of $f(x)$ and $\varphi(x)$ are not separable. Without loss of generality, we can take it that there are no roots of $\varphi(x)$ between two adjacent roots x_{1} and x_{2} of the polynomial $f(x)$. Then $\psi(x)=\frac{f(x)}{\varphi(x)}$ is continuous for $x_{1} \leqslant$ $\leqslant x \leqslant x_{2}$ and vanishes at the endpoints of this interval. By Rolle's theorem, there is a point x_{0} inside (x_{1}, x_{2}) such that $\psi^{\prime}\left(x_{0}\right)=0$. Then $\psi(x)-\psi\left(x_{0}\right)$ has x_{0} as a root of multiplicity $k \geqslant 2$. On the basis of the result of Problem 581, there are, on the circle $\left|z-x_{0}\right|=\rho$, if ρ is sufficiently small, at least four points at which $\operatorname{Im}(\psi(z))=\operatorname{Im}\left(\psi\left(x_{0}\right)\right)=0$.

At least one of these points, z_{0}, is nonreal. The number $\mu=\psi\left(z_{0}\right)$ is real. The polynomial $F(x)=-f(x)+\mu \varphi(x)$ has a nonreal root, a contradiction,
728. The roots $\xi_{1}<\xi_{2}<\ldots<\xi_{n-1}$ of the polynomial $f^{\prime}(x)$ divide the real axis into n intervals:

$$
\left(-\infty, \xi_{1}\right),\left(\xi_{1}, \xi_{2}\right), \ldots,\left(\xi_{n-2}, \xi_{n-1}\right),\left(\xi_{n-1}, \infty\right) .
$$

By virtue of Rolle's theorem, in each of these intervals the polynomial $f(x)$ has at most one root. Furthermore, the polynomial $f^{\prime}(x)+\lambda f^{\prime \prime}(x)$ for any real λ has at most one root in each of the foregoing intervals. Hence, $f(x)+\lambda f^{\prime}(x)$, by virtue of Rolle's theorem, has at most two roots (counting multiplicity) in each of the intervals.

Separate all intervals into two classes. In the first put those which contain a root of $f(x)$. In the second, those without any root of $f(x)$. Consider the function $\psi(x)=\frac{f(x)}{f^{\prime}(x)}$. In the intervals of Class One, $\psi(x)$ has one simple root and therefore changes sign. In the intervals of Class Two, $\psi(x)$ does not change sign. In the intervals of Class One, $\psi(x)+\lambda$ has an odd number of roots (counting multiplicity). Hence, from the foregoing, $\psi(x)+\lambda$ has only one simple root and no multiple roots in the interval of Class One. Therefore, $\psi^{\prime}(x)$ has no roots in the interval of Class One. Now consider the intervals of Class Two. Let ξ_{0} be a point in some interval of Class Two in which the absolute value of $\psi(x)$ reaches a minimum, and let $\lambda_{0}=\psi\left(\xi_{0}\right)$. For definiteness, we assume that $\psi(x)$ is positive in this interval. Then the function $\psi(x)-\lambda$ has no roots in the interval of our interest when $\lambda<\lambda_{0}$ and has at least two roots when $\lambda>\lambda_{0}$.

By virtue of what has been said, the number of roots of $\psi(x)-\lambda$ is exactly equal to two for $\lambda>\lambda_{0}$ and both roots are simple. Furthermore, $\psi(x)-\lambda_{0}$ has ξ_{0} as a multiple (double) root.

Thus, $\psi(x)-\lambda$ has no multiple roots in the intervals of Class One and has only one multiple root for one value of λ in each interval of Class Two. Furthermore, each root η of the polynomial $f^{\prime 2}(x)-f(x) f^{\prime \prime}(x)$ is a multiple root for $\psi(x)-\psi(\eta)$ since

$$
[\psi(x)]^{\prime}=-\frac{f^{\prime 2}(x)-f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} .
$$

Thus, the number of real roots of $f^{\prime 2}(x)-f(x) f^{\prime \prime}(x)$ is equal to the number of intervals of Class Two, which is obviously equal to the number of imaginary roots of $f(x)$.
729. $\lambda f_{1}(x)+\mu f_{2}(x)$ has all real roots for arbitrary real constants λ and μ (Problem 726). Hence, by virtue of Rolle's theorem, $\lambda f_{1}^{\prime}(x)+\mu f_{2}^{\prime}(x)$ has all real roots. From this it follows (Problem 727) that the roots of $f_{1}^{\prime}(x)$ and $f_{2}^{1}(x)$ are separable.
730. Suppose $f(x)$ has no multiple roots and let $\xi_{1}<\xi_{2}<\ldots<\xi_{n-1}$ be the roots of $f^{\prime}(x)$. Consider the function $\psi(x)=\frac{f(x)}{f^{\prime}(x)}+\frac{x+\lambda}{\gamma}$. It is obvious that $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=\frac{1}{n}+\frac{1}{\gamma}>0$ if $\gamma>0$ or if $\gamma<-n$. Whence it follows that $\psi(x) \rightarrow+\infty$ as $x \rightarrow+\infty$ and $\psi(x) \rightarrow-\infty$ as $x \rightarrow-\infty$. Eesides $\psi(x) \rightarrow$ $\rightarrow-\infty$ as $x \rightarrow \xi_{i}$ from the right and $\psi(x) \rightarrow+\infty$ as $x \rightarrow \xi_{i}$ from the left. Thus, $\psi(x)$ varies from $-\infty$ to $+\infty$ in each of the intervals $(-\infty$, $\left.\xi_{1}\right),\left(\xi_{1}, \xi_{2}\right), \ldots,\left(\xi_{n-1}, \infty\right)$ remaining continuous inside these intervals.

Consequently, $\psi(x)$, and its numerator $\gamma f(x)+(x+\lambda) f^{\prime}(x)$ as well, has at least n distinct roots for $\gamma>0$ or $\gamma<-n$. But the number of roots of $\gamma f(x)+$ $+(x+\lambda) f^{\prime}(x)$ does not exceed n, because $\gamma f(x)+(x+\lambda) f^{\prime}(x)$ is a polynomial of degree n. If $f(x)$ has multiple roots and $x_{1}, x_{2}, \ldots, x_{k}$ are distinct roots of $f(x)$, then $f^{\prime}(x)$ has $k-1$ roots $\xi_{1}, \xi_{2}, \ldots, \xi_{k-1}$ different from $x_{1}, x_{2}, \ldots, x_{k}$. Reasoning in like fashion, we are satisfied of the existence of k roots of $\psi(x)$. All of them, except $-\lambda$ if $-\lambda$ is among the roots of $f(x)$, will be different from the roots of $f(x)$.

Besides these roots, $\gamma f(x)+(x+\lambda) f^{\prime}(x)$ will have as roots $x_{1}, x_{2}, \ldots, x_{k}$ with the sum of multiplicities $n-k$ [if $-\lambda$ is not a root of $f(x)$] or $n-k+l$ [if $-\lambda$ is a root of $f(x)$].

The total number of real roots of $\gamma f(x)+(\lambda+x) f^{\prime}(x)$ counting multiplicities is again equal to n.
731. Let $\varphi(x)=b_{k}\left(x+\gamma_{1}\right)\left(x+\gamma_{2}\right) \ldots\left(x+\gamma_{k}\right)$. Every γ_{i} is either greater than zero or less than $-n$.

It is obvious that the coefficients of the polynomial

$$
F_{1}(x)=\gamma_{1} f(x)+x f^{\prime}(x)
$$

are $a_{i}\left(\gamma_{1}+i\right)$. The coefficients of the polynomial

$$
F_{2}(x)=\gamma_{2} F_{1}(x)+x F_{1}^{\prime}(x)
$$

are $a_{i}\left(\gamma_{1}+i\right)\left(\gamma_{2}+i\right)$ and so on, the coefficients of the polynomial

$$
F_{k}(x)=\gamma_{k} F_{k-1}(x)+x F_{k-1}^{\prime}(x)
$$

are $a_{i}\left(\gamma_{1}+i\right)\left(\gamma_{2}+i\right) \ldots\left(\gamma_{k}+i\right), i=1,2, \ldots, n$.
On the basis of the result of Problem 730, all roots of all polynomials F_{1}, F_{2}, \ldots, F_{k} are real. But

$$
a_{0} \varphi(0)+a_{1} \varphi(1) x+\ldots+a_{n} \varphi(n) x^{n}=b_{k} F_{k}(x)
$$

732. Suppose $f(x)=f_{1}(x)(x+\lambda)$ where λ is a real number and $f_{1}(x)$ is a polynomial of degree $n-1$, all the roots of which are real. Suppose that for polynomials of degree $n-1$ the theorem is valid; on this assumption, prove it for polynomials of degree n.

$$
\text { Let } \begin{aligned}
f_{1}(x) & =b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1} \\
f(x) & =a_{0}+a_{1} x+\ldots+a_{n} x^{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
& a_{0}=\lambda b_{0}, \\
& a_{1}=\lambda b_{1}+b_{0}, \\
& a_{2}=\lambda b_{2}+b_{1}, \\
& \cdots \cdots \cdots \\
& a_{n-1}=\lambda b_{n-1}+b_{n-2}, \\
& a_{n}=\quad b_{n-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{0}+a_{1} \gamma x+a_{2} \gamma(\gamma-1) x^{2}+\ldots+a_{n} \gamma(\gamma-1) \\
& \quad \ldots(\gamma-n+1) x^{n}=\lambda\left[b_{0}+b_{1} \gamma x+b_{2} \gamma(\gamma-1) x^{2}\right. \\
& \left.\quad+\ldots+b_{n-1} \gamma(\gamma-1) \ldots(\gamma-n+2) x^{n-1}\right]+x \gamma\left[b_{0}\right. \\
& +b_{1}(\gamma-1) x+b_{2}(\gamma-1)(\gamma-2) x^{2}+\ldots+b_{n-1}(\gamma-1)(\gamma-2) \\
& \left.\ldots(\gamma-n+1) x^{n-1}\right]=\lambda \varphi(x)+x\left[\gamma \varphi(x)-x \varphi^{\prime}(x)\right]
\end{aligned}
$$

where $\varphi(x)$ is used to denote the polynomial

$$
b_{0}+b_{1} \gamma x+b_{2} \gamma(\gamma-1) x^{2}+\ldots+b_{n-1} \gamma(\gamma-1) \ldots(\gamma-n+2) x^{n-1}
$$

By hypothesis, all roots of the polynomial $\varphi(x)$ are real. It remains to prove the following lemma.

Lemma. If $\varphi(x)$ is a polynomial of degree $n-1$ having only real roots, then all roots of the polynomial $\psi(x)=\lambda \varphi+\gamma x \varphi-x^{2} \varphi^{\prime}$ are real for $\gamma>n-1$ and for arbitrary real λ.

Proof. Without loss of generality, we can take it that 0 is not a root of $\varphi(x)$ for if $\varphi=x^{k} \varphi_{1}, \varphi_{1}(0) \neq 0$, then

$$
\psi(x)=x^{k}\left(\lambda \varphi_{1}+(\gamma-k) x \varphi_{1}-x^{2} \varphi_{1}^{\prime}\right)=x^{k} \psi_{1}
$$

and $\gamma_{1}=\gamma-k$ exceeds the degree of φ_{1}.
Let $x_{1}, x_{2}, \ldots, x_{m}$ be distinct roots of φ. The polynomial ψ has among its roots $x_{1}, x_{2}, \ldots, x_{m}$ with sum of multiplicities $n-1-m$. Now consider

$$
w(x)=\lambda+\gamma x-\frac{x^{2} \varphi^{\prime}(x)}{\varphi(x)} .
$$

It is obvious that

$$
\lim _{x \rightarrow \infty} \frac{w(x)}{x}=\gamma-(n-1)>0
$$

Hence, $w(x) \rightarrow-\infty$ as $x \rightarrow-\infty$ and $w(x) \rightarrow+\infty$ as $x \rightarrow+\infty$. Besides, $w(x) \rightarrow$ $\rightarrow+\infty$ as $x \rightarrow x_{i}$ from the left and $w(x) \rightarrow-\infty$ as $x \rightarrow x_{i}$ from the right. For this reason $w(x)$ has roots in each of the intervals

$$
\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{m-1}, x_{m}\right),\left(x_{m},+\infty\right)
$$

The total number of real roots of $\psi(x)$, counting multiplicity, is equal to $n-1-m+m+1=n$, that is, it is equal to the degree of $\psi(x)$, which is what we set out to prove.
733. If all the roots of the polynomial $a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ are real, then all the roots of the polynomial $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ are real. Furthermore, all the roots of the polynomials

$$
a_{0} \gamma_{1}\left(\gamma_{1}-1\right) \ldots\left(\gamma_{1}-n+1\right) x^{n}+a_{1} \gamma_{1}\left(\gamma_{1}-1\right)
$$

$$
\ldots\left(\gamma_{1}-n+2\right) x^{n-1}+\ldots+a_{n-1} \gamma_{1} x+a_{n}
$$

and

$$
\begin{aligned}
& a_{0} \gamma_{1}\left(\gamma_{1}-1\right) \ldots\left(\gamma_{1}-n+1\right)+a_{1} \gamma_{1}\left(\gamma_{1}-1\right) \\
& =\left[a_{0}+\frac{a_{1}}{\gamma_{1}-n+1} x+\ldots+\frac{\left.\gamma_{1}-n+2\right) x+\ldots+a_{n-1} \gamma_{1} x^{n-1}+a_{n} x^{n}}{\left(\gamma_{1}-n+1\right)\left(\gamma_{1}-n+2\right) \ldots\left(\gamma_{1}-1\right)} x^{n-1}\right. \\
& \left.\quad+\frac{a_{n-1}}{\left(\gamma_{1}-n+1\right)\left(\gamma_{1}-n+2\right) \ldots \gamma_{1}} x^{n}\right] \gamma_{1}\left(\gamma_{1}+1\right) \ldots\left(\gamma_{1}-n+1\right)
\end{aligned}
$$

are real for $\gamma_{1}>n-1$. Setting $\gamma_{1}-n+1=\alpha>0$, we find that all the roots of the polynomial

$$
a_{0}+\frac{a_{1}}{\alpha} x+\frac{a_{2}}{\alpha(\alpha+1)} x^{2}+\ldots+\frac{a_{n}}{\alpha(\alpha+1) \ldots(\alpha+n-1)} x^{n}
$$

are real. Using the result of Problem 732 a second time, we get the desired result.
734. 1. Suppose all the roots of $f(x)$ are positive. Then the polynomial $a_{0}+a_{1} w x+\ldots+a_{n} w n^{2} x^{n}$ cannot have negative roots. Suppose the theorem holds true for polynomials of degree $n-1$. Denote

$$
\varphi(x)=b_{0}+b_{1} w x+b_{2} w^{4} x^{2}+\ldots+b_{n-1} w(n-1)^{2} x^{n-1} .
$$

Let $0<x_{1}<x_{2}<\ldots<x_{n-1}$ where $x_{1}, x_{2}, \ldots, x_{n-1}$ are roots of $\varphi(x)$ and let $\frac{x_{i}}{x_{i-1}}>w^{-2}$.

Further suppose that $f(x)=(\lambda-x)\left(b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1}\right)$. The coefficients of the polynomial $f(x)$ are

$$
\begin{aligned}
a_{0} & =\lambda b_{0}, \\
a_{1} & =\lambda b_{1}-b_{0}, \\
a_{2} & =\lambda b_{2}-b_{1}, \\
\cdots \cdots & \cdots \\
a_{n-1} & =\lambda b_{n-1}-b_{n-2}, \\
a_{n} & =-b_{n-1} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\psi(x)= & a_{0}+a_{1} w x+a_{2} w^{4} x^{2}+\ldots+a_{n} w^{n} x^{n}=\lambda\left(b_{0}+b_{1} w x\right. \\
& \left.\left.+\ldots+b_{n-1} w^{(n-1)}\right)^{n} x^{n-1}\right)-x\left(b_{0} w+b_{1} w^{4} x+\ldots+b_{n-1} w n^{2} x^{n-1}\right) \\
& =\lambda \varphi(x)-x w \varphi\left(x w^{2}\right) .
\end{aligned}
$$

The roots of the polynomials $\varphi(x)$ and $x \varphi\left(x w^{2}\right)$ are separated by virtue of the induction hypothesis. Thus, all the roots of the polynomial $\lambda \varphi(x)+$ $+x w \varphi\left(x w^{2}\right)$ that interests us are real. It remains to verify that the law of their distribution is the same as for the polynomial $\varphi(x)$.

Denote by $z_{1}, z_{2}, \ldots, z_{n}$ the roots of $\psi(x)$. It is easy to see that $0<z_{1}<x_{1}<x_{1} w^{-2}<z_{2}<x_{2}<x_{2} w^{-2}<z_{3}<\ldots<z_{n-1}<x_{n-1}<x_{n-1} w^{-2}<z_{n}$. Whence it follows that $\frac{z_{i}}{z_{i-1}}>\frac{x_{i-1} \mathrm{~W}^{-2}}{x_{i-1}}=w^{-2}$, which completes the proof.
2. Consider $\varphi_{m}(x)=\left(1-\frac{x^{2} \log \frac{1}{w}}{m}\right)^{m}$.

For m sufficiently large, the roots of the polynomial $\varphi_{m}{ }^{\prime \prime}(x)$, equal to $\pm \sqrt{\frac{m}{\log \frac{1}{w}}}$, do not lie in the interval ($0, n$). Consequently (Problem 731), all the roots of the polynomial $a_{0} \varphi_{m}(0)+a_{1} \varphi_{m}(1) x+\ldots+a_{n} \varphi_{m}(n) x^{n}$ are real. But $\lim _{m \rightarrow \infty} \varphi_{m}(x)=w^{x^{2}}$. Hence, by virtue of the continuity of the roots as functions of the coefficients, all the roots of $a_{0}+a_{1} w x+\ldots+a_{n} w^{n^{2}} x^{n}$ are real.
735. Denote by $x_{1}, x_{2}, \ldots, x_{n}$ the roots of the polynomial $f(x)=a_{0}+a_{1} x+$ $\ldots+a_{n} x^{n}$. Without loss of generality, they may be considered positive. Furthermore, let

$$
\begin{aligned}
& \varphi(x)=a_{0} \cos \varphi+a_{1} \cos (\varphi+\theta) x+\ldots+a_{n} \cos (\varphi+n \theta) x^{n}, \\
& \psi(x)=a_{0} \sin \varphi+a_{1} \sin (\varphi+\theta) x+\ldots+a_{n} \sin (\varphi+n \theta) x^{n}
\end{aligned}
$$

Then
where

$$
\begin{aligned}
& \varphi(x)+i \psi(x)=(\cos \varphi+i \sin \varphi) a_{n} \prod_{i=1}^{n}\left(\alpha x-x_{i}\right), \\
& \varphi(x)-i \psi(x)=(\cos \varphi-i \sin \varphi) a_{n} \prod_{i=1}^{n}\left(\alpha^{\prime} x-x_{i}\right)
\end{aligned}
$$

Consequently,

$$
\alpha=\cos \theta+i \sin \theta, \alpha^{\prime}=\cos \theta-i \sin \theta
$$

$$
\Phi(x)=\frac{\varphi(x)+i \psi(x)}{\varphi(x)-i \psi(x)}=\frac{\cos \varphi+i \sin \varphi}{\cos \varphi-i \sin \varphi} \prod_{i=1}^{n} \frac{\alpha x-x_{i}}{\alpha^{\prime} x-x_{i}}
$$

Let $x=p \beta$ be a root of the polynomial $\varphi(x)$. Here, $\rho=|x| ; \beta=\cos \lambda+$ $+i \sin \lambda$. Then $|\Phi(x)|=1$ and, hence,

$$
\prod_{i=1}^{n}\left|\frac{\rho x \beta-x_{i}}{p \alpha^{\prime} \beta-x_{i}}\right|=1
$$

but

$$
\begin{aligned}
& \left.\frac{\rho \alpha \beta-x_{i}}{p \alpha^{\prime} \beta-x_{i}}\right|^{2}=\frac{\left(p \alpha \beta-x_{i}\right)\left(p \alpha^{\prime} \beta^{\prime}-x_{i}\right)}{\left(\rho \alpha^{\prime} \beta-x_{i}\right)\left(\rho \alpha \beta^{\prime}-x_{i}\right)} \\
& \quad=1+\frac{\rho x_{i}\left(\alpha-\alpha^{\prime}\right)\left(\beta^{\prime}-\beta\right)}{\rho \alpha^{\prime} \beta-x_{i}{ }^{2}}=1+\frac{4 \rho x_{i} \sin \Theta \sin \lambda}{\rho \alpha^{\prime} \beta-x_{i}{ }^{2}}
\end{aligned}
$$

We disregard the uninteresting case of $\sin \theta=0$.
If $\sin \lambda \neq 0$, then all $\left|\frac{\rho \alpha \beta-x_{i}}{\rho \alpha^{\prime} \beta-x_{i}}\right|^{2}$ are simultaneously greater than unity or simultaneously less than unity and their product cannot be equal to 1 . Hence, $\sin \lambda=0$, which means x is real.
736. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots of the polynomial

$$
f(x)=a_{0}+i b_{0}+\left(a_{1}+i b_{1}\right) x+\ldots+\left(a_{n}+i b_{n}\right) \lambda^{n}=\varphi(x)+i \psi(x) .
$$

The imaginary parts of these roots are positive. Let us consider the polynomial $\tilde{f}(x)=\varphi(x)-i \psi(x)$. Its roots will obviously be $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$, which are conjugate to $x_{1}, x_{2}, \ldots, x_{n}$. Then

$$
\Phi(x)=\frac{\varphi(x)+i \psi(x)}{\varphi(x)-i \psi(x)}=\prod_{i=1}^{n} \frac{x-x_{i}}{x-x_{i}^{\prime}} \cdot \frac{a_{n}+i b_{n}}{a_{n}-i b_{n}}
$$

If x_{0} is a root of $\varphi(x)$, then

$$
\left.\Phi\left(x_{0}\right)\left|=\prod_{i=1}^{n}\right| \frac{x_{0}-x_{i}}{x_{0}-x_{i}^{\prime}} \right\rvert\,=1
$$

But

$$
\begin{aligned}
&\left.\frac{x_{0}-x_{i}}{x_{0}-x_{i}^{\prime}}\right|^{2}=\frac{\left(x_{0}-x_{i}\right)\left(x_{0}^{\prime}-x_{i}^{\prime}\right)}{\left(x_{0}-x_{i}^{\prime}\right)\left(x_{0}^{\prime}-x_{i}\right)}=1+\frac{\left(x_{i}-x_{i}^{\prime}\right)\left(x_{0}-x_{0}^{\prime}\right)}{\left|x_{0}-x_{i}\right|^{2}} \\
&=1-\frac{4 \operatorname{Im}\left(x_{0}\right) \operatorname{Im}\left(x_{i}\right)}{\left|x_{0}-x_{i}^{\prime}\right|^{2}}
\end{aligned}
$$

Whence, if $\operatorname{Im}\left(x_{0}\right)>0$, then $\left|\frac{x_{0}-x_{i}}{x_{0}-x_{i}^{\prime}}\right|<1$ for all i; if $\operatorname{Im}\left(x_{0}\right)<0$, then $\left|\frac{x_{0}-x_{i}}{x_{0}-x_{i}^{\prime}}\right|>1$ for all i. (The same thing can be obtained geometrically with ease and without computations.) Thus, the equation $\left|\Phi\left(x_{0}\right)\right|=1$ is only possible for a real x_{0} and therefore all roots of $\varphi(x)$ are real.

Next, consider the polynomial

$$
(\alpha-\beta i)[\varphi(x)+i \psi(x)]=\alpha \varphi(x)+\beta \psi(x)+i[\alpha \psi(x)-\beta \varphi(x)] .
$$

Its roots do not differ from the roots of the original polynomial and, hence, its real part $\alpha \varphi(x)+\beta \psi(x)$ only has real roots for arbitrary real α and β. But in this case, the roots $\varphi(x)$ and $\psi(x)$ can be separated (Problem 727).
737. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots of $\varphi(x) ; y_{1}, y_{2}, \ldots, y_{n}$ the roots of $\psi(x)$. Without loss of generality, we can assume that the leading coefficients of φ and ψ are positive and

$$
x_{1}>y_{1}>x_{2}>y_{2}>\ldots>y_{n-1}>x_{n}>y_{n}
$$

(y_{n} may be absent).
Decompose $\frac{\psi(x)}{\varphi(x)}$ into partial fractions

$$
\frac{\psi(x)}{\varphi(x)}=A+\sum_{k=1}^{n} \frac{A_{k}}{x-x_{k}}, A_{k}=\frac{\psi\left(x_{k}\right)}{\varphi^{\prime}\left(x_{k}\right)}
$$

It is easy to see that all $A_{k}>0$. Set $x=a+b i$ and find the imaginary part of

$$
\frac{-i(\varphi(x)+i \psi(x))}{\varphi(x)}=\frac{\psi(x)}{\varphi(x)}-i
$$

$\operatorname{Im}\left(\frac{\psi(x)}{\varphi(x)}-i\right)=-1+\operatorname{Im}\left(\sum_{k=1}^{n} \frac{A_{k}}{a+b i-x_{k}}\right)$

$$
=-1-b \sum_{k=1}^{n} \frac{A_{k}}{\left(a-x_{k}\right)^{2}+b^{2}}
$$

If $b \geqslant 0$, then $\operatorname{Im}\left(\frac{\psi(x)}{\varphi(x)}-i\right)<0$ and, hence, $\varphi(x)+i \psi(x) \neq 0$. Thus, in the case at hand, all the roots of $\varphi(x)+i \psi(x)$ lie in the lower half-plane. The other cases of location of roots are considered in similar fashion.
738.

$$
\frac{f^{\prime}(x)}{f(x)}=\sum_{k=1}^{n} \frac{1}{x-x_{k}}, x_{k} \text { are roots of } f(x)
$$

Let $x=a-b i, b>0$. Then

$$
\operatorname{Im}\left(\frac{f^{\prime}(a-b i)}{f(a-b i)}\right)=\sum_{k=1}^{n} \frac{b+\operatorname{Im}\left(x_{k}\right)}{\left|x-x_{k}\right|^{2}}>0
$$

Consequently,

$$
f^{\prime}(a-b i) \neq 0
$$

739. Let the half-plane be represented by the inequality

$$
r \cos (\theta-\varphi)>p, \text { where } x=r(\cos \varphi+i \sin \varphi)
$$

Put $x=\left(x^{\prime}+p i\right)(\sin \theta-i \cos \theta)$. Then

$$
x^{\prime}=-p i+x(\sin \theta+i \cos \theta)=r \sin (\theta-\varphi)+i[r \cos (\theta-\varphi)-p]
$$

Whence it follows that if x lies in the given half-plane, then x^{\prime} lies in the halfplane $\operatorname{Im}\left(x^{\prime}\right)>0$, and conversely. The roots of the polynomial $f\left[\left(x^{\prime}+p i\right)\right.$ ($\sin \theta-i \cos \theta$)] are thus located in the upper half-plane. On the basis of Problem 738, the roots of its derivative, equal to [$\sin \theta-i \cos \theta] f^{\prime}\left[\left(x^{\prime}+p i\right)(\sin \theta \rightarrow\right.$ $-i \cos \theta)$], also lie in the upper half-plane.

Thus, the roots of the polynomial $f^{\prime}(x)$ lie in the given half-plane.
740. This follows immediately from the result of Problem 739.
741. The equation splits into two:

$$
\frac{f^{\prime}(x)}{f(x)}+\frac{1}{k i}=0 \text { and } \frac{f^{\prime}(x)}{f(x)}-\frac{1}{k i}=0
$$

Decomposition into partial fractions yields

$$
\sum_{k=1}^{n} \frac{1}{x-x_{k}} \pm \frac{1}{k i}=0
$$

x_{k} are the roots of $f(x)$, which, by hypothesis, are real. Let $x=a+b i$. Then

$$
\operatorname{Im}\left(\sum_{k=1}^{n} \frac{1}{x-x_{k}}\right)\left|=|b| \sum_{k=1}^{n} \frac{1}{\left(a-x_{k}\right)^{2}+b^{2}}<\frac{n}{|b|}\right.
$$

For the roots of each of the equations it must be true that $\frac{1}{k}<\frac{n}{|b|}$, whence $|b|<k n$.
742. All the roots of $f^{\prime}(x)$ are obviously real. Denote them by ξ_{1}, ξ_{2}, \ldots, ξ_{n-1}. Next, denote by $y_{1}, y_{2}, \ldots, y_{n}$ the roots of the polynomial $f(x)-b$, by $x_{1}, x_{2}, \ldots, x_{n}$ the roots of the polynomial $f(x)-a$. Then

$$
\begin{aligned}
& y_{1}<\xi_{1}<y_{2}<\xi_{2}<\ldots<y_{n-1}<\xi_{n-1}<y_{n}, \\
& x_{1}<\xi_{1}<x_{2}<\xi_{2}<\ldots<x_{n-1}<\xi_{n-1}<x_{n} .
\end{aligned}
$$

From these inequalities it follows that intervals bounded by the points x_{i}, y_{i} do not overlap since they lie in the nonoverlapping intervals

$$
\left(-\infty, \xi_{1}\right),\left(\xi_{1}, \xi_{2}\right), \ldots,\left(\xi_{n-1},+\infty\right)
$$

The polynomial $f(x)$ takes on the values a and b at the endpoints of each of these intervals and passes through all intermediate values inside the interval. Consequently, $f(x)-\lambda$ vanishes n times on the real axis, which completes the proof.
743. If the real parts of the roots of the polynomial $f(x)=x^{n}+a_{1} x^{n-1}+$ $+\ldots+a_{n}$ have like signs, then the imaginary parts of the roots of the polynomial

$$
i^{n} f(-i x)=x^{n}+i a_{1} x^{n-1}-a_{2} x^{n-2}-i a_{3} x^{n-3}+\ldots
$$

also have like signs, and conversely.
For this, by virtue of the result of Problems 736, 737, it is necessary and sufficient that the roots of the polynomials $x^{n}-a_{2} x^{n-2}+a_{4} x^{n-4} \ldots \ldots$ and $a_{1} x^{n-1}-a_{3} x^{n-3}+a_{5} x^{n-5}-\ldots$ be real and separable.
744. It is necessary that $a>0$ and that the roots of the polynomials $x^{3}-$ $-b x$ and $a x^{2}-c$ be real and separable. For this, the necessary and sufficient condition is $0<\frac{c}{a}<b$ or $c>0, a b-c>0$.

Thus, for negativity of the real parts of all roots of the equation

$$
x^{3}+a x^{2}+b x+c=0
$$

it is necessary and sufficient that the inequalities $a>0, c>0, a b-c>0$ be fulfilled.
745. $a>0, c>0, d>0, a b c-c^{2}-a^{2} d>0$.
746. Set $x=\frac{1+y}{1-y}$. It is easy to see that if $|x|<1$, then the real part of y is negative, and conversely.

Consequently, for all roots x_{1}, x_{2}, x_{3} of the equation $f(x)=0$ to be less than 1 in absolute value, it is necessary and sufficient that all the roots of the equation $f\left(\frac{1+y}{1-y}\right)=0$ have negative real parts. This equation is of the form

$$
y^{3}(1-a+b-c)+y^{2}(3-a-b+3 c)+y(3+a-b-3 c)+(1+a+b+c)=0
$$

Besides, it is easy to see the necessity of the condition

$$
1-a+b-c=\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right)>0 .
$$

On the basis of the results of Problem 744, we get the necessary and sufficient conditions:

$$
1-a+b-c>0,1+a+b+c>0,3-a-b+3 c>0,1-b+a c-c^{2}>0 .
$$

747. $f(x)(1-x)=a_{n}+\left(a_{n-1}-a_{n}\right) x$

$$
+\left(a_{n-2}-a_{n-1}\right) x^{2}+\ldots+\left(a_{0}-a_{1}\right) x^{n}-a_{0} x^{n+1}
$$

Let $|x|=p>1$. Then

$$
\begin{aligned}
|f(x)(1-x)| \geqslant & a_{0} \rho^{n+1}-\mid a_{n}+\left(a_{n-1}-a_{n}\right) x \\
& +\ldots+\left(a_{0}-a_{1}\right) x^{n} \mid \geqslant a_{0} \rho^{n+1}-\rho^{n}\left(a_{n}+a_{n-1}-a_{n}\right. \\
& \left.+\ldots+a_{0}-a_{1}\right)=a_{0}\left(\rho^{n+1}-\rho^{n}\right)>0 .
\end{aligned}
$$

Consequently, $f(x) \neq 0$ for $|x|>1$.
748. -0.6618. 749. 2. 094551 .
750. (a) $3.3876,-0.5136,-2.8741$; (b) 2.8931 ; (c) $3.9489,0.2172$, -1.1660 ; (d) $3.1149,0.7459,-0.8608$.
751. The problem reduces to computing the root of the equation $x^{3}-3 x+$ $+1=0$ contained in the interval $(0,1)$.

Answer: $x=0.347$ (to within 0.001).
752. 2.4908.
753. (a) 1.7320 , (b) -0.7321 , (c) 0.6180 , (d) 0.2679 ,
(e) -3.1623 , (f) 1.2361 , (g) -2.3028 , (h) 3.6457 , (i) 1.6180.
754. (a) $1.0953,-0.2624,-1.4773,-2.3556$; (b) $0.8270,0.3383$, $-1.2090,-2.9563 ;$
(c) $1.4689,0.1168$;
(d) $8.0060,1.2855,0.1960,-1.4875$;
(e) $1.5357,-0.1537$;
(f) $3.3322,1.0947,-0.6002,-1.8268$;
(g) 0.4910, - 1.4910 ,
(h) $2.1462,-0.6821,-1.3178,-4.1463$.

CHAPTER 6

SYMMETRIC FUNCTIONS

755. The following is a detailed solution of Example (f):

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}^{2}+x_{3}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}\right)
$$

The leading term of the polynomial F is $x_{1}^{4} \cdot x_{2}^{2}$.
Write out the exponents in the leading terms of the polynomials that will remain after a successive elimination of the leading terms due to subtracting appropriate combinations of the elementary symmetric polynomials. The exponents are:

$$
(4,2,0),(4,1,1),(3,3,0),(3,2,1) \text { and }(2,2,2)
$$

Hence, $F=f_{1}^{2} f_{2}^{2}+A f_{1}^{\hat{1}} f_{3}+B f_{2}^{3}+C f_{1} f_{2} f_{3}+D f_{3}^{2}$ where A, B, C, D are numerical coefficients. We determine them, specifying particular values for x_{1}, x_{1}, x_{3}.

| $x_{\mathbf{1}}$ | x_{2} | x_{3} | $f_{\mathbf{1}}$ | f_{2} | f_{3} | \boldsymbol{F} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1}$ | 1 | 0 | 2 | 1 | 0 | 2 |
| 2 | -1 | -1 | 0 | -3 | 2 | 50 |
| 1 | -2 | -2 | -3 | 0 | 4 | 200 |
| 1 | -1 | -1 | -1 | -1 | 1 | 8 |

We have the following system of equations for determining A, B, C, D :

$$
\begin{aligned}
2 & =4+B \\
50 & =-27 B+4 D \\
200 & =-108 A+16 D \\
8 & =1-A-B+C+D
\end{aligned}
$$

whence $B=-2, D=-1, A=-2, C=4$.
Thus,

$$
\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}^{2}+x_{3}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}\right)=f_{2}^{2} f_{2}^{2}-2 f_{1}^{3} f_{3}-2 f_{2}^{3}+4 f_{1} f_{2} f_{3}-f_{3}^{2}
$$

The answers for the other examples are:
(a) $f_{1}^{3}-3 f_{1} f_{2}$; (b) $f_{1} f_{2}-3 f_{3}$; (c) $f_{1}^{4}-4 f_{1}^{2} f_{2}+8 f_{1} f_{3}$;
(d) $f_{1}^{3} f_{2}^{2}-2 f_{1}^{4} f_{3}-3 f_{1} f_{2}^{3}+6 f_{1}^{2} f_{2} f_{3}+3 f_{2}^{2} f_{3}-7 f_{1} f_{3}^{2}$;
(e) $f_{1} f_{2}-f_{3}$; (g) $2 f_{1}^{3}-9 f_{1} f_{2}+27 f_{3}$;
(h) $f_{1}^{2} f_{2}^{2}-4 f_{1}^{3} f_{3}^{\prime}-4 f_{2}^{3}+18 f_{1} f_{2} f_{3}-27 f_{3}^{2}$.
756. (a) $f_{1} f_{2} f_{3}-f_{1}^{2} f_{4}-f_{3}^{2} ;$ (b) $f_{1}^{2} f_{4}+f_{3}^{2}-4 f_{2} f_{4}$;
(c) $f^{3}-4 f_{1} f_{2}+8 f_{3}$.
757. (a) $f_{1}^{2}-2 f_{2}$; (b) $f^{3}-3 f_{\mathrm{i}} f_{2}+3 f_{3}$;
(c) $f_{1} f_{3}-4 f_{4}$; (d) $f_{2}^{2}-2 f_{1} f_{3}+2 f_{4}$;
(e) $f_{\mathrm{i}}^{2} f_{2}-f_{1} f_{3}-2 f_{2}+4 f_{4}$; (f) $f_{1}^{4}-4 f_{1}^{2} f_{2}+2 f_{2}^{2}+4 f_{1} f_{3}-4 f_{4}$;
(g) $f_{2} f_{3}-3 f_{1} f_{4}+5 f_{5}$; (h) $f_{1}^{2} f_{3}-2 f_{2} f_{3}-f_{1} f_{4}+5 f_{5}$;
(i) $f_{1} f_{2}^{2}-2 f_{1}^{2} f_{3}-f_{2} f_{3}+5 f_{1} f_{4}-5 f_{5}$;
(j) $f_{1}^{3} f_{2}-3 f_{1} f_{2}^{2}-f_{1}^{2} f_{3}+5 f_{2} f_{3}+f_{1} f_{4}-5 f_{5}$;
(k) $f_{1}^{5}-5 f_{1}^{3} f_{2}+5 f_{1} f_{2}^{2}+5 f_{1}^{2} f_{3}-5 f_{2} f_{3}-5 f_{1} f_{4}+5 f_{5}$;
(l) $f_{2} f_{4}-4 f_{1} f_{5}+9 f_{6}$; (m) $f_{5}^{2}-2 f_{2} f_{4}+2 f_{1} f_{5}-2 f_{6}$;
(n) $f_{1}^{2} f_{1}-2 f_{2} f_{4}-f_{1} f_{5}+6 f_{6}$;
(o) $f_{1} f_{2} f_{3}-3 f_{1}^{2} f_{4}-3 f_{3}^{2}+4 f_{2} f_{4}+7 f_{1} f_{5}-12 f_{6}$;
(p) $f_{2}^{3}-3 f_{1} f_{2} f_{3}+3 f_{1}^{2} f_{4}+3 f_{3}^{2}-3 f_{2} f_{4}-3 f_{1} f_{5}+3 f_{6}$;
(q) $f_{1}^{3} f_{3}-3 f_{1} f_{2} f_{3}-f_{1}^{2} f_{4}+3 f_{3}^{2}+2 f_{2} f_{4}+f_{1} f_{5}-6 f_{6}$;
(r) $f_{1}^{2} f_{2}^{2}-2 f_{1}^{3} f_{3}-2 f^{3}+4 f_{1} f_{2} f_{3}+2 f_{1}^{2} f_{4}-3 f_{3}^{2}+2 f_{2} f_{4}-6 f_{1} f_{5}+6 f_{6}$;
(s) $f_{1}^{4} f_{2}-4 f_{1}^{2} f_{2}^{2}-f_{3}^{2} f_{3}+2 f_{2}^{5}+7 f_{1} f_{2} f_{3}+f_{1}^{2} f_{4}-3 f_{3}^{2}-6 f_{2} f_{4}-f_{1} f_{5}+6 f_{6}$;
(t) $f_{1}^{6}-6 f_{1}^{4} f_{2}+9 f_{1}^{2} f_{2}^{2}+6 f_{i}^{9} f_{3}-2 f_{2}^{3}-12 f_{1} f_{2} f_{3}-6 f_{1}^{2} f_{4}$

$$
+3 f_{3}^{2}+6 f_{2} f_{4}+6 f_{1} f_{5}-6 f_{6} .
$$

758. (a) $n f^{2}-8 f_{2}$;
(b) $-f_{1}^{n}+4 f_{1}^{n-2} f_{2}-8 f_{1}^{n-3} f_{3}+\ldots+(-2)^{n} f_{n}$.
759. (a) $(n-1) f_{1}^{2}-2 n f_{2}$; (b) $(n-1) f_{1}^{3}-3(n-2) f_{1} f_{2}+3(n-4) f_{3}$;
(c) $(n-1) f_{1}^{4}-4 n f_{1}^{2} f_{2}+2(n+6) f_{2}^{2}+4(n-3) f_{1} f_{3}-4 n f_{1}$;
(d) $-\frac{3(n-1)(n-2)}{2} f_{1}^{2}-(3 n-1)(n-2) f_{2}$.
760. $f_{k}^{2}-2 f_{k-1} f_{k+1}+2 f_{k-2} f_{k+2}-2 f_{k-3} f_{k+3}+\ldots$
761. $(n-1)!\sum_{i=1}^{n} a_{i}^{2} f^{2}-2(n-2)!\left[n \sum_{i=1}^{n} a_{i}^{2}-\left(\sum_{i=1}^{n} a_{i}\right)^{2}\right] f_{2}$

$$
=(n-1)!S_{2} s_{2}+4(n-2)!F_{2} f_{2}
$$

where

$$
S_{2}=\sum_{i=1}^{n} a_{i}^{2} ; s_{2}=\sum_{i=1}^{n} x_{i}^{2} ; F_{2}=\sum_{i<k} a_{i} a_{k} ; f_{2}=\sum_{i<k} x_{i} x_{k} .
$$

762. (a) $\frac{f_{1} f_{2}-3 f_{3}}{f_{3}}$;

$$
\text { (b) } \frac{2\left(f_{1}^{2} f_{2}-3 f_{1} f_{3}-2 f_{2}^{2}\right)}{f_{1} f_{2}-f_{3}} \text {; }
$$

(c) $\frac{f_{2}^{3}+f^{3} f_{2}-6 f_{1} f_{2} f_{3}+9 f_{3}^{2}}{f^{2}}$.
763. (a) $\frac{f_{2}^{2}-2 f_{1} f_{3}+2 f_{4}}{f_{4}}$; (b) $\frac{f_{1}^{2} f_{2}^{2}+f_{1}^{5} f_{3}-6 f_{1} f_{2} f_{3}+6 f_{3}^{2}+2 f_{1}^{2} f_{4}}{f_{1} f_{2} f_{3}-f_{1}^{2} f_{4}-f_{3}^{2}}$.
764. (a) $\frac{f_{n-1}}{f_{n}}$; (b) $\frac{f_{n-1}^{2}-2 f_{n-2} f_{n}}{f_{n}^{2}}$; (c) $\frac{f_{1} f_{n-1}-n f_{n}}{f_{n}}$;
(d) $\frac{f_{2}^{2} f_{n-1}^{2}-2 f_{2} f_{n-1}^{2}-2 f_{2}^{2} f_{n-2} f_{n}+4 f_{2} f_{n-2} f_{n}-n f_{n}^{2}}{f_{n}^{2}}$;
(e) $\frac{f_{1}^{3} f_{n-1}-2 f_{2} f_{n-1}-f_{1} f_{n}}{f_{n}}$; (f) $\frac{f_{2} f_{n-1}-(n-1) f_{1} f_{n}}{f_{n}}$.
765. -4. 766. -35.767 .16.
768. (a) -3 ;
(b) $-2 p^{3}-3 q^{2}$; (c) $-p^{3}\left(x_{1}^{2}-x_{2} x_{3}=-p\right)$;
(d) q^{4}
(e) $\frac{-2 p-3 q}{1+p-q}$; (f) $\frac{2 p^{2}-4 p-4 p q+3 q^{2}+6 q}{(1+p-q)^{2}}$.
769. Let $x_{1}^{2}=x_{2}^{2}+x_{3}^{2}$. Then $2 x_{1}^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=a^{2}-2 b$. Hence, $\sqrt{\frac{a^{2}-2 b}{2}}$ or $-\sqrt{\frac{\overline{a^{2}-2 b}}{2}}$ is among the roots of the given equation. For this, it is necessary and sufficient that the following condition be fulfilled:

$$
a^{4}\left(a^{2}-2 b\right)=2\left(a^{3}-2 a b+2 c\right)^{2} .
$$

770. $a=-x_{1}-x_{2}-x_{3}$,

$$
\begin{gathered}
a b-c=-\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right), \\
c=-x_{1} x_{2} x_{3} .
\end{gathered}
$$

If all roots are real and negative, then

$$
a>0, b>0, c>0 .
$$

If one root x_{1} is real and x_{2} and x_{3} are complex conjugate roots with negative real part, then $x_{2}+x_{3}<0, x_{2} x_{3}>0,\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)>0$ and, hence, also $a>0, b>0$ and $c>0$. The necessity of the conditions is proved.

Now assume that $a>0, b>0, c>0$. If x_{1} is real and x_{2} and x_{3} are complex conjugates, then $x_{2} x_{3}>0,\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)>0$ and from $c>0, \mathrm{~b}>0$ it follows that $x_{1}<0,2 \operatorname{Re}\left(x_{2}\right)=x_{2}+x_{3}<0$.

Now if x_{1}, x_{2}, x_{3} are real, then from $c>0$ it follows that one root, x_{1}, is negative, and the other two are of the same sign. If $x_{2}>0, x_{3}>0$, it follows that

$$
-x_{1}-x_{2}>x_{3}>0,-x_{1}-x_{3}>x_{2}>0
$$

and then $-\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)<0$, which contradicts the hypothesis. Hence, $x_{2}<0, x_{3}<0$.

An alternative solution is given in Problem 744.
771. $s=\frac{1}{4} \sqrt{a\left(4 a b-a^{3}-b c\right)}, \quad R=\frac{c}{\sqrt{a\left(4 a b-a^{3}-b c\right)}}$.
772. $a\left(4 a b-a^{3}-8 c\right)=4 c^{2}$.
773. (a) $\frac{25}{27}$, (b) $\frac{35}{27}$, (c) $-\frac{1,679}{625}$.
774. (a) $a_{1}^{2} a_{2}^{2}-4 a_{1}^{3} a_{3}-4 a_{2}^{3} a_{0}+18 a_{0} a_{1} a_{2} a_{3}-27 a_{0}^{2} a_{3}^{2}$;
(b) $a_{1}^{3} a_{3}-a_{2}^{3} a_{0}$; (c) $\frac{a_{1} a_{2}}{a_{0} a_{3}}-9$; (d) $a_{1}^{2} a_{2}^{2}-a_{1}^{3} a_{3}-a_{2}^{3} a_{0}$.
775. It is sufficient to give the proof for the elementary symmetric polynomials. Let φ_{k} be an elementary symmetric polynomial of $x_{2}, x_{3}, \ldots, x_{n}$ of degree k; let f_{k} be an elementary symmetric polynomial of $x_{1}, x_{2}, \ldots, x_{n}$. It is obvious that $\varphi_{k}=f_{k}-x_{1} \varphi_{k-1}$, whence it follows that

$$
\begin{gathered}
\varphi_{k}=f_{k}-x_{1} f_{k-1}+x_{1}^{2} f_{k-2}-\ldots+\left(-x_{1}\right)^{k-1} f_{1}+(-1)^{k} x_{1}^{k} \\
(-1)^{k} \varphi_{k}=a_{k}+a_{k-1} x_{1}+\ldots+a_{1} x_{1}^{k-1}+x_{1}^{k} .
\end{gathered}
$$

776. $x_{1}+x_{2}=f_{1}-x_{3}$,

$$
\begin{aligned}
&\left(f_{1}-x_{1}\right)\left(f_{1}-x_{2}\right)\left(f_{1}-x_{3}\right)=f_{1}^{3}-f_{1}^{i}+f_{1} f_{2}-f_{3}=f_{1} f_{2}-f_{\varepsilon} \\
& 2 x_{1}-x_{2}-x_{3}=3 x_{1}-f_{1},
\end{aligned}
$$

$$
\begin{gathered}
\left(3 x_{1}-f_{1}\right)\left(3 x_{2}-f_{1}\right)\left(3 x_{3}-f_{1}\right)=27 f_{3}-9 f_{1} f_{2}+2 f_{1} \\
x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}=f_{1}^{2}-f_{2}-f_{1} x_{3} \\
x_{1}^{2}-x_{2} x_{3}=f_{1} x_{1}-f_{3}
\end{gathered}
$$

777. $\sum_{i=1}^{n}-\frac{\partial f_{k}}{\partial x_{i}}=(n-k) f_{k-1}$.
778. Let $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Phi\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. Then

$$
\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}=n \frac{\partial \Phi}{\partial f_{1}}+(n-1) f_{3} \frac{\partial \Phi}{\partial f_{2}}+\ldots+f_{n-1} \frac{\partial \Phi}{\partial f_{n}}
$$

779. Let $\varphi(a)=F\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)$. Then

$$
\varphi^{\prime}(a)=\sum_{i=1}^{n} \frac{\partial F\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)}{\partial x_{i}}
$$

Since $\varphi(a)$ is not dependent on a, then $\varphi^{\prime}(a)$ is identically zero, whenceit follows that $\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}=0$. Conversely, if $\sum_{i=1}^{n} \frac{\partial F\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i}}$ is identically zero, then $\varphi^{\prime}(a)=\sum_{i=1}^{n} \frac{\partial F\left(x_{1}+a, \ldots, x_{n}+a\right)}{\partial x_{i}}=0$ whence it follows that $\varphi(a)$ does not depend on a and $\varphi(a)=\varphi(0)$, that is,

$$
F\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

By virtue of the preceding problem, the condition $\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}=0$ is equivalent to the condition

$$
n \frac{\partial \Phi}{\partial f_{1}}+(n-1) f_{1} \frac{\partial \Phi}{\partial f_{2}}+\ldots+f_{n-1} \frac{\partial \Phi}{\partial f_{n}}=0
$$

780. Let $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a bomogeneous symmetric polynomial of degree two. Then its expression in terms of the elementary symmetric polynomials is of the form $\Phi=A f_{1}^{2}+B f_{2}$. By virtue of the result of Problem 779, it must be true that $n \cdot 2 A f_{1}+(n-1) B f_{1}=0$, whence $A=(n-1) \alpha, B=-2 n \alpha$ and

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha\left[(n-1) f_{1}^{2}-2 n f_{2}\right]=\alpha \sum_{i<k}\left(x_{i}-x_{k}\right)^{2}
$$

781. The expression of a homogeneous symmetric polynomial of degree three in terms of the elementary polynomials is of the form $A f_{1}^{3}+B f_{1} f_{2}+$ $+C f_{3}$. By virtue of the result of Problem 779, it must be true that $3 A n f_{1}^{2}+$ $+n B f_{2}+(n-1) B f_{1}^{2}+(n-2) C f_{2}=0$ whence

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha\left[(n-1)(n-2) f_{1}^{3}-3 n(n-2) f_{1} f_{2}+3 n^{2} f_{3}\right]
$$

782. $(n-2) f_{1}^{2} f_{2}^{2}-2(n-1) f_{1}^{7} f_{3}-4(n-2) f_{2}^{3}$

$$
+(10 n-12) f_{1} f_{2} f_{3}-4(n-1) f_{1}^{2} f_{4}-9 n f_{3}^{2}+8 n f_{2} f_{4}
$$

783. We can take

$$
\varphi_{k}=f_{k}\left(x_{1}-\frac{f_{1}}{n}, x_{2}-\frac{f_{1}}{n}, \ldots, x_{n}-\frac{f_{1}}{n}\right)
$$

Each function φ_{k} has the required property. Furthermore, if $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $=F\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)$ and $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Phi\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, then

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Phi\left(0, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}\right)
$$

784. (a) $-4 \varphi_{2}^{3}-27 \varphi_{3}^{2}$, (b) $18 \varphi_{2}^{2}$.
785. (a) $8 \varphi_{3}$,
(b) $-4 \varphi_{2}^{3} \varphi_{3}^{2}+16 \varphi_{2}^{4} \varphi_{4}-27 \varphi_{3}^{4}+144 \varphi_{2} \varphi_{3}^{2} \varphi_{4}-128 \varphi_{2}^{2} \varphi_{4}^{2}+256 \varphi_{4}^{3}$.
786. $s_{2}=f_{2}^{2}-2 f_{2}$;
$s_{3}=f_{1}^{3}-3 f_{1} f_{2}+3 f_{3} ;$
$s_{4}=f_{1}^{4}-4 f_{1}^{2} f_{2}+2 f_{2}^{2}+4 f_{1} f_{3}-4 f_{4} ;$
$s_{5}=f_{1}^{5}-5 f_{1}^{2} f_{2}+5 f_{1} f_{2}^{2}+5 f_{1}^{2} f_{3}-5 f_{2} f_{3}-5 f_{1} f_{4}+5 f_{5} ;$
$s_{6}=f_{1}^{6}-6 f_{1}^{4} f_{2}+9 f_{1}^{2} f_{2}^{2}+6 f_{i}^{5} f_{3}-2 f_{2}^{9}-12 f_{1} f_{2} f_{3}$

$$
-6 f_{1}^{2} f_{4}+3 f_{3}^{2}+6 f_{2} f_{4}+6 f_{1} f_{5}-6 f_{6}
$$

787. $2 f_{2}=s_{1}^{2}-s_{2}$;
$6 f_{3}=s_{1}^{3}-3 s_{1} s_{2}+2 s_{3} ;$
$24 f_{4}=s_{1}^{4}-6 s_{1}^{2} s_{2}+8 s_{1} s_{3}+3 s_{2}^{2}-6 s_{4} ;$
$120 f_{5}=s_{1}^{\overline{0}}-10 s_{1}^{3} s_{2}+20 s_{1}^{2} s_{3}+15 s_{1} s_{2}^{2}-20 s_{2} s_{3}-30 s_{1} s_{4}+24 s_{5}$;
$720 f_{6}=s_{1}^{6}-15 s_{1}^{4} s_{2}+40 s_{1}^{3} s_{3}+45 s_{1}^{2} s_{2}^{2}-120 s_{1} s_{3} s_{3}$

$$
-15 s_{2}^{3}-90 s_{1}^{2} s_{4}+40 s_{3}^{2}+90 s_{2} s_{1}+144 s_{1} s_{5}-120 s_{6}
$$

788. $s_{5}=859$. 789. $s_{3}=13$. 790. $s_{10}=621$.
789. $s_{1}=-1, s_{2}=s_{3}=\ldots=s_{n}=0$.
790. This is readily proved by mathematical induction by means of the relation

$$
a s_{k}+b s_{k-1}+c s_{k-2}=0
$$

where $s_{k}=x_{1}^{k}+x_{2}^{k}$.
793. $s_{5}-s_{1}^{5}=5\left(f_{1}^{2}-f_{2}\right)\left(f_{3}-f_{1} f_{2}\right) ; \quad s_{3}-s_{1}^{3}=3\left(f_{3}-f_{1} f_{2}\right)$.
794. $s_{5}=-5 f_{2} f_{3} ; s_{3}=3 f_{3} ; s_{2}=-2 f_{2}$.
795. $s_{7}=-7 f_{2} f_{5} ; s_{2}=-2 f_{2} ; s_{5}=5 f_{5}$.
796. $x^{n}-a=0$.
797. $x^{n}-\frac{a}{1} x^{n-1}+\frac{a^{2}}{1 \cdot 2} x^{n-2}-\ldots+(-1)^{n} \frac{a^{n}}{n!}=0$.
798. $x^{n}+\frac{P_{1}(\alpha)}{1} x^{n-1}+\frac{P_{2}(\alpha)}{2!} x^{n-2}+\ldots+\frac{\boldsymbol{P}_{n}(\alpha)}{n!}=0$, where $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots, P_{n}$
are Hermite polynomials: $P_{k}(x)=(-1)^{k} e^{\frac{x^{2}}{2}} \frac{d^{k} e^{-\frac{x^{2}}{2}}}{d x^{k}}, \alpha$ is a root of the Hermite polynomial $P_{n+1}(x)$.

Solution. Let the desired equation have the form

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}=0
$$

By virtue of Newton's formulas

$$
\begin{aligned}
a_{1} & =\alpha, \\
2 a_{2} & =\alpha a_{1}-1, \\
3 a_{3} & =\alpha a_{2}-a_{1}, \\
\cdots \cdots & \cdots \\
k a_{k} & =\alpha a_{k-1}-a_{k-2}, \\
\cdots a_{n} & =\alpha a_{n-1}-a_{n-2}, \\
0 & =\alpha a_{n}-a_{n-1} .
\end{aligned}
$$

From these relations it follows that a_{k} is a polynomial of degree k in α. Set $k!a_{k}=P_{k}(\alpha)$. Then, taking $P_{0}=1$, we get

$$
\begin{gathered}
P_{1}=\alpha \text { and } P_{k}-\alpha P_{k-1}+(k-1) P_{k-2}=0, \\
\\
-\alpha P_{n}+n P_{n-1}=0 .
\end{gathered}
$$

The first relations show that \boldsymbol{P}_{k} is a Hermite polynomial in α (see Problem 707). The latter yields $P_{n+1}(\alpha)=0$.
799. $\frac{1}{2}\left(s_{k}^{2}-s_{2 k}\right)$.
800. $\sum_{i=1}^{n}\left(x+x_{i}\right)^{k}=\sum_{m=0}^{k} C_{k}^{m} s_{k-m} x^{m}$,

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{j}+x_{i}\right)^{k}=\sum_{m=0}^{k} C_{k}^{m} s_{k-m} s_{m}, \\
\sum_{i<j}\left(x_{i}+x_{j}\right)^{k}=\frac{1}{2}\left(\sum_{m=0}^{k} C_{k}^{m} s_{k-m} s_{m}-2^{k} s_{k}\right) .
\end{gathered}
$$

801. $\sum_{i<j}\left(x_{i}-x_{j}\right)^{2 k}=\frac{1}{2} \sum_{m=0}^{2 k} C_{2 k}^{m}(-1)^{m} s_{m} s_{2 k-m}$.
802. Multiply the second column by $-s_{1}$, the third by s_{2}, \ldots, the k th by $(-1)^{k-1} s_{k-1}$ and add to the first. By Newton's formulas, we get

$$
\begin{aligned}
& \left|\begin{array}{ccccccc}
& f_{1} & 1 & 0 & & & 0 \\
2 & f_{2} & f_{1} & 1 & \ldots & & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & l_{1} \\
(k-1) & f_{k-1} & f_{k-2} & & \ldots & f_{1} & 1 \\
& k f_{k} & f_{k-1} & & & f_{1}
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & f_{1} & 1 & \ldots & 0 \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
0 & f_{k-2} & f_{k-3} & \ldots & 1 \\
(-1)^{k-1} s_{k} & f_{k-1} & f_{k-2} & \ldots & f_{1}
\end{array}\right|=s_{k} .
\end{aligned}
$$

803. Multiply the second column by $-f_{1}$, the third by f_{2}, \ldots, the k th by $(-1)^{k-1} f_{k-1}$ and add the results to the first column. Newton's formulas yield the desired result.
804. $n!\left(x^{n}-f_{1} x^{n-1}+f_{2} x^{n-2}+\ldots+(-1)^{n} f_{n}\right)$.
805. $\frac{\varphi(n)}{\varphi\left(\frac{n}{d}\right)} \mu\left(\frac{n}{d}\right)$ where d is the greatest common divisor of m and n.
806. By virtue of the result of Problems 117,119 , it suffices to consider the case $n=p_{1} p_{2} \ldots p_{k}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct odd primes. In this case, $s_{1}=s_{2}=s_{4}=(-1)^{k} ; s_{3}=2(-1)^{k-1}$ if n is divisible by 3 , and $s_{3}=(-1)^{k}$ if n is not divisible by 3 . Computations by Newton's formulas yield:

$$
\begin{aligned}
& f_{2}=\frac{1-(-1)^{k}}{2} \\
& f_{3}=\frac{(-1)^{k-1}-1}{2} \text { if } n \text { is divisible by } 3 \\
& f_{3}=\frac{(-1)^{k}-1}{2} \text { if } n \text { is not divisible by } 3 \\
& f_{4}=\frac{(-1)^{k-1}-1}{2} \text { if } n \text { is divisible by } 3 \\
& f_{4}=\frac{(-1)^{k-1}+1}{2} \text { if } n \text { is not divisible by } 3
\end{aligned}
$$

807. $s_{1}=s_{2}=s_{3}=\ldots=s_{n}=a$. Hence, for $k \leqslant n$

$$
\begin{aligned}
& k f_{k}=a f_{k-1}-a f_{k-2}+\ldots+(-1)^{k-1} f_{1} \\
& (k-1) f_{k-1}=a f_{k-2}+\ldots+(-1)^{k-2} f_{1}
\end{aligned}
$$

whence

$$
k f_{k}=(a-k+1) f_{k-1}, \quad f_{k}=\frac{a-k+1}{k}-f_{k-1}
$$

Obviously, $f_{1}=a$; therefore,

$$
f_{2}=\frac{a(a-1)}{1 \cdot 2}, \ldots, f_{k}=\frac{a(a-1) \ldots(a-k+1)}{1 \cdot 2 \ldots}
$$

and so $x_{1}, x_{2}, \ldots, x_{n}$ are roots of the equation

$$
\begin{gathered}
x^{n}-\frac{a}{1} x^{n-1}+\frac{a(a-1)}{1 \cdot 2} x^{n-2}-\ldots+(-1)^{n} \frac{a(a-1) \ldots(a-n+1)}{n!}=0, \\
s_{n+1}=a-\frac{a(1-a)(2-a) \ldots(n-a)}{n!} .
\end{gathered}
$$

808. $(x-a)(x-b)\left[x^{n}+(a+b) x^{n-1}+\ldots+\left(a^{n}+a^{n-1} b+\ldots+b^{n}\right)\right]=$

$$
\begin{gathered}
=(x-a)\left[x^{n+1}+a x^{n}+a^{2} x^{n-1}+\ldots+c^{n} x-b\left(a^{n}+a^{n-1} b+\ldots+b^{n}\right)\right\} \\
=x^{n+2}-\left(a^{n+1}+a^{n} b+\ldots+b^{n+1}\right) x+a b\left(a^{n}+a^{n-1} b+\ldots+b^{n}\right)
\end{gathered}
$$

The power sums $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ for the new polynomial are obviously equal to zero. But $\sigma_{k}=s_{k}+a^{k}+b^{k}$. Hence, $s_{k}=-\left(a^{k}+b^{k}\right)$ for $1 \leqslant k \leqslant n$.
809. $s_{k}=-a^{k}-b^{k}$ for odd k,

$$
s_{k}=-\left(a^{\frac{k}{2}}-b^{\frac{k}{2}}\right)^{2} \text { for even } k
$$

810. (a) $(x+a)\left(x^{2}+a x+b\right)-c=0$;
(b) $x\left(x-a^{2}+3 b\right)^{2}-\left(a^{2} b^{2}-4 a^{3} c-4 b^{3}+18 a b c-27 c^{2}\right)=0$;
(c) $x^{3}+\left(3 b-a^{2}\right) x^{2}+b\left(3 b-a^{2}\right) x+b^{3}-a^{3} c=0$;
(d) $x^{2}\left(x-a^{2}+3 b\right)+\left(a^{2} b^{2}-4 a^{3} c-4 b^{3}+18 a b c-27 c^{2}\right)=0$;
(e) $x^{3}-\left(a^{2}-2 b\right) x^{2}+\left(b^{2}-2 a c\right) x-c^{2}=0$;
(f) $x^{3}+\left(a^{3}-3 a b+3 c\right) x^{2}+\left(b^{3}-3 a b c+3 c^{2}\right) x+c^{3}=0$.
811. $y^{2}+\left(2 a^{3}-9 a b+27 c\right) y+\left(a^{2}-3 b\right)^{3}=0$.
812. $y^{2}-\frac{a b-3 c}{c} y+\frac{b^{3}+a^{3} c-6 a b c+9 c^{2}}{c^{2}}=0$.
813. $y^{6}-\frac{a b-3 c}{c} y^{5}+\frac{b^{3}-5 a b c+6 c^{2}}{c^{2}} y^{4}$
$-\frac{a^{2} b^{2}-2 b^{3}-2 a^{3} b+6 a b c-7 c^{2}}{c^{2}} y^{3}+\frac{b^{3}-5 a b c+6 c^{2}}{c^{2}} y^{2}-\frac{a b-3 c}{c} y+1=0$.
814. (a) $y^{3}-b y^{2}+(a c-4 d) y-\left(a^{2} d+c^{2}-4 b d\right)=0$
(Ferrari's resolvent),
(b) $y^{3}-\left(3 a^{2}-8 b\right) y^{2}+\left(3 a^{4}-16 a^{2} b+16 b^{2}+16 a c-64 d\right) y-\left(a^{3}\right.$

$$
-4 a b+8 c)^{2}=0
$$

(Euler's resolvent),
(c) $y^{5}-b y^{5}+(a c-d) y^{4}-\left(a^{2} d+c^{2}-2 b d\right) y^{3}+d(a c-d) y^{2}-b d^{2} y$

$$
+d^{3}=0 ;
$$

(d) $y^{6}+3 a y^{5}+\left(3 a^{2}+2 b\right) y^{4}+\left(a^{3}+4 a b\right) y^{3}+\left(2 a^{2} b+b^{2}+a c-4 d\right) y^{2}$

$$
+\left(a b^{2}+a^{2} c-4 a d\right) y+\left(a b c-a^{2} d-c^{2}\right)=0
$$

$$
\text { 815. } x=\frac{-a \pm \sqrt{a^{2}-4 b+4 y_{1}} \pm \sqrt{a^{2}-4 b+4 y_{2}} \pm \sqrt{a^{2}-4 b+4 y_{3}}}{4}
$$

The signs of the square roots must be taken so that their product is equal to $-a^{3}+4 a b-8 c$.
816.
$x=\frac{ \pm \sqrt{4 a+\sqrt{b^{2}-64 a^{3}}} \pm \sqrt{4 a+\varepsilon \sqrt{b^{2}-64 a^{3}} \pm}}{2} \sqrt{4 a+\varepsilon^{2} \sqrt{b^{2}-64 a^{3}}}$,

$$
\varepsilon=-\frac{1}{2}+\frac{i \sqrt{3}}{2}-
$$

The signs of the square roots are taken so that their product is equal to $-b$.
817. $(y+a)^{4}\left(y^{2}+6 a y+25 a^{2}\right)+3125 b^{4} y=0$.

Solution. The roots of the desired equation are:
$y_{1}=\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} x_{1}\right)\left(x_{1} x_{3}+x_{3} x_{5}+x_{5} x_{2}+x_{2} x_{4}+x_{4} x_{1}\right)$;
$y_{2}=\left(x_{1} x_{3}+x_{3} x_{2}+x_{2} x_{5}+x_{5} x_{4}+x_{4} x_{1}\right)\left(x_{1} x_{2}+x_{2} x_{4}+x_{4} x_{3}+x_{3} x_{5}+x_{5} x_{1}\right)$;
$y_{3}=\left(x_{5} x_{2}+x_{2} x_{4}+x_{4} x_{3}+x_{3} x_{1}+x_{1} x_{5}\right)\left(x_{5} x_{4}+x_{4} x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{5}\right)$;
$y_{4}=\left(x_{2} x_{1}+x_{1} x_{3}+x_{3} x_{5}+x_{5} x_{4}+x_{4} x_{2}\right)\left(x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}+x_{1} x_{5}+x_{5} x_{2}\right) ;$
$y_{5}=\left(x_{5} x_{3}+x_{3} x_{2}+x_{2} x_{4}+x_{4} x_{1}+x_{1} x_{5}\right)\left(x_{5} x_{2}+x_{2} x_{1}+x_{1} x_{3}+x_{3} x_{4}+x_{4} x_{5}\right) ;$
$y_{6}=\left(x_{2} x_{1}+x_{1} x_{4}+x_{4} x_{3}+x_{3} x_{5}+x_{5} x_{2}\right)\left(x_{2} x_{4}+x_{4} x_{5}+x_{5} x_{1}+x_{1} x_{3}+x_{3} x_{2}\right)$.
The sought-for equation is obviously of the form $y^{6}+c_{1} a y^{5}+c_{2} a^{2} y^{4}+c_{3} a^{3} y^{3}+c_{4} a^{4} y^{2}+\left(c_{5} a^{5}+c_{6} b^{4}\right) y+\left(c_{7} a^{6}+c_{8} a b^{4}\right)=0$,
where $c_{1}, c_{2}, \ldots, c_{8}$ are absolute constants. To determine them, put $a=-1$ $b=0$, and $a=0, \mathrm{~b}=-1$. We get

| a | b | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | y_{1} | y_{2} | y_{3} | y_{4} | y_{5} | y_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | 1 | i | -1 | $-i$ | 0 | 1 | $3-4 i$ | 1 | 1 | $3+4 i$ | 1 |
| 0 | -1 | 1 | ε | ε^{2} | ε^{3} | ε^{4} | 0 | -5 | $-5 \varepsilon^{4}$ | $-5 \varepsilon^{3}$ | $-5 \varepsilon^{2}$ | -5ε |

In the first case, the desired equation is of the form

$$
(y-1)^{4}\left(y^{2}-6 y+25\right)=0
$$

In the second case, $y^{6}+3125 y=0$, whence we determine all the coefficients, except c_{8}. It is easy to verify that $c_{8}=0$. To do this, we can, say, take $a=-5$, $b=4$. In this case, $x_{1}=x_{2}=1$, and the remaining roots satisfy the equation $x^{3}+2 x^{2}+3 x+4=0$ and all the necessary computations are performed with ease.
818. Let $f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$, where $x_{1}, x_{2}, \ldots, x_{n}$ are independent variables. Also, let

$$
x^{k-1} \varphi(x)=f(x) q_{k}(x)+r_{k}(x) \quad \text { and } \quad r_{k}(x)=c_{k 1}+c_{k 2} x+\ldots+c_{k n} x^{n-1}
$$

The coefficients $c_{k s}$ are obviously some polynomials in $x_{1}, x_{2}, \ldots, x_{n}$. Furthermore,

$$
\begin{aligned}
& \left|\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\cdots & \cdots & \cdots & \cdot \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right| \cdot\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\cdots & \ldots & \ldots & \cdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right| \\
& =\left|\begin{array}{cccc}
r_{1}\left(x_{1}\right) & r_{1}\left(x_{2}\right) & \ldots & r_{1}\left(x_{n}\right) \\
r_{2}\left(x_{1}\right) & r_{2}\left(x_{2}\right) & \ldots & r_{2}\left(x_{n}\right) \\
\ldots & \ldots & \ldots & \ldots \\
r_{n}\left(x_{1}\right) & r_{n}\left(x_{2}\right) & \ldots & r_{n}\left(x_{n}\right)
\end{array}\right| \\
& \left.=\left\lvert\, \begin{array}{cccc}
\varphi\left(x_{1}\right) & \varphi\left(x_{2}\right) & \ldots & \varphi\left(x_{n}\right) \\
x_{1} \varphi\left(x_{1}\right) & x_{2} \varphi\left(x_{2}\right) & \ldots & x_{n} \varphi\left(x_{n}\right) \\
\cdots & \ldots & \ldots & \ldots
\end{array}\right.\right) \\
& =\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{n}\right)\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\cdots & \ldots & \ldots & . \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|
\end{aligned}
$$

whence it follows that

$$
\left.\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\cdots & \cdot & \cdots & \cdot \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array} \right\rvert\,=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{n}\right)=R(f, \varphi) .
$$

The last equation is an identity between the polynomials in the independent variables $x_{1}, x_{2}, \ldots, x_{n}$ and therefore remains true for all particular values of these variables.
819. First of all, satisfy yourself that all polynomials $\psi_{k}(x)$ are of degree $n-1$. Introduce the following notations:

$$
\begin{aligned}
& f_{k}(x)=a_{0} x^{k-1}+\ldots+a_{k-1} \\
& \bar{f}_{k}(x)=a_{k} x^{n-k}+\ldots+a_{n} \\
& \varphi_{k}(x)=b_{0} x^{k-1}+\ldots+b_{k-1} \\
& \bar{\varphi}_{k}(x)=b_{k} x^{n-k}+\ldots+b_{n}
\end{aligned}
$$

Then

$$
\begin{gathered}
f(x)=x^{n-k+1} f_{k}(x)+\bar{f}_{k}(x), \\
\varphi(x)=x^{n-k+1} \varphi_{k}(x)+\bar{\varphi}_{k}(x), \\
\psi_{k}(x)=f_{k}(x)\left[x^{n-k+1} \varphi_{k}(x)+\bar{\varphi}_{k}(x)\right]-\varphi_{k}(x)\left[x^{n-k+1} f_{k}(x)\right. \\
\left.+\bar{f}_{k}(x)\right]=f_{k}(x) \bar{\varphi}_{k}-\varphi_{k} \bar{f}_{k}(x)=\left(a_{0} b_{k}-b_{0} a_{k}\right) x^{n-1}+\ldots
\end{gathered}
$$

Suppose $\psi_{k}(x)=c_{k^{1}}+c_{k^{2}} x+\ldots+c_{k n^{n}} x^{n-1}$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots of the polynomial $f(x)$. Then

$$
\begin{aligned}
& \left.\left|\begin{array}{llll}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\cdots & \ldots & \ldots & \cdot \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right| \cdot \right\rvert\, \begin{array}{llll}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\cdots & \ldots & \ldots & . \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array} \\
& =\left|\begin{array}{cccc}
\psi_{1}\left(x_{1}\right) & \psi_{1}\left(x_{2}\right) & \ldots & \psi_{1}\left(x_{n}\right) \\
\psi_{2}\left(x_{1}\right) & \psi_{2}\left(x_{2}\right) & \ldots & \psi_{2}\left(x_{n}\right) \\
\cdots & \ldots & \ldots & \ldots \\
\psi_{n}\left(x_{1}\right) & \psi_{n}\left(x_{2}\right) & \ldots & \psi_{n}\left(x_{n}\right)
\end{array}\right| \\
& \text {; } f_{1}\left(x_{1}\right) \varphi\left(x_{1}\right) \quad f_{1}\left(x_{2}\right) \varphi\left(x_{2}\right) \ldots f_{1}\left(x_{n}\right) \varphi\left(x_{n}\right) \\
& ={ }^{i} f_{2}\left(x_{1}\right) \varphi\left(x_{1}\right) \quad f_{2}\left(x_{2}\right) \varphi\left(x_{2}\right) \ldots f_{2}\left(x_{n}\right) \varphi\left(x_{n}\right) \\
& f_{n}\left(x_{1}\right) \varphi\left(x_{1}\right) \quad f_{n}\left(x_{2}\right) \varphi\left(x_{2}\right) \ldots f_{n}\left(x_{n}\right) \varphi\left(x_{n}\right) \\
& =\varphi\left(x_{1}\right) \varphi\left(x_{3}\right) \ldots \varphi\left(x_{12}\right) \cdot\left\{\begin{array}{ccc}
f_{1}\left(x_{1}\right) & f_{1}\left(x_{2}\right) & \ldots \\
f_{2}\left(x_{1}\right) & f_{2}\left(x_{2}\right) & \ldots \\
\ldots & f_{2}\left(x_{n}\right) \\
\ldots & \ldots & \ldots \\
f_{n}\left(x_{1}\right) & f_{n}\left(x_{2}\right) & \ldots
\end{array}\right) f_{n}\left(x_{n}\right) ; \\
& =\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{n}\right) \left\lvert\, \begin{array}{cccc:|cccc}
a_{0} & 0 & \ldots & 0 \\
a_{1} & a_{0} & \ldots & 0 \\
\ldots & \ldots & \ldots & 1 & \ldots & 1 \\
a_{n-1} & a_{n-2} & \ldots & a_{0} & . & x_{1} & x_{2} & \ldots \\
x_{1} & x_{n} \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right. \\
& =\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{n}\right) c_{0}^{n} \cdot \left\lvert\, \begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\cdots
\end{array}\right. \\
& x_{1}^{n-1} \quad x_{2}^{n-1} \ldots x_{n}^{n-1}
\end{aligned}
$$

whence it follows that

$$
\left|\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{33} & \ldots & c_{2 n} \\
\cdots & \cdots & \cdots & \cdot \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right|=a_{0}^{n} \varphi\left(x_{1}\right) \varphi\left(x_{3}\right) \ldots \varphi \varphi\left(x_{n}\right)=R(f, \varphi) .
$$

820. The polynomials χ_{k} have degree not above $n-1$. This is obvious for $1 \leqslant k \leqslant n-m$, and for $k>n-m$ it follows from the fact that χ_{k} are Bezout polynomials ψ_{k-n+m} for $f(x)$ and $x^{n-m} \varphi(x)$. Let $\chi_{k}(x)=c_{k^{1}}+c_{k^{2}} x+\ldots+$ $+c_{k n} x^{n-1}$ and

$$
\Delta=\left|\begin{array}{llll}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|
$$

Then

$$
=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \ldots \varphi\left(x_{n}\right)
$$

whence immediately follows the desired result.
821. (a) -7 , (b) 243 , (c) 0 , (d) -59 , (c) 4854 , (f) ($\left.b_{0} a_{2}-b_{2} a_{0}\right)^{2}-\left(b_{0} a_{1}-\right.$ $\left.-b_{1} a_{0}\right)\left(b_{1} a_{2}-b_{2} a_{1}\right)$.
822. (a) For $\lambda=3$ and $\lambda=-1$;
(b) $\lambda=1, \quad \lambda=-2+\frac{\sqrt{2} \pm \sqrt{4} \bar{V} \overline{2}-2}{2}$,

$$
\lambda=\frac{-2-\sqrt{2}}{2}+\frac{\sqrt{4 \sqrt{2}+2}}{2} ;
$$

(c) $\lambda= \pm \sqrt{-2}, \quad \lambda= \pm \sqrt{-12}$,
823. (a) $y^{6}-4 y^{4}+3 y^{2}-12 y+12=0$,
(b) $5 y^{5}-7 y^{4}+6 y^{3}-2 y^{2}-y-1=0$,
(c) $y^{3}+4 y^{2}-y-4=0$.
824. (a) $x_{1}=1, x_{2}=2, x_{3}=0, x_{4}=-2$, $y_{1}=2, y_{2}=3, y_{3}=-1, y_{4}=1$.
(b) $x_{1}=0, x_{2}=3, x_{3}=2, x_{1}=2$, $y_{1}=1, y_{2}=0, y_{3}=2, y_{4}=-1$.
(c) $x_{1}=x_{2}=1, x_{3}=-1, x_{4}=2$,
$y_{1}=y_{2}=-1 ; y_{3}=1 ; y_{4}=2$.
(d) $x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1, x_{5,6}=2$, $y_{1}=1, y_{2}=3, y_{8}=2, y_{4}=3, y_{5,6}=1 \pm i \sqrt{2}$.
(e) $x_{1}=0, x_{2}=0, x_{3}=2, x_{4}=x_{5}=2, x_{6}=-4$,
$y_{1}=2, y_{2}=-2, y_{3}=0, y_{4}=y_{5}=2, y_{6}=2$, $x_{7}=4, x_{8}=-6, x_{9}=-2 / 3, y_{7}=6, y_{8}=4, y_{9}=4 / 3$.
825. $a_{0}^{n} a_{n}^{n-1}$.
826. Let $f(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$;

$$
\varphi_{1}(x)=b_{0} x^{k}+\ldots+b_{k} ; \varphi_{2}(x)=c_{0} x^{\prime n}+\ldots+c_{m} .
$$

Then

$$
\begin{aligned}
R\left(f, \varphi_{1} \cdot \varphi_{2}\right)=a_{0}^{m+k} & \prod_{i=1}^{n} \varphi_{1}\left(x_{i}\right) \varphi_{2}\left(x_{i}\right) \\
& =\left[a_{0}^{m} \prod_{i=1}^{n} \varphi_{1}\left(x_{i}\right)\right]\left[\begin{array}{l}
k \\
0 \\
i=1
\end{array} \varphi_{2}\left(x_{i}\right)\right]=R\left(f, \varphi_{1}\right) \cdot R\left(f, \varphi_{2}\right) .
\end{aligned}
$$

827. Only the case $n>2$ is of interest. Denote by d the greatest common divisor of m and $n ; \xi_{1}, \xi_{2}, \ldots$ are primitive nth roots of unity; $\eta_{1}, \eta_{2}, \ldots$ are primitive roots of unity of degree $\frac{n}{d}=n_{1}$. Then,
$R\left(X_{n}, x^{m \prime}-1\right)=\prod\left(\xi_{i}^{m}-1\right)=\prod\left(1-\xi_{i}^{m}\right)$

$$
=\left[\prod\left(1-\eta_{i}\right)\right]^{\frac{\varphi(n)}{\varphi\left(n_{1}\right)}}\left[X_{n_{i}}(1)\right]^{\frac{\varphi(n)}{\varphi\left(n_{1}\right)}}
$$

If m is divisible by n, then $R\left(X_{n}, x^{m}-1\right)=0$. But if m is not divisible by n, then $n_{1} \neq 1$, and, by virtue of Problem 123, $X_{n 1}(1)=1$ for $n_{1} \neq p^{\lambda}, X_{n 1}(1)=p$ for $n_{1}=p^{\lambda}$ (p is prime). And so

$$
\begin{aligned}
& R\left(X_{n}, x^{m}-1\right)=0 \text { for } n_{1}=\frac{n}{d}=1 \\
& R\left(X_{n}, x^{m}-1\right)=p^{\frac{\varphi(n)}{\varphi\left(n_{1}\right)}} \text { for } n_{1}=\frac{n}{d}=p^{\lambda} \\
& R\left(X_{n}, x^{m}-1\right)=1 \text { in all other cases. }
\end{aligned}
$$

828. It is obvious that $R\left(X_{n}, X_{m}\right)$ is a positive integer which is a divisor of $R\left(X_{n}, x^{m}-1\right)$ and of $R\left(X_{m}, x^{n-1}\right)$. Denote by d the greatest common divisor of m and n. If m is not divisible by n, and n is not divisible by m, then $\frac{m}{d}$ and $\frac{n}{d}$ are different from 1 and are relatively prime. By virtue of the result of the preceding problem, $R\left(X_{n}, x^{m}-1\right)$ and $R\left(X_{m}, x^{n}-1\right)$ are in this case relatively prime, and therefore $R\left(X_{n}, X_{m}\right)=1$.

It remains to consider the case when one of the numbers m, n is divisible by the other. For definiteness, say n divides m.

If $m=n$, then $R\left(X_{m}, X_{n}\right)=0$. If $\frac{m}{n}$ is not a power of a prime, then $R\left(X_{m}, x^{n}-1\right)=$ land, hence, $R\left(X_{m}, X_{n}\right)=1$. Finally, suppose that $m=n p^{\lambda}$. Then

$$
R\left(X_{m}, X_{n}\right)=\prod_{\delta / n} R\left(X_{m}, x^{\delta}-1\right)^{\mu\left(\frac{n}{\delta}\right)}
$$

All factors on the right are equal to unity, except those for which $\frac{m}{\delta}$ is a power of the number p.

If n is not divisible by p, then there is only one factor different from unity when $\delta=n$ and

$$
R\left(X_{m}, X_{n}\right)=R\left(X_{m}, x^{n}-1\right)=p^{\frac{\varphi(m)}{\varphi(m / n)}}=p^{\varphi(n)}
$$

If n is divisible by p, then there are two factors different from unity: when $\delta=n$ and $\delta=\frac{n}{p}$. Then
$R\left(X_{m}, X_{n}\right)=\frac{R\left(X_{m}, x^{n}-1\right)}{R\left(X_{m}, x^{n / p}-1\right)}=p^{\frac{\dot{\varphi}(m)}{\varphi(m / n)}-\frac{\varphi(m)}{\varphi(m p / n)}}$

Thus,

$$
\begin{aligned}
& R\left(X_{m}, X_{n}\right)=0 \text { when } m=n \\
& R\left(X_{m}, X_{n}\right)=p^{\varphi(n)} \text { when } m=n p^{\lambda} \\
& R\left(X_{m}, X_{n}\right)=1 \text { otherwise. }
\end{aligned}
$$

829. (a) 49 , (b) -107 , (c) -843 , (d) 725 , (e) 2777.
830. (a) $3125\left(b^{2}-4 a^{5}\right)^{2}$, (b) $\lambda^{4}(4 \lambda-27)^{3}$,
(c) $\left(b^{2}-3 a b+9 a^{2}\right)^{2}$, (d) $4\left(\lambda^{2}-8 \lambda+32\right)^{3}$.
831. (a) $\lambda= \pm 2$; (b) $\lambda_{1}=3, \lambda_{2,3}=3\left(-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}\right)$;
(c) $\lambda_{1}=0, \quad \lambda_{2}=-3, \quad \lambda_{3}=125$;
(d) $\lambda_{1}=-1, \lambda_{2}=-\frac{3}{2}, \lambda_{2,4}=\frac{7}{2} \pm \frac{9}{2} i \sqrt{3}$.
832. In the general case, if the discriminant is positive, then the number of pairs of conjugate complex roots is even, if the discriminant is negative, then it is odd.

In particular, for a third-degree polynomial, if $D>0$, then all roots are real; if $D<0$, then two roots are complex conjugates.

For a fourth-degree polynomial for $D>0$, either all roots are real or all roots are complex. For $D<0$ there are two real roots and one pair of conjugate complex roots.
833. $f=x^{n}+a, f^{\prime}=n x^{n-1}$,

$$
R\left(f^{\prime}, f\right)=h^{n} c_{i}^{n-1}, D(f)=(-1)^{\frac{n(n-1)}{2}} n^{n} a^{n-1}
$$

834. $f=x^{n}+p x+q, f^{\prime}=n x^{n-1}+p$,

$$
R\left(f^{\prime}, f\right)=h^{n} \prod_{k=0}^{n-2}\left(q+\frac{n-1}{n} p \sqrt[n-1]{-\frac{p}{n}} \varepsilon^{k}\right)
$$

where $\varepsilon=\cos \frac{2 \pi}{n-1}+i \sin \frac{2 \pi}{n-1}$.

$$
\begin{aligned}
& R\left(f^{\prime}, f\right)=n^{n}\left[q^{n-1}+\frac{(n-1)^{n-1} p^{n-1}}{n^{n-1}} \cdot\left(-\frac{p}{n}\right)(-1)^{n-2}\right], \\
& \\
& =n^{n} q^{n-1}+(-1)^{n-1}(n-1)^{n-1} p^{n}, \\
& D(f)=(-1)^{\frac{n(n-1)}{2}} n^{n} q^{n-1}+(-1)^{\frac{(n-1)(n-2)}{2}}(n-1)^{n-1} p^{n} .
\end{aligned}
$$

835. Let the greatest common divisor of m and n be d. Introduce the notations: $m_{1}=\frac{m}{d}, n_{1}=\frac{n}{d}, \varepsilon$ is a primitive nth root of unity, η is a primitive n_{1} th root of $1, a_{0} x^{m+n}+a_{1} x^{m}+a_{2}=f(x)$. Then $f^{\prime}(x)=(m+n) a_{0} x^{m+n-1}+$ $+m a_{1} x^{m-1}$. The roots of the derivative are $\xi_{1}=\xi_{2}=\ldots=\xi_{m-1}=0$,

$$
\xi_{m+k}=\sqrt{-\frac{m a_{1}}{(m+n) a_{0}}} \varepsilon^{k}=\xi_{m} \varepsilon^{k}, k=0,1, \ldots, n-1
$$

Furthermore,

$$
\begin{aligned}
R\left(f^{\prime}, f\right) & =(m+n)^{m+n} a_{0}^{m+n} a_{2}^{m-1} \prod_{k=0}^{n-1}\left[a_{2}+\frac{n a_{1}}{m+n} \xi_{m}^{m} \varepsilon^{k m}\right] \\
& =(m+n)^{m+n} a_{0}^{m+n} a_{2}^{m-1}\left[\prod_{k=0}^{n_{1}-1}\left(a_{2}+\frac{n a_{1}}{m+n}\right) \xi_{m} \eta^{k}\right]^{d} \\
& =(m+n)^{m+n} a_{0}^{m+n} a_{2}^{m-1}\left[a_{2}^{n_{1}}+(-1)^{m_{1}+n_{1}-1} \frac{n^{n_{1}} m^{m_{1}} a_{1}^{m_{1}+n_{1}}}{(m+n)^{m_{1}+n_{1}} a_{0}^{m_{1}}}\right]^{d} \\
& =a_{0}^{n} a_{2}^{m-1}\left[(m+n)^{m_{1}+n_{1}} a_{0}^{m_{1}} a_{2}^{n_{1}}+(-1)^{m_{1}+n_{1}-1} n^{n_{1}} m^{m_{1}} a_{1}^{\left.m_{1}+n_{1}\right]^{d}}\right.
\end{aligned}
$$

and, hence,

$$
\begin{aligned}
& D(f)=(-1)^{\frac{(m+n)(m+n-1)}{2}} a_{0}^{n-1} a_{2}^{m-1}\left[(m+n)^{m_{1}+n_{1}} a_{0}^{m_{1}} a_{2}^{n_{1}}\right. \\
&\left.+(-1)^{m_{1}+n_{1}-1} n^{n_{1}} m^{m_{1}} a_{2}^{m_{1}+n_{1}}\right]^{d .}
\end{aligned}
$$

836. The discriminants are equal.

$$
\text { 837. } \begin{aligned}
& x_{1} x_{2}+x_{3} x_{4}-x_{1} x_{3}-x_{2} x_{4}=\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right), \\
& x_{1} x_{3}+x_{2} x_{4}-x_{1} x_{4}-x_{2} x_{3}=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right), \\
& x_{1} x_{4}+x_{2} x_{3}-x_{1} x_{2}-x_{3} x_{4}=\left(x_{1}-x_{3}\right)\left(x_{4}-x_{2}\right)
\end{aligned}
$$

Squaring and multiplying these equations, we get the required result.
838. Let $f(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$. Then $D(f(x)(x-a))=a_{0}^{2 n}\left(a-x_{1}\right)^{2}\left(a-x_{2}\right)^{2}$

$$
\ldots\left(a-x_{n}\right)^{2} \prod_{i<k}\left(x_{i}-x_{k}\right)^{2}=D(f(x))[f(a)]^{2}
$$

839. Let us denote $\varphi(x)=x^{n-1}+x^{n-2}+\ldots+1$. Then $(x-1) \varphi(x)=x^{n}-1$, whence it follows that

$$
D(\varphi)[\varphi(1)]^{2}=D\left(x^{n}-1\right)=(-1)^{\frac{(n-1)(n-2)}{2}} n^{n}
$$

Consequently,

$$
D(\varphi)=(-1)^{\frac{(n-1)(n-2)}{2}} n^{n-2} .
$$

840. Let $\varphi(x)=x^{n}+a x^{n-1}+a x^{n-2}+\ldots+a$. Then $\varphi(x)(x-1)=x^{n+1}+$ $+(a-1) x^{n}-a$. Hence,

$$
(n a+1)^{2} D(\varphi)=(-1)^{\frac{n(n-1)}{2}} a^{n-1}\left[(n+1)^{n+1} a+n^{n}(1-a)^{n+1}\right]
$$

Thus,

$$
D(\varphi)=(-1)^{\frac{n(n-1)}{2}} a_{i}^{n-1} \frac{(n+1)^{n+1} a+n^{n}(1-a)^{n+1}}{(1+n a)^{2}} .
$$

841. Let $f(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$,

$$
\varphi(x)=b_{0}\left(x-y_{1}\right)\left(x-y_{2}\right) \ldots\left(x-y_{m}\right) .
$$

Then

$$
\begin{aligned}
& D(f \varphi)=\left(a_{0} b_{0}\right)^{2 m+2 n-2} \prod_{i<k}\left(x_{i}-x_{k}\right)^{2} \prod_{i<k}\left(y_{i}-y_{k}\right)^{2} \\
& \times \prod_{i=1}^{n} \prod_{k=1}^{m}\left(x_{i}-y_{k}\right)^{2}=a_{0}^{2 n-2} \prod_{i<k}\left(x_{i}-x_{k}\right)^{2} b_{0}^{2 m-2} \\
& \quad \times \prod_{i<k}\left(y_{i}-y_{k}\right)^{2}\left[a_{0}^{n} b_{0}^{n} \prod_{i=1}^{n} \prod_{k=1}^{m}\left(x_{i}-y_{k}\right)\right]^{2}=D(f) D(\varphi)[R(f, \varphi)]^{2} .
\end{aligned}
$$

842. $X_{p}^{m}\left(x^{p^{m-1}}-1\right)=x^{p}-1$. Consequently,

$$
D\left(X_{p}^{m}\right) D\left(x^{p}{ }^{m-1}-1\right)\left[R\left(x^{p^{n-1}}-1, X_{p}^{m}\right)\right]^{2}=D\left(x^{p^{m}}-1\right)
$$

Substituting the values of the known quantities, we get

$$
D\left(X_{p}\right)=p^{m p^{m}-(m+1) p^{m-1}}(-1)^{\frac{1}{2} p^{m-1}(p-1)}
$$

843. $X_{n} \prod_{\delta / n}\left(x^{\delta}-1\right)^{\mu\left(\frac{n}{\delta}\right)}=\left(x^{n}-1\right) \prod_{\substack{\delta / n \\ \delta \neq n}}\left(x^{\delta}-1\right)^{\mu\left(\frac{n}{\delta}\right)}$.

Let ε be a root of X_{n}. Then

$$
X_{n}^{\prime}(\varepsilon)=n \varepsilon^{n-1} \prod_{\substack{\delta / n \\ \delta \neq n}}\left(\varepsilon^{\delta}-1\right)^{\mu\left(\frac{n}{\delta}\right)}
$$

To simplify computations, let us first find the absolute value of the discriminant of X_{n} :

$$
\begin{aligned}
\left|D\left(X_{n}\right)\right|=\prod_{\varepsilon}\left|X_{n}^{\prime}(\varepsilon)\right|=n^{\varphi(n)} \prod_{\substack{\delta / n \\
\delta \neq n}} & \prod_{\varepsilon}\left(1-\varepsilon^{\delta}\right)^{\mu}\left(\frac{n}{\delta}\right) \\
& =n^{\varphi(n)} \prod_{\substack{\delta / n \\
\delta \neq n}}\left[X_{\frac{n}{\delta}}(1)\right]^{\frac{\varphi(n)}{\varphi\left(\frac{n}{\delta}\right)^{\mu}} \mu\left(\frac{n}{\delta}\right)} .
\end{aligned}
$$

Now, $X_{\frac{n}{\delta}}$ (1) differs from 1, provided only that $\frac{n}{\delta}$ is a power of a prime number. On the other hand, $\mu\left(\frac{n}{\delta}\right)$ is different from 0 , provided only that $\frac{n}{\delta}$ is not divisible by the square of a prime. Thus, in the latter product we must retain only those factors corresponding to $\frac{n}{\delta}=p_{1}, p_{2}, \ldots, p_{k}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct prime divisors of the number n.

Thus,

$$
\left|D\left(X_{n}\right)\right|=\frac{n^{\varphi(n)}}{\prod_{p / n} p^{\mp(n) / p-1}}
$$

Since all roots of X_{n} are complex, the sign of the discriminant is equal to $(-1)^{-\frac{\varphi(n)}{2}}$. Finally,

$$
D\left(X_{n}\right)=(-1)^{\frac{\varphi(n)}{2}} \prod_{p / n} \frac{n^{\varphi(n)}}{p^{\varphi(n) / p-1}}
$$

844. $E_{n}=n!\left(1+\frac{x}{1}+\ldots+\frac{x^{12}}{n!}\right)$,

$$
E_{n}^{\prime}=n!\left(1+\frac{x}{1}+\ldots+\frac{x^{n-1}}{(n-1)!}\right)
$$

Hence

$$
\begin{gathered}
E_{n}^{\prime}=E_{n}-x^{n}, \\
R\left(E_{n}, E_{n}^{\prime}\right)=\prod_{i=1}^{n}\left(-x_{i}\right)^{n}=(-1)^{n}\left[(-1)^{n} n!\right]^{n}=(n!)^{n}, \\
D\left(E_{n}\right)=(-1)^{\frac{n(n-1)}{2}}(n!)^{n} .
\end{gathered}
$$

845. It is easy to establish that

$$
(n x+n-a) F_{n}-x(x+1) F_{n}^{\prime}+\frac{a(a-1) \ldots(a-n)}{n!}=0 .
$$

Let $x_{1}, x_{2}, \ldots, x_{n}$ be roots of F_{n}. Then

$$
F_{n}^{\prime}\left(x_{i}\right)=\frac{c}{x_{i}\left(x_{i}+1\right)} \text { where } c=\frac{a(a-1) \ldots(a-n)}{n!} .
$$

Hence

$$
\begin{array}{r}
R\left(F_{n}, F_{n}^{\prime}\right)=\frac{c^{n}}{\Pi x_{i} \Pi\left(x_{i}+1\right)}=\frac{c^{n}}{\frac{a(a-1) \ldots(a-n+1)}{n!} \cdot \frac{(a-1) \ldots(a-n)}{n!}} \\
=\frac{a^{n-1}(a-1)^{n-2}(a-2)^{n-2} \ldots(a-n+1)^{n-2}(a-n)^{n-1}}{(n!)^{n-2}}, \\
D\left(F_{n}\right)=(-1)^{\frac{n(n-1)}{2}} \frac{a^{n-1}(a-1)^{n-2}(a-2)^{n-2} \ldots(a-n+1)^{n-2}(a-n)^{n-1}}{(n!)^{n-2}} .
\end{array}
$$

846. $P_{n}^{\prime}=n P_{n-1}$. Hence

Furthermore

$$
R\left(P_{n}, P_{n}^{\prime}\right)=n^{n} R\left(P_{n}, P_{n-1}\right)
$$

$$
P_{n}-x P_{n-1}+(n-1) P_{n_{-2}}=0
$$

Consequently, $\boldsymbol{P}_{\boldsymbol{n}}(\xi)=-(n-1) \boldsymbol{P}_{n-2}(\xi)$ if ξ is a root of \boldsymbol{P}_{n-1}, and therefore

$$
\begin{gathered}
R\left(P_{n}, P_{n-1}\right)=(-1)^{n-1}(n-1)^{n-1} R\left(P_{n-2}, P_{n-1}\right) \\
=(-1)^{n-1}(n-1)^{n-1} R\left(P_{n-1}, P_{n-2}\right) .
\end{gathered}
$$

It is now easy to establish that

$$
R\left(\boldsymbol{P}_{n}, P_{n-1}\right)=(-1)^{\frac{n(n-1)}{2}}(n-1)^{n-1}(n-2)^{n-2} \ldots 2^{2} \cdot 1
$$

Finally

$$
D\left(P_{n}\right)=1 \cdot 2^{2} \cdot 3^{3} \ldots(n-1)^{n-1} n^{n}
$$

847. $D\left(P_{n}\right)=1 \cdot 2^{3} \cdot 3^{5} \ldots n^{2 n-1}$.
848. $D\left(P_{n}\right)=2^{n-1} n^{n}$.
849. $D\left(P_{n}\right)=(n+1)^{n-1} \cdot 2^{n(n-1)}$.
850. $D\left(P_{n}\right)=1 \cdot 2^{3} \cdot 3^{5} \ldots n^{2 n-1} \cdot 1^{2(n-1)} \cdot 3^{2(n-2)} \ldots(2 n-3)^{2}$.
851. $D\left(P_{n}\right)=2^{2} \cdot 3^{4} \ldots n^{2 n-2} \cdot(n+1)^{n-1}$.
852. Let $f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$.
$D(f)=\Pi\left(x_{i}-x_{k}\right)^{2}$. We seek the maximum of $D(f)$ by the rule for finding a relative maximum by solving the system of equations

$$
\begin{gathered}
x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=n(n-1) R^{2} \\
\frac{\partial}{\partial x_{i}}\left(D-\lambda\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)\right)=0
\end{gathered}
$$

It is easy to see that

$$
\frac{\partial D}{\partial x_{i}}=\frac{D f^{\prime \prime}\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

We thus have

$$
f^{\prime \prime}(x) D-2 \lambda x_{i} f^{\prime}\left(x_{i}\right)=0 \text { for } i=1,2, \ldots, n
$$

Thus, a polynomial $f(x)$ that maximizes the discriminant must satisfy the differential equation

$$
c f(x)-2 \lambda x f^{\prime}(x)+D f^{\prime \prime}(x)=0
$$

where c is some constant. Dividing by $\frac{c}{n}$ and comparing the coefficients of x^{n}, we find that the differential equation must have the form

$$
n f(x)-x f^{\prime}(x)+c^{\prime} f^{\prime \prime}(x)=0
$$

where c^{\prime} is a new constant.
Comparing the coefficients of x^{n-1} and x^{n-2}, we find $a_{1}=0, a_{2}=$ $=-\frac{n(n-1)}{2} c^{\prime}$. Now we can determine c^{\prime}. Indeed,

$$
n(n-1) R^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=a_{1}^{2}-2 a_{2}=n(n-1) c^{\prime}
$$

whence $c^{\prime}=R^{2}$.
Continuing to compare the coefficients, we find that $f(x)$ is of the form

$$
f(x)=x^{n}-\frac{n(n-1)}{2} R^{2} x^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2 \cdot 4} R^{4} x^{n-4}-\ldots
$$

It is easy to see that

$$
f(x)=R^{n} P_{n}\left(\frac{x}{R}\right)
$$

where P_{n} is a Hermite polynomial.

$$
D(f)=R^{n(n-1)} \cdot 1 \cdot 2^{2} \cdot 3^{3} \ldots n^{n}
$$

This is the desired maximum of the discriminant.
853. $2^{2 n}(-1)^{n} a_{0} a_{n}[D(f)]^{2}$.
854. $m^{m n}(-1)^{\frac{m(m-1) n}{2}} a_{0}^{m-1} a_{n}^{m-1}[D(f)]^{m}$.
855. $F(x)=\prod_{i=1}^{n}\left(\varphi(x)-x_{i}\right)$.

Hence

$$
D(F)=\prod_{i=1}^{n} D\left(\varphi(x)-x_{i}\right)\left[\prod_{i<k} R\left(\varphi(x)-x_{i}, \varphi(x)-x_{k}\right)\right]^{2}
$$

It is furthermore obvious that

$$
R\left(\varphi(x)-x_{i}, \varphi(x)-x_{k}\right)=\left(x_{i}-x_{k}\right)^{m} .
$$

Therefore

$$
D(F)=\prod_{i=1}^{n} D\left(\varphi(x)-x_{i}\right), \prod_{i<k}\left(x_{i}-x_{k}\right)^{2 m}=[D(f)]^{m} \prod_{i=1}^{n} D\left(\varphi(x)-x_{i}\right)
$$

which completes the proof.
856. $(y+1)(y-5)(y-19)=0$.
857. (a) Solution. $x^{3}=3 x+4$. Let $y=1+x+x^{2}$ where x is a root of the given equation. Then

$$
\begin{aligned}
& y x=x+x^{2}+x^{3}=x+x^{2}+3 x+4=4+4 x+x^{2} \\
& y x^{2}=4 x+4 x^{2}+x^{3}=4 x+4 x^{2}+3 x+4=4+7 x+4 x^{2} .
\end{aligned}
$$

Eliminating x, we get

$$
\begin{gathered}
\left|\begin{array}{ccc}
1-y & 1 & 1 \\
4 & 4-y & 1 \\
4 & 7 & 4-y
\end{array}\right|=0, \\
y^{3}-9 y^{2}+9 y-9=0
\end{gathered}
$$

(b) $y^{3}-7 y^{2}+3 y-1=0$;
(c) $y^{4}+5 y^{3}+9 y^{2}+7 y-6=0$;
(d) $y^{4}-12 y^{3}+43 y^{2}-49 y+20=0$.
858. (a) $y^{3}-2 y^{2}+6 y-4=0, x=-\frac{y^{2}-2 y+4}{2}$;
(b) $y^{4}-9 y^{3}+31 y^{2}-45 y+13=0, x=\frac{y^{2}-3 y+2}{3}$;
(c) $y^{4}+2 y^{3}-y^{2}-2 y+1=0$, there is no inverse transformation.
859. $y^{3}-y^{2}-2 y+1=0$.

The transformed equation coincides with the original one. This means that among the roots of the original equation there are roots x_{1} and x_{2} connected by the relation $x_{2}=2-x_{1}^{2}$.
860. Let $x_{2}=\varphi\left(x_{1}\right)$, where $\varphi\left(x_{1}\right)$ is a rational function with rational coefficients. Without loss of generality, we can take it that $x_{2}=a x_{1}^{2}+b x_{1}+c$. The numbers $a x_{1}^{2}+b x_{1}+c, a x_{2}^{2}+b x_{2}+c, a x_{3}^{2}+b x_{3}+c$ are roots of a cubic equation with rational coefficients, one of the roots of which coincides with the root $x_{2}=a x_{1}^{2}+b x_{1}+c$ of the given equation. Since the given equation is irreducible, the other roots must coincide as well. Thus, either $a x_{2}^{2}+b x_{2}+c=$ $=x_{3}, a x_{3}^{2}+b x_{3}+c=x_{1}$, or $a x_{2}^{2}+b x_{2}+c=x_{1}, a x_{3}^{2}+b x_{3}+c=x_{3}$. The latter equation is impossible since x_{3} cannot be a root of a quadratic equation with
rational coefficients. Thus, on our assumption the roots of the given equation are connected by the relations

$$
\begin{aligned}
& x_{2}=a x_{1}^{2}+b x_{1}+c, \\
& x_{3}=a x_{2}^{2}+b x_{2}+c, \\
& x_{1}=a x_{3}^{2}+b x_{3}+c .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\sqrt{D}=\left(x_{2}-x_{1}\right) & \left(x_{3}-x_{2}\right)\left(x_{1}-x_{3}\right) \\
& =\left[a x_{1}^{2}+(b-1) x_{1}+c\right]\left[a x_{2}^{2}+(b-1) x_{2}+c\right]\left[a x_{3}^{2}+(b-1) x_{3}+c\right]
\end{aligned}
$$

is a rational number, being a symmetric function of x_{1}, x_{2}, x_{3} with rational coefficients. The necessity of the condition is proved.

Now suppose that the discriminant D is the square of the rational number d. Then

$$
x_{2}-x_{3}=\frac{d}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}=\frac{d}{3 x_{1}^{2}+2 a x_{1}+b}
$$

On the other hand,

$$
x_{2}+x_{3}=-a-x_{1} .
$$

From this it follows that x_{2} and x_{3} are rational functions of x_{1}. This proves the sufficiency of the condition.
861. (a) $\frac{2+\sqrt{2}+\sqrt{6}}{4}$,
(b) $\frac{-3+7 \sqrt[3]{2}-\sqrt[3]{4}}{23}$,
(c) $1+3 \sqrt[4]{2}+2 \sqrt{2}-\sqrt[4]{8}$.
862. (a) $\frac{\alpha^{2}-\alpha+1}{3}$, (b) $17 \alpha^{2}-3 x+55$, (c) $3-10 \alpha+8 \alpha^{2}-3 \alpha^{3}$,
(d) the denominator vanishes for one of the roots of the equation.
863. $m x_{1}^{2}+n x_{1}+p=\frac{\left(p m-b m^{2}+a m n-n^{2}\right) x_{1}+\left(a m p-n p-c m^{2}\right)}{m x_{1}+m a-n}$.
864. If

$$
x_{2}=\frac{\alpha x_{1}+\beta}{\gamma x_{1}+\delta}
$$

then

$$
\begin{gathered}
x_{3}=\frac{\alpha x_{2}+\beta}{\gamma x_{2}+\delta} \\
x_{1}=\frac{\alpha x_{3}+\beta}{\gamma x_{3}+\delta}=\frac{\left(\alpha^{2}+\beta \gamma\right) x_{2}+(\alpha+\delta) \beta}{(\alpha+\delta) \gamma x_{2}+\left(\beta \gamma+\delta^{2}\right)}
\end{gathered}
$$

On the other hand, $x_{1}=\frac{-\delta x_{2}+\beta}{\gamma x_{2}-\alpha}$, whence follows the necessity of the relation

$$
\alpha \delta-\beta \gamma=(\alpha+\delta)^{2}
$$

865. Let

$$
a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right) .
$$

Then

$$
a_{0} x^{n}-a_{1} x^{n-1}+\ldots+(-1)^{n} a_{n}=a_{0}\left(x+x_{1}\right)\left(x+x_{2}\right) \ldots\left(x+x_{n}\right) .
$$

Multiplying these equations, we get

$$
\begin{aligned}
a_{0}^{2}\left(x^{2}-x_{1}^{2}\right)\left(x^{2}-x_{2}^{2}\right) \ldots & \left(x^{2}-x_{n}^{2}\right) \\
& =\left(a_{0} x^{n}+a_{2} x^{n-2}+\ldots\right)^{2}-\left(a_{1} x^{n-1}+a_{3} x^{\prime \prime-3}+\ldots\right)^{2} .
\end{aligned}
$$

From this we conclude that in order to perform the transformation $y=x^{2}$, it is necessary to substitute \boldsymbol{y} for \boldsymbol{x}^{2} in the equation

$$
\left(a_{0} x^{n}+a_{2} x^{n-2}+\ldots\right)^{2}-\left(a_{1} x^{n-1}+a_{3} x^{n-3}+\ldots\right)^{2}=0
$$

866. The desired equation results from a substitution of y for x^{3} in the equation

$$
\begin{aligned}
& \left(a_{0} x^{n}+a_{3} x^{n-3}+\ldots\right)^{3}+\left(a_{1} x^{n-1}+a_{4} x^{n-4}+\ldots\right)^{3} \\
& \quad+\left(a_{2} x^{n-2}+a_{5} x^{n-5}+\ldots\right)^{3}-3\left(a_{0} x^{n}+a_{3} x^{n-3}+\ldots\right) \\
& \quad \times\left(a_{1} x^{n-1}+a_{4} x^{n-4}+\ldots\right)\left(a_{2} x^{n-2}+a_{5} x^{n-5}+\ldots\right)=0 .
\end{aligned}
$$

867. There are only a finite number of polynomials $x^{n}+a_{1} x^{n-1}+\ldots$ with integral coefficients the moduli of whose roots do not exceed 1 , because the coefficients of such polynomials are obviously restricted:

$$
\left|a_{k}\right| \leqslant \frac{n(n-1)}{\ldots(n-k+1)} \text {. }
$$

Let $f=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}, a_{n} \neq 0$ be one of such polynomials and let $x_{1}, x_{2}, \ldots, x_{n}$ be its roots. Denote $f_{m}=\left(x-x_{1}^{m}\right) \quad\left(x-x_{2}^{m}\right) \ldots\left(x-x_{n}^{\prime \prime}\right)$. All polynomials f_{m} have integral coefficients and all their roots do not exceed 1 in absolute value. Hence, there are only a finite number of distinct roots among them. Choose an infinite sequence of integers $m_{0}<m_{1}<m_{2}<\ldots$ such that $f_{m_{0}}=f_{m_{1}}=f_{m_{2}}=\ldots$. This signifies that

$$
\begin{gathered}
x_{1}^{m} i_{i}=x_{\alpha_{1}}^{m_{0}}, \\
x_{2}^{m_{i}}=x_{\alpha_{2}}^{m_{0}}, \\
\cdots \cdots \\
x_{n}^{m_{i}}=x_{\alpha_{n}}^{m_{0}}
\end{gathered}
$$

where $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is some permutation of the indices $1,2, \ldots, n$. Since there are infinitely many exponents m_{i} and only a finite number of permutations, there will be two (and infinitely many) exponents $m_{i_{1}}$ and $m_{i_{2}}$ to which corresponds one and the same permutation ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$). For such exponents we have the equations

$$
\begin{gathered}
x_{1}^{m_{1}^{i_{1}}}=x_{1}^{m i_{2}}, \\
x_{2}^{m_{i} i_{1}}=x_{2}^{m_{i_{2}}}, \\
\cdots \cdots \cdots \\
x_{n}^{m_{i_{1}}}=x_{n}^{m_{i_{2}}}
\end{gathered}
$$

which show that $x_{1}, x_{2}, \ldots, x_{n}$ are roots of unity of degree $m_{i_{2}}-m_{i_{1}}$ because $x_{1}, x_{2}, \ldots, x_{n}$ are nonzero, by virtue of the condition $a_{n} \neq 0$.
868. Let $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial which changes sign under odd permutations of the variables. Since $F\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=-F\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{n}\right)=0, F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is divisible by $x_{1}-x_{2}$. In similar fashion we prove that $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is divisible by all the differences $x_{i}-x_{k}$. Hence, $F\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right)$ is divisible by $\Delta=\prod_{i>k}\left(x_{i}-x_{k}\right)$ equal to the Vandermonde determinant. Since the determinant Δ changes sign under odd permutations of the variables, $\frac{F}{\Delta}$ is a symmetric polynomial.
869. Let $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial that does not change under even permutations of the variables. Denote by $\bar{\varphi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a polynomial obtained from $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by means of some definite odd permutation.

It is easy to verify that for every odd permutation, φ goes into $\bar{\varphi}, \bar{\varphi}$ goes into φ. Hence, $\varphi+\bar{\varphi}$ does not change under all permutations, $\varphi-\bar{\varphi}$ changes sign under odd permutations.

Next,

$$
\varphi=\frac{\varphi+\bar{\varphi}}{2}+\frac{\varphi-\dot{\varphi}}{2}=F_{1}+F_{\mathbf{2}} \Delta
$$

where Δ is the Vandermonde determinant. On the basis of the result of Prob$\mathrm{lcm} 868, F_{2}$ is a symmetric polynomial; F_{1} is also a symmetric polynomial since it does not change under all permutations of the variables.
870. $\left(f_{1}^{2}-f_{2}\right) \Delta$, where f_{1}, f_{2} are elementary symmetric polynomials in $x_{1}, x_{2}, \ldots, x_{n}$.
871. $u^{3}+a(\alpha+\beta+\gamma) u^{2}+\left[\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) b+(\alpha \beta+\alpha \gamma+\beta \gamma)\left(a^{2}-b\right)\right] u$

$$
\begin{aligned}
& +c\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)+\frac{a b-3 c}{2}\left(\alpha^{2} \beta+\alpha \beta^{2}+\alpha^{2} \gamma+\alpha \gamma^{2}+\beta^{2} \gamma+\beta \gamma^{2}\right) \\
& +\alpha \beta \gamma\left(a^{3}-3 a b+6 c\right)+\frac{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}{2} \sqrt{\Delta}=0
\end{aligned}
$$

where Δ is the discriminant of the given equation.
872. $u^{3}-3 p p^{\prime} u-\frac{27 q q^{\prime}+\sqrt{\Delta \Delta^{\prime}}}{2}=0$, where Δ and Δ^{\prime} arc discriminants of the given equations.
873. Let $y=a x^{2}+b x+c$ be the Tschirnhausen transformation connecting the given equations. Then, for some choice of numbering,

$$
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=a\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)+b\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+c\left(x_{1}+x_{2}+x_{3}\right)
$$

will be a rational number. Hence, one of the equations

$$
u^{3}-3 p p^{\prime} u-\frac{27 q q^{\prime} \pm \sqrt{\Delta \Delta^{\prime}}}{2}=0
$$

(Problem 872) has a rational root. Whence it follows that $V \overline{\Delta \Delta^{\prime}}$ will be a rational number. This proves the necessity of the condition.

Conversely, let the equation

$$
\begin{equation*}
u^{3}-3 p p^{\prime} u-\frac{27 q q^{\prime} \pm \sqrt{\Delta \Delta^{\prime}}}{2}=0 \tag{*}
\end{equation*}
$$

have a rational root u.

It is easy to see that the discriminant of equation (*) is equal to $\frac{27^{2}}{4}\left(q \sqrt{\Delta^{\prime}}-\sqrt{\Delta} q^{\prime}\right)^{2}$ and, consequently, differs from $\sqrt{\bar{\Delta}}$ by a factor equal to the square of a rational number. Hence, the difference $u^{\prime}-u^{\prime \prime}$ of the second and third roots of the equation differ by a rational factor from $\sqrt{\Delta}$.

For y_{1}, y_{2}, y_{3} we have the system of equations:

$$
\begin{aligned}
y_{1}+y_{2}+y_{3} & =0, \\
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} & =u, \\
\left(x_{2}-x_{3}\right) y_{1}+\left(x_{3}-x_{1}\right) y_{2}+\left(x_{1}-x_{2}\right) y_{3}=u^{\prime}-u^{\prime \prime} & =r \sqrt{ } . \ddot{\Delta} .
\end{aligned}
$$

From this system we find

$$
y_{1}=\frac{-3 u x_{1}+\left(x_{2}-x_{3}\right) r \sqrt{\Delta}}{6 p} .
$$

But $\left(x_{2}-x_{3}\right) \sqrt{\Delta}$ is expressed rationally in terms of x_{1}. This proves the sufficiency of the conditions.
874. The variables $x_{1}, x_{2}, \ldots, x_{n}$ are expressible linearly in terms of f_{1}, $\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$. Hence, every polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ may be represented as a polynomial in $f_{1}, \eta_{1}, \eta_{2}, \ldots, \eta_{n-1}$:

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum A f_{1}^{\alpha_{0}} \eta_{1}^{\alpha_{1}} \eta_{2}^{\alpha_{2}} \ldots \eta_{n-1}^{\alpha_{n}-1}
$$

In a circular permutation of the variables $x_{1}, x_{2}, \ldots, x_{n}$, the monomial $A f_{1}^{x_{0}} \eta_{1}^{\alpha_{1}} \eta_{2}^{\alpha_{2}} \ldots \eta_{n-1}^{\alpha_{n-1}}$ acquires the factor $\varepsilon^{-\left(\alpha_{1}+2 x_{2}+\ldots+(n-1) \alpha_{n-1}\right) \text {. Hence, }}$ so that $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ should not change in circular permutations of the variables, it is necessary and sufficient that $\alpha_{1}+2 \alpha_{2}+\ldots+(n-1) \alpha_{n-1}$ be divisible by n.
875. We can take $f_{1}, \eta_{1}^{n}, \eta_{2} \eta_{1}^{-2}, \ldots, \eta_{n-1} \eta_{1}^{-(n-1)}$.
876. Let $\eta_{1}=x_{1}+x_{2} \varepsilon+x_{3} \varepsilon^{2}, \eta_{2}=x_{1}+x_{2} \varepsilon^{2}+x_{3} \varepsilon$ where $\varepsilon=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then $\frac{\eta_{1}^{2}}{\eta_{2}}=\varphi_{1}+i \sqrt{3} \varphi_{2}$ where φ_{1} and φ_{2} are some rational functions of x_{1}, x_{2}, x_{3} with rational coefficients that do not change under a circular permutation of x_{1}, x_{2}, x_{3}. It is easy to see that every rational function of x_{1}, x_{2}, x_{3} that remains fixed under circular permutations of the variables is expressible rationally in terms of $f_{1}=x_{1}+x_{2}+x_{3}, \varphi_{1}$ and φ_{2}.

It is sufficient to prove this for $\eta_{2} \eta^{-2}$ and η_{1}^{3}. But

$$
\begin{gathered}
\eta_{2} \eta_{1}^{-2}=\frac{1}{\varphi_{1}+i \varphi_{2} \sqrt{3}}, \\
\eta_{1}=\left(\frac{\eta_{1}^{2}}{\eta_{2}}\right)^{2} \cdot \frac{\eta_{1}^{2}}{\eta_{1}}=\left(\varphi_{1}+i \varphi_{2} \sqrt{3}\right)^{2}\left(\varphi_{1}-i \varphi_{2} \sqrt{3}\right) .
\end{gathered}
$$

877. For $n=4$,

$$
\begin{aligned}
& \eta_{1}=x_{1}+i x_{2}-x_{3}-i x_{4}, \\
& \eta_{2}=x_{1}-x_{2}+x_{3}-x_{4}, \\
& \eta_{3}=x_{1}-i x_{2}-x_{3}+i x_{4} .
\end{aligned}
$$

? ${ }^{2} \theta_{1}=\eta_{1} \eta_{3}, \theta_{2}+i \theta_{3}=\frac{r_{i 1} \eta_{i 2}}{\eta_{3}}, \theta_{2}-i \theta_{3}=\frac{\eta_{3} \eta_{2}}{\eta_{1}} . \theta_{1}, \theta_{2}, \theta_{3}$ are rational functions (with rational coefficients) of $x_{1}, x_{2}, x_{3}, x_{4}$ that do not change under circular permutations. It is easy to see that together with $f=x_{1}+x_{2}+x_{3}+x_{4}$ they form a system of elementary functions. Indeed,

$$
\begin{gathered}
\eta_{2} \eta_{1}^{-2}=\frac{\theta_{2}-i \theta_{3}}{\theta_{1}}, \quad \eta_{3} \eta_{1}^{-3}=\frac{\theta_{2}-i \theta_{3}}{\theta_{1}\left(\theta_{2}+i \theta_{3}\right)}, \\
\eta_{1}^{4}=-\frac{\theta_{1}^{4}\left(\theta_{2}+i \theta_{3}\right)}{\theta_{2}-i \theta_{3}}
\end{gathered}
$$

878. Let $\eta_{1}=x_{1} \varepsilon+x_{2} \varepsilon^{2}+x_{3} \varepsilon^{3}+x_{4} \varepsilon^{4}+x_{5}$,

$$
\begin{aligned}
& \eta_{2}=x_{1} \varepsilon^{2}+x_{2} \varepsilon^{4}+x_{3} \varepsilon+x_{4} \varepsilon^{3}+x^{5} \\
& \eta_{3}=x_{1} \varepsilon^{3}+x_{2} \varepsilon+x_{3} \varepsilon^{4}+x_{4} \varepsilon^{2}+x_{5} \\
& \eta_{4}=x_{1} \varepsilon^{4}+x_{2} \varepsilon^{3}+x_{3} \varepsilon^{2}+x_{4} \varepsilon+x_{5}
\end{aligned}
$$

Let us consider the rational function $\lambda_{1}=\frac{\eta_{1} \cdot \eta_{2}}{\eta_{3}}$ and arrange it in powers of ε, replacing 1 by $-\varepsilon-\varepsilon^{2}-\varepsilon^{3}-\varepsilon^{4}$:

$$
\lambda_{1}=\varepsilon \varphi_{1}+\varepsilon^{2} \varphi_{2}+\varepsilon^{3} \varphi_{3}+\varepsilon^{4} \varphi_{4}
$$

The coefficients of $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}$ are rational numbers. Substituting $\varepsilon^{2}, \varepsilon^{3}$ and ε^{4} for ε, we get

$$
\begin{aligned}
& \lambda_{32}=\frac{\eta_{2} \eta_{4}}{\eta_{1}}=\varepsilon^{2} \varphi_{1}+\varepsilon^{4} \varphi_{2}+\varepsilon \varphi_{3}+\varepsilon^{3} \varphi_{4} \\
& \lambda_{3}=\frac{\eta_{3} \eta_{1}}{\eta_{4}}=\varepsilon^{3} \varphi_{1}+\varepsilon \varphi_{2}+\varepsilon^{4} \varphi_{3}+\varepsilon^{2} \varphi_{4} \\
& \lambda_{4}=-\frac{\eta_{4} \eta_{3}}{\eta_{2}}=\varepsilon^{4} \varphi_{1}+\varepsilon^{3} \varphi_{4}+\varepsilon^{2} \varphi_{3}+\varepsilon \varphi_{4}
\end{aligned}
$$

For the "elementary functions" we can take $f, \varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}$. Indeed λ_{1}, $\lambda_{2}, \lambda_{3}, \lambda_{4}$ can be expressed rationally in terms of them. Furthermore,

$$
\begin{array}{lrl}
\eta_{2} \eta_{1}^{-2}=\lambda_{1}^{-1} \lambda_{2} \lambda_{4}^{-1}, & \eta_{4} \eta_{1}^{-4} & =\lambda_{1}^{-2} \lambda_{2} \lambda_{3}^{-1} \lambda_{4}^{-1}, \\
\eta_{3} \eta_{1}^{-3}=\lambda_{1}^{-2} \lambda_{2} \lambda_{4}^{-1}, & \eta_{1}^{5} & =\lambda_{1}^{3} \lambda_{2}^{-1} \lambda_{3} \lambda_{4}^{2} .
\end{array}
$$

CHAPTER 7

LINEAR ALGEBRA

879. (a) Dimensionality $r=2$, the basis is generated, for example, by X_{1} and X_{2};
(b) $r=2$, the basis is generated, say, by X_{1}, and X_{2};
(c) $r=2$, the basis is generated, say, by X_{1} and X_{2}.
880. (a) The dimensionality of the intersection is equal to one, the basis vector

$$
Z=(5,-2,-3,-4)=X_{1}-4 X_{2}=3 Y_{1}-Y_{2}
$$

The dimensionality of the sum is equal to 3 , the basis is generated, say, by the vectors Z, X_{1}, Y_{1}.
(b) The sum coincides with the first space, the intersection with the second.
(c) The sum is the entire four-dimensional space, the intersection consists only of the zero vector.
881.
(a) $\left(\frac{5}{4}, \frac{1}{4},-\frac{1}{4},-\frac{1}{4}\right)$,
(b) $(1,0,-1,0)$,
882.

$$
\begin{aligned}
\text { (a) } \begin{aligned}
x_{1}^{\prime} & =\frac{x_{1}+x_{2}-x_{3}-x_{3}}{2}, \\
& x_{2}^{\prime}=\frac{x_{1}-x_{2}+x_{3}-x_{1}}{2}, \\
x_{3}^{\prime} & =\frac{x_{1}-x_{2}-x_{3}+x_{4}}{2},
\end{aligned} \quad x_{4}^{\prime}=\frac{-x_{1}+x_{2}+x_{3}+x_{4}}{2} ;
\end{aligned}
$$

(b) $x_{1}^{\prime}=x_{2}-x_{3}+x_{4}, \quad x_{2}^{\prime}=-x_{1}+x_{2}, \quad x_{3}^{\prime}=x_{4}, \quad x_{4}^{\prime}=x_{1}-x_{2}+x_{3}-x_{4}$.
883. $x_{1}^{\prime} x_{2}^{\prime}+x_{3}^{\prime} x_{4}^{\prime}=\frac{1}{8}$.
884. Let $a_{0}+a_{1} \cos x+a_{2} \cos ^{2} x+\ldots+a_{n} \cos ^{n} x=b_{0}+b_{1} \cos x$

$$
+b_{2} \cos 2 x+\ldots+b_{n} \cos n x .
$$

Then $a_{0}=b_{0}-b_{2}+b_{4}-\ldots$,

$$
\begin{aligned}
& a_{k}=2^{k-1}\left[b_{k}\right. \\
&+\left.\sum_{1 \leqslant p \leqslant \frac{n-k}{2}}(-1)^{p} \frac{(k+2 p)(k+p-1)(k+p-2) \ldots(k+1)}{p!} b_{k+2 p}\right], \\
& b_{0}=a_{0}+\sum_{1 \leqslant p \leqslant \frac{n}{2}} 2^{-2 p} C_{2 p}^{p} a_{2 p}, \\
& b_{k}=2^{1-k}\left(a_{k}+\sum_{1 \leqslant p \leqslant \frac{n-k}{2}} 2^{-2 p} C_{k+2 p}^{p} a_{k+2 p}\right) .
\end{aligned}
$$

885. The point of intersection with the first line has the coordinates $\left(\begin{array}{ccc}14 & \frac{1}{9}, & 7 \\ 3 & \frac{11}{9} \\ 9\end{array}\right)$, with the second, the coordinates ($42,1,7,11$).
886. The straight lines $X_{0}+t X_{1}, Y_{0}+t Y_{1}$ lie in the manifold $X_{0}+t\left(Y_{0}-\right.$ $\left.-X_{0}\right)+t_{1} X_{1}+t_{2} Y_{1}$.
887. For the problem to be solvable for the straight lines $X_{0}+t X_{1}, Y_{0}+$ $+t Y_{1}$, it is necessary and sufficient that the vectors $X_{0}, Y_{0}, X_{1}, Y_{1}$ be linearly dependent. This is equivalent to being able to embed straight lines in a three-dimensional subspace containing the coordinate origin.
888. The planes $X_{0}+t_{1} X_{1}+t_{2} X_{2}$ and $Y_{0}+t_{1} Y_{1}+t_{2} Y_{2}$ can be embedded in the manifold $X_{0}+t\left(Y_{0}-X_{0}\right)+t_{1} X_{1}+t_{2} X_{2}+t_{3} Y_{1}+t_{4} Y_{2}$.
889. There are 6 such çases:
(1) the planes have no common points and cannot be embedded in a four-dimensional linear manifold (the planes cross absolutely);
(2) the planes have no common points, are contained in a four-dimensional manifold, but are not embedded in a three-dimensional manifold (they cross parallel to a straight line);
(3) the planes have no common points and are embedded in a three-dimensional manifold (the planes are parallel);
(4) the planes have one common point. In this case, they are embedded in a four-dimensional manifold, but cannot be embedded in a three-dimensional manifold;
(5) the planes intersect along a straight line;
(6) the planes are coincident.

In three-dimensional space, only cases 3,5,6 are realized.
890. Let $Q=X_{0}+P$ be a linear manifold, let P be a linear space. If $X_{1} \in Q$ and $X_{2} \in Q$, then $X_{1}=X_{0}+Y_{1}, X_{2}=X_{0}+Y_{2}$, where Y_{1} and Y_{2} belong to P. Then $\alpha X_{1}+(1-\alpha) X_{2}=X_{0}+\alpha Y_{1}+(1-\alpha) Y_{2} \in Q$ for any α. Conversely, let Q be a set of vectors containing, together with the vectors X_{1}, X_{2}, their linear combination $\alpha X_{1}+(1-\alpha) X_{2}$ for arbitrary α. Let X_{3} be some fixed vector from Q and let P denote the set of all vectors $Y=X-X_{0}$. If $Y \in P$, then $c Y \in P$ for any c, because $c Y=c X+(1+c) X_{0}-X_{0}$. Furthermore, if $Y_{1}=X_{1}-$ $-X_{0} \in P$ and $Y_{2}=X_{2}-X_{0} \in P$, then $\alpha Y_{1}+(1-\alpha) Y_{2}=\alpha X_{1}+(1-\alpha) X_{2}-X_{0} \in P$ for any α. Now let us take some fixed $\alpha, \alpha \neq 0, \alpha \neq 1$, arbitrary c_{1}, c_{2}. Then $\frac{c_{1}}{\alpha} Y_{1} \in P, \frac{c_{2}}{1-\alpha} Y_{2} \in P$ for any $Y_{1}, Y_{2} \in P$, and, hence, also

$$
c_{1} Y_{1}+c_{2} Y_{2}=\alpha \frac{c_{1}}{\alpha} Y_{1}+(1-\alpha) \frac{c_{2}}{1-\alpha} Y_{2} \in P .
$$

Consequently, P is a linear space and Q is a linear manifold.
Remark. The result is not true if the base field is a field of residues modulo 2.
891. (a) 9 , (b) 0.
892. (a) 90°, (b) 45°, (c) $\cos \varphi=\frac{3}{\sqrt{77}}$.
893. $\cos \varphi=\frac{1}{\sqrt{5}}$.
894. $\cos A=\frac{5}{\sqrt{39}}, \quad \cos B=\frac{8}{\sqrt{78}}, \quad \cos C=-\frac{\sqrt{2}}{3}$.
895. \sqrt{n}.
896. For odd n there are no orthogonal diagonals. For $n=2 m$, the number of diagonals orthogonal to the given one is equal to $C_{2 m-1}^{m-1}$.
897. The coordinates of the points are represented by the rows of the matrix
$\left|\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \sqrt{\frac{3}{4}} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \sqrt{\frac{4}{6}} & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots\end{array}\right|$.
898. $R=\sqrt{2(n+1)}$,

The coordinates of the centre are

$$
\left(\frac{1}{2}, \quad \frac{1}{\sqrt{12}}, \cdots, \quad \frac{1}{\sqrt{2 n(n-1)},} \quad \sqrt{2(n+1) n}\right)
$$

899. $\left(\begin{array}{cccc}3 & 1 & 2 & 1 \\ \sqrt{15} & \sqrt{15} & \sqrt{15}, & \sqrt{15}\end{array}\right)$.
900. $\left(0, \quad \frac{1}{\sqrt{2}}, \quad-\frac{1}{\sqrt{2}}, \quad 0\right)$.
901. For the other two vectors we can take, say,

$$
\begin{aligned}
& \frac{1}{\sqrt{26}}(0,-4,3,1) \text { and } \frac{1}{3 \sqrt{26}}(-13,5,6,2) \\
& \text { 902. }(1,2,1,3),(10,-1,1,-3),(19,-87,-61,72) \\
& \text { 903. For example, }\left(\begin{array}{rrrrr}
0 & 7 & 3 & -4 & -2 \\
39 & -37 & 51 & -29 & 5
\end{array}\right) .
\end{aligned}
$$

904. The system is interpreted as a problem in seeking vectors orthogonal to a system of vectors depicting the coefficients of the equations. The set of sought-for vectors is a space orthogonally complementary to the space generated by the given vectors. The fundamental system of solutions is the basis of the space of the desired vectors.
905. For example, $\frac{1}{\sqrt{6}}(1,0,2,-1), \frac{1}{\sqrt{498}}(1,12,8,17)$.
906. (a) $X^{\prime}=(3,1,-1,-2) \in P$, (b) $X^{\prime}=(1,7,3,3) \in P$,

$$
X^{\prime \prime}=(2,1,-1,4) \perp P, \quad X^{\prime \prime}=(-4,-2,6,0) \perp P
$$

907. Let $A_{1}, A_{2}, \ldots, A_{m}$ be linearly independent, and let P be the space spanned by them. Furthermore, let $X=Y+Z, Y \in P, Z \perp P$.

Set

$$
Y=c_{1} A_{1}+c_{2} A_{2}+\ldots+c_{m} A_{m}
$$

Form a system of equations to determine $c_{1}, c_{2}, \ldots, c_{m}$; to do this, use scalar multiplication of the latter equation by $A_{i}, i=1,2, \ldots, m$ and take into account that $Y A_{i}=X A_{i}$.

We obtain

$$
\begin{gathered}
c_{1} A_{1}^{2}+c_{2} A_{1} A_{2}+\cdots+c_{m} A_{1} A_{n}=X A_{1} \\
c_{1} A_{2} A_{1}+c_{2} A_{2}^{2}+\cdots+c_{m} A_{2} A_{m}=X A_{2} \\
\cdots \cdots+c_{m} A_{m}^{2}=X A_{m}
\end{gathered}
$$

The determinant Δ of this system is nonzero by virtue of the linear independence of $A_{1}, A_{2}, \ldots, A_{m}$.

We find $c_{1}, c_{2}, \ldots, c_{m}$ and substitute them into the expression for Y. This yields

$$
Y=\frac{1}{\Delta}\left|\begin{array}{ccccc}
0 & -A_{1} & -A_{2} & \cdots & -A_{m} \\
X A_{1} & A_{1}^{2} & A_{1} A_{2} & \cdots & A_{1} A_{m} \\
X A_{2} & A_{2} A_{1} & A_{2}^{2} & \ldots & A_{2} A_{m} \\
\cdots & \ldots & \cdots & \cdots & \cdots \\
X A_{m} & A_{m} A_{1} & A_{m} A_{2} & \cdots & A_{m}^{2}
\end{array}\right|
$$

and

$$
Z=\frac{1}{\Delta}\left|\begin{array}{rrrrr}
X & A_{1} & A_{2} & \cdots & A_{m} \\
A_{1} X & A_{1}^{2} & A_{1} A_{2} & \cdots & A_{1} A_{m} \\
A_{2} X & A_{2} A_{1} & A_{2}^{2} & \cdots & A_{2} A_{m} \\
\cdots & \cdots & A_{2} & \cdots & \cdots \\
A_{m} X & A_{m} A_{1} & A_{m} A_{2} & \cdots & A_{m}^{2}
\end{array}\right| .
$$

These equations are to be understood in the sense that the vectors Y and Z are linear combinations of the vectors in the first row with coefficients equal to the corresponding cofactors.

From this we finally get

$$
\left.Y^{2}=Y(X-Z)=Y X=\frac{1}{\Delta} \left\lvert\, \begin{array}{crrrr}
0 & -X A_{1} & -X A_{2} & \cdots & -X A_{m} \\
A_{1} X & A_{1}^{2} & A_{1} A_{2} & \cdots & A_{1} A_{m} \\
A_{2} X & A_{2} A_{1} & A_{2}^{2} & \cdots & A_{2} A_{m} \\
\ldots & \cdots & \cdots & \cdots & \cdots
\end{array}\right.\right)
$$

and

$$
Z^{2}=Z(X-Y)=Z X=\frac{1}{\Delta}\left|\begin{array}{ccccc}
X^{2} & X A_{1} & X A_{2} & & X A_{m} \\
A_{1} X & A_{1}^{2} & A_{1} A_{2} & \cdots & A_{1} A_{m} \\
A_{2} X & A_{2} A_{1} & A_{2}^{2} & \cdots & A_{2} A_{m} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
A_{m} X & A_{m} A_{1} & A_{m} A_{2} & \cdots & A_{m}^{2}
\end{array}\right| .
$$

908. Let Y be some vector of the space P and let X^{\prime} bz the orthogonal projection of the vector X on P.

Then

$$
\begin{aligned}
& \cos (X, Y)=\frac{X Y}{|X| \cdot|Y|}=\frac{X^{\prime} Y}{|X| \cdot|Y|}=-\frac{\left|X^{\prime}\right| \cdot|Y| \cdot \cos \left(X^{\prime}, Y\right)}{|X| \cdot|Y|} \\
&=\frac{\left|X^{\prime}\right|}{|X|} \cos \left(X^{\prime} Y\right)
\end{aligned}
$$

whence it follows that $\cos (X, Y)$ attains a maximum value for those Y for which $\cos \left(X^{\prime}, Y\right)=1$, that is, for $Y=\alpha X^{\prime}$ when $\alpha>0$.
909. (a) 45°, (b) 90°.
910. $\sqrt{\frac{m}{n}}$.
911. $|X-Y|^{2}=\left|\left(X-X^{\prime}\right)+\left(X^{\prime}-Y\right)\right|^{2}=\left|X-X^{\prime}\right|^{2}+\left|X^{\prime}-Y\right|^{2} \geqslant$
$\geqslant\left|X-X^{\prime}\right|^{2}$. The equation is possible only for $Y=X^{\prime}$.
912. (a) $\sqrt{7}$, (b) $\sqrt{\frac{\overline{2}}{3}}$.
913.

$$
(n+1)(n+2)^{n!} \ldots 2^{n} \sqrt{2 n+1} .
$$

914. The required shortest distance is equal to the shortest distance from point $X_{0}-Y_{0}$ to the space $P+Q$.
915. Let one of the vertices lie at the origin of coordinates and let X_{1}, X_{2}, \ldots, X_{n} be vectors emanating from the origin to the other vertices. It is easy to see that $X_{i}^{2}=1, X_{i} X_{j}=\frac{1}{2}$. The manifold passing through the first $m+1$ vertices is a space $t_{1} X_{1}+\ldots+t_{m} X_{m}$. The manifold passing through the other $n-m$ vertices is $X_{n}+t_{m+1}\left(X_{m+1}-X_{n}\right)+\ldots+t_{n-1}\left(X_{n-1}-X_{n}\right)$. The desired shortest distance is the distance from X_{n} to the space P generated by the vectors $X_{1}, X_{2}, \ldots, X_{m}, X_{n}-X_{m+1}, \ldots, X_{n}-X_{n-1}$.

Let

$$
X_{n}=t_{1} X_{1}+\ldots+t_{m} X_{m}+t_{m+1}\left(X_{n}-X_{m+1}\right)+\ldots+t_{n-1}\left(X_{n}-X_{n-1}\right)+Y
$$

where $Y \perp P$. Forming the scalar product X_{n} by $X_{1}, \ldots, X_{m}, X_{n}-X_{m+1}$, $\ldots, X_{n}-X_{n-1}$, we get the following system of equations for determining t_{1}, \ldots, t_{n-1} :

$$
\begin{aligned}
& t_{1}+\frac{1}{2} t_{2}+\cdots+\frac{1}{2} t_{m}=\frac{1}{2}, t_{m+1}+\frac{1}{2} t_{m+2}+\quad+\frac{1}{2} t_{n-1}=\frac{1}{2}, \\
& \frac{1}{2} t_{1}+t_{2}+\cdots+\frac{1}{2} t_{m}=\frac{1}{2},-\frac{1}{2} t_{m+1}+t_{m+2}+\cdots+\frac{1}{2} t_{n-1}=\frac{1}{2},
\end{aligned}
$$

$$
\frac{1}{2} t_{1}+\frac{1}{2} t_{2}+\cdots+t_{m}=\frac{1}{2}, \frac{1}{2} t_{m+1}+\frac{1}{2} t_{m+2}+\cdots+t_{n-1}=\frac{1}{2},
$$

whence $t_{1}=t_{2}=\cdots=t_{m}=\frac{1}{m+1}, t_{n+1}=t_{n+2}=\cdots=t_{n-1}=\stackrel{1}{n-m}$.
Consequently

$$
Y=\frac{X_{n+1}+X_{m+2}+\cdots+X_{n}}{n-m}-\frac{X_{1}+X_{2}+\cdots+X_{n}}{m+1} .
$$

Thus, the common perpendicular is a vector connecting the centres of the chosen faces. The shortest distance is equal to the length of this vector

$$
|Y|=\sqrt{\frac{n+1}{2(n-m!(m+1)}}
$$

916. (a) The projection of the vector ($\left.t_{1}+2 t_{2}, t_{1}-2 t_{2}, t_{1}+5 t_{2}, t_{1}+2 t_{2}\right)$ on the first plane is ($t_{1}+2 t_{2}, t_{1}-2 t_{2}, 0,0$). Hence,

$$
\cos ^{2} \varphi=\frac{2 t_{1}^{2}+8 t_{2}^{2}}{4 t_{1}^{2}+14 t_{1} t_{2}+37 t_{2}^{2}}=\frac{2 \lambda^{2}+8}{4 \lambda^{2}+14 \lambda+37},
$$

where $\lambda=\frac{t_{1}}{t_{2}}$. This expression attains a maximum equal to $\frac{8}{9}$ for $\lambda=-4$.
(b) The angle between any vector of the second plane and its orthogonal projection on the first plane remains fixed and is equal to $\frac{\pi}{4}$.
917. The cube is a set of points whose coordinates satisfy the inequalities $-\frac{a}{2} \leqslant x_{i} \leqslant \frac{a}{2}, i=1,2,3,4$. Here, a is the length of a side of the cube. We pass to new axes, taking for the coordinate vectors, $e_{1}^{\prime}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, $e_{2}^{\prime}=\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right), e_{3}^{\prime}=\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$ and $e_{4}^{\prime}=$

$$
=\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right) .
$$

These vectors are orthonormal and their directions coincide with the directions of certain diagonals of the cube. The coordinates of points of the cube in these axes satisfy the inequalities

$$
\begin{array}{ll}
-a \leqslant x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}+x_{4}^{\prime} \leqslant a, & -a \leqslant x_{1}^{\prime}+x_{2}^{\prime}-x_{3}^{\prime}-x_{4}^{\prime} \leqslant a, \\
-a \leqslant x_{1}^{\prime}-x_{2}^{\prime}+x_{3}^{\prime}-x_{4}^{\prime} \leqslant a, & -a \leqslant x_{1}^{\prime}-x_{2}^{\prime}-x_{3}^{\prime}+x_{4}^{\prime} \leqslant a .
\end{array}
$$

We get the intersection that interests us by setting $x_{1}^{\prime}=0$. It is a solid located in the space spanned by $e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}$, and the coordinates of the points of which satisfy the inequalities $\pm x_{2}^{\prime} \pm x_{3}^{\prime} \pm x_{4}^{\prime} \leqslant a$.

This is a regular octahedron bounded by planes intercepting segments of length a on the axes.
918. $V^{2}\left[B_{1}, B_{2}, \ldots, B_{m}\right]=\left|\begin{array}{lllll}B_{1}^{2} & B_{1} B_{2} & \ldots & B_{1} B_{m} \\ B_{2} B_{1} & B_{2}^{2} & \ldots & B_{2} B_{m} \\ B_{m} B_{1} & B_{m} B_{2} & \ldots & B_{n}^{2}\end{array}\right|$.

This formula is readily established by inducticn if we take into account the result of Problem C07. Frcm this formula it follcws inmediately that the volume does not depend on the numbering of the vertices and that

$$
V\left[c B_{1}, B_{2}, \ldots, B_{m}\right]=|c| \cdot V\left[B_{1}, B_{2}, \ldots, B_{m}\right] .
$$

Now let $B_{1}=B_{1}^{\prime}+B_{1}^{\prime \prime}, C_{1}, C_{1}^{\prime}, C_{1}^{\prime \prime}$ [be [the orthogonal projections? of the vectors B_{1}, B_{1}^{\prime} and $B_{1}^{\prime \prime}$ on the space that is orthogonally complementary to (B_{2}, \ldots, B_{m}). It is obvious that $C_{1}=C_{1}^{\prime}+C_{1}^{\prime \prime}$. By definition, $V\left[B_{1}, B_{2}, \ldots, B . n\right]=\left|C_{1}\right| \cdot V\left[B_{2}, \ldots, B_{m}\right], V\left[B_{1}^{\prime}, B_{2}, \ldots, B_{m}\right]=$ $=\left|C_{1}^{\prime}\right| \cdot V\left[B_{2}, \ldots, B_{m}\right], V\left[B_{1}^{\prime \prime}, B_{2}, \ldots, B_{m}\right]=\left|C_{1}^{\prime \prime}\right| \cdot V\left[B_{2}, \ldots, B_{m}\right]$.
Since $\left|C_{1}\right| \leqslant\left|C_{1}^{\prime}\right|+\left|C_{1}^{\prime \prime}\right|$, it follows that $V\left[B_{1}, B_{2}, \ldots, B_{m}\right] \leqslant V\left[B_{1}^{\prime}, B_{2}\right.$, $\left.\ldots, B_{m}\right]+V\left[B^{\prime \prime}, B_{2}, \ldots, B_{m}\right]$. The equality sign is only possible if C_{1}^{\prime} and $C_{1 \prime}^{\prime \prime}$ are collinear and in the same direction, which, in turn, occurs if and only if $B_{1}^{\prime}, B_{1}^{\prime \prime}$ lie in a space spanned by $B_{1}, B_{2}, \ldots, B_{m}$, and the coefficients of B_{1} in the expressions of $B_{1}^{\prime}, B_{1}^{\prime}$ in terms of $B_{1}, B_{2}, \ldots, B_{m}$ have the same signs;
that is, $B_{1}^{\prime}, B_{1}^{\prime \prime}$ lie "on one side" of the space $\left(B_{2}, \ldots, B_{m}\right)$ in the space (B_{1}, B_{2}, \ldots, B_{m}).

$$
\text { 919. } V^{2}\left[B_{1}, B_{2}, \ldots, B_{n}\right]=\left|\begin{array}{llll}
B_{1}^{2} & B_{1} B_{2} & \ldots & B_{1} B_{n} \\
B_{2} B_{1} & B_{2}^{2} & \ldots & B_{2} B_{n} \\
B_{n} & B_{1} & B_{n} B_{2} & \ldots \\
B_{n}^{2}
\end{array}\right|=|\bar{B} B|=|B|^{\text {B }} .
$$

where B is a matrix whose columns are the coordinates of the vectors B_{1}, B_{2}, \ldots, B_{n}.
920. The following two properties of volume are an immediate consequence of the definition:
(d) $V\left[B_{1}+X_{1} B_{2}, \ldots, B_{m}\right]=V\left[B_{1}, B_{2}, \ldots, B_{m}\right]$
for any X belonging to the space (B_{2}, \ldots, B_{m}) tecause the points $B_{1}, B_{1}+X$ are at the same distances from $\left(B_{2}, \ldots, B_{m}\right)$.
(e) $V\left[B_{1}, B_{2}, \ldots, B_{m}\right] \leqslant\left|B_{1}\right| \cdot V\left[B_{2}, \ldots, B_{m}\right]$.

This follows from the fact that the "height", that is, the length of the component of vector B_{1} orthogonal to $\left(B_{2}, \ldots, B_{m}\right)$ does not exceed the length of the vector B_{1} itself.

Now let $C_{1}, C_{2}, \ldots, C_{m}$ be orthogonal projections of the vectors B_{1}, B_{2}, \ldots, B_{m} on the space P. Assume that the inequality $V\left[C_{2}, \ldots, C_{m}\right] \leqslant V\left[B_{2}\right.$, $\left.\ldots, B_{m}^{m}\right]$ has already been proved. Denote by B_{1}^{\prime} the component, orthogonal to (B_{2}, \ldots, B_{m}), of the vector B_{1}, by C_{1}^{\prime} its projection on P. Since $B_{1}^{\prime}-B_{1} \in$ $\left(B_{2}, \ldots, B_{m}\right)$, we conclude that $C_{1}-C \in\left(C_{2}, \ldots, C_{m}\right)$ and, hence, that $V\left[C_{1}\right.$, $\left.C_{2}, \ldots, C_{m}\right]=V\left[C_{1}^{\prime}, C_{2}, \ldots, C_{m}\right] \leqslant\left|C_{1}^{\prime}\right| \cdot V\left[C_{2}, \ldots, C_{i n}\right]$. But obviously, $C_{1}\left|\leqslant\left|B_{1}^{\prime}\right|\right.$ and, by the induction hypothesis, $V\left[C_{2}, \ldots, C_{m}\right] \leqslant V\left[B_{2}, \ldots\right.$, $\left.B_{m}\right]$. Consequently, $V\left[C_{1}, C_{2}, \ldots, C_{m}\right] \leqslant\left|B_{1}^{\prime}\right| \cdot V\left[B_{2}, \ldots, B_{m}\right]=V\left[B_{1}\right.$, $\left.B_{2}, \ldots, B_{m}\right\rceil$. There is a basis for induction, since the theorem is obvious for one-dimensional parallelepipeds.
921. From the formula for computing the square of a volume it follows that $V\left[A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{k}\right]=V\left[A_{1}, \ldots, A_{m}\right] \cdot V\left[B_{1}, \ldots, B_{k}\right]$ if each vector A_{i} is orthogonal to every vector B_{j}. In the general case, we replace the vectors B_{1}, \ldots, B_{k} by their projections C_{1}, \ldots, C_{k} on the space that is orthogonally complementary to $\left(A_{1}, \ldots, A_{m}\right)$. By virtue of the result of the preceding problem, $V\left[C_{1}, \ldots, C_{k}\right] \leqslant V\left[B_{1}, \ldots, B_{k}\right]$, whence
$V\left[A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{k}\right]=V\left[A_{1}, \ldots, A_{m}, C_{1}, \ldots, C_{k}\right]$
$=V\left[A_{1}, \ldots, A_{m}\right] \cdot V\left[C_{1}, \ldots, C_{k}\right] \leqslant V\left[A_{1}, \ldots, A_{m}\right] \cdot V\left[B_{1}, \ldots, B_{k}\right]$.
The content of this problem coincides with that of Problem 518.
922. This follows immediately from the inequality $V\left[A_{1}, \ldots, A_{m}\right] \leqslant\left|A_{1}\right| \times$ $\times V\left[A_{2}, \ldots, A_{m}\right]$, which, in turn, is an immediate consequence of the definition of a volume.

This problem coincides, in content, with Problem 519.
923. A similarity transformation of a solid in n-dimensional space implies a change in volume proportional to the nth power of the expansion factor. For a parallelepiped, this follows immediately from the volume formula, for any other solid, the volume is the limit of the sum of volumes of the parallelepipeds. Hence, the volume $V_{n}(R)$ of an n-dimensional sphere of radius R is equal to V_{n} (1) R^{n}.

To compute $V_{n}(1)$, partition the sphere by a system of parallel $(n-1)$ dimensional "planes" and take advantage of Cavalieri's principle.

Let x be the distance of the cutting "plane" from the centre. The section is an $(n-1)$-dimensional sphere of radius $l / \overline{1-x^{2}}$

Consequently,

$$
\begin{aligned}
& V_{n}(1)=2 \int_{0}^{1} V_{n-1} r\left(\sqrt{1-x^{2}}\right) d x=2 V_{n-1}(1) \int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-1}{2}} d x \\
&=V_{n-1}(1) \int_{0}^{1} t^{\frac{n-1}{2}}(1-t)^{-\frac{1}{2}} d t=V_{n-1}(1) B\left(\frac{n+1}{2}, \frac{1}{2}\right) \\
&=V_{n-1}(1) \cdot \frac{\Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}
\end{aligned}
$$

From this it follows that

$$
V_{n}(1)=\frac{n^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} .
$$

924. The polynomials $1, x, \ldots, x^{n}$ form the basis. The square of the volume of the corresponding parallelepiped is

$$
\left|\begin{array}{cccc}
1 & \frac{1}{2} & \cdots & \frac{1}{n+1} \\
\frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+2} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{1}{n+1} & \frac{1}{n+2} & \cdots & \frac{1}{2 n+1}
\end{array}\right|=\frac{[1!2!\cdots}{(n+1)!(n+2)!} \cdots \frac{n!]^{3}}{(2 n+1)!}
$$

925. (a) $\lambda_{1}=1, X_{1}=c(1,-1) ; \lambda_{2}=3, X_{2}=c(1,1)$;
(b) $\lambda_{1}=7, X_{1}=c(1,1) ; \lambda_{2}=-2, X_{2}=c(4,-5)$;
(c) $\lambda_{1}=a i, X_{1}=c(1, i) ; \lambda_{2}=-a i, X_{2}=c(1,-i)$;
(d) $\lambda_{1}=2, X_{1}=c_{1}(1,1,0,0)+c_{2}(1,0,1,0)+c_{3}(1,0,0,1)$; $\lambda_{2}=-2, X_{2}=c(1,-1,-1,-1)$;
(e) $\lambda=2, X=c_{1}(-2,1,0)+c_{2}(1,0,1)$;
(f) $\lambda=-1, X=c(1,1,-1)$;
(g) $\lambda_{1}=1, X_{1}=c_{1}(1,0,1)+c_{2}(0,1,0) ; \lambda_{2}=-1, X_{2}=c(1,0,-1)$;
(h) $\lambda_{1}=0, X_{1}=c(3,-1,2) ; \lambda_{2,3}= \pm \sqrt{-14}$, $X_{2,3}=c(3 \pm 2 \sqrt{-14}, 13,2 \mp 3 \sqrt{-14})$;
(i) $\lambda_{1}=1, X_{1}=c(3,-6,20) ; \lambda_{2}=-2, X_{2}=c(0,0,1)$;
(j) $\lambda_{1}=1, X_{1}=c(1,1,1) ; \lambda_{2}=\varepsilon, X_{2}=c(3+2 \varepsilon, 2+3 \varepsilon$,
$3+3 \varepsilon) ; \lambda_{3}=\varepsilon^{2}, X_{3}=c\left(3+2 \varepsilon^{2}, 2+3 \varepsilon^{2}, 3+3 \varepsilon^{2}\right)$
where

$$
\varepsilon=-\frac{1}{2}+\frac{i \sqrt{3}}{2}
$$

926. The eigenvalues A^{-1} are reciprocals of the eigenvalues A. Indeed, from $\left|A^{-1}-\lambda E\right|=0$ it follows that $|E-\lambda A|=0,\left|A-\frac{1}{\lambda} \mathrm{E}\right|=0$.
927. The eigenvalues of the matrix A^{2} are equal to the squares of the eigenvalues for A. Indeed, let

$$
|A-\lambda E|=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)
$$

Then

$$
|A+\lambda E|=\left(\lambda_{1}+\lambda\right)\left(\lambda_{2}+\lambda\right) \ldots\left(\lambda_{n}+\lambda\right)
$$

Multiplying these equations and substituting λ for λ^{2}, we get

$$
\left|A^{2}-\lambda E\right|=\left(\lambda_{1}^{2}-\lambda\right)\left(\lambda_{2}^{2}-\lambda\right) \ldots\left(\lambda_{n}^{2}-\lambda\right)
$$

928. The eigenvalues of A^{m} are equal to the m th powers of the eigenvalues of A.

To see this, the simplest thing is to replace in the equation

$$
|A-\lambda E|=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)
$$

λ by $\lambda \varepsilon, \lambda \varepsilon^{2}, \ldots, \lambda \varepsilon^{n-1}$, where

$$
\varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n},
$$

multiply the equations and substitute λ for λ^{n}.
929. $f(A)=b_{0}\left(A-\xi_{1} E\right) \ldots\left(A-\xi_{m} E\right)$, hence

$$
|f(A)|=b_{0}^{n} \cdot\left|A-\xi_{1} E_{\mid} \ldots\right| A-\xi_{m} E \mid=b^{n} F\left(\xi_{1}\right) \ldots F\left(\xi_{m}\right)
$$

930. Let

$$
F(\lambda)=|A-\lambda E|=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)
$$

and

$$
f(x)=b_{0}\left(x-\xi_{1}\right)\left(x-\xi_{2}\right) \ldots\left(x-\xi_{m}\right)
$$

Then

$$
|f(A)|=b^{n} \prod_{i=1}^{n} \prod_{k=1}^{m}\left(\lambda_{i}-\xi_{k}\right)=f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) \ldots f\left(\lambda_{n}\right)
$$

931. Put

$$
\varphi(x)=f(x)-\lambda
$$

and apply the result of the preceding problem.
We get

$$
|f(A)-\lambda E|=\left(f\left(\lambda_{1}\right)-\lambda\right)\left(f\left(\lambda_{2}\right)-\lambda\right) \ldots\left(f\left(\lambda_{n}\right)-\lambda\right)
$$

whence it follows that the eigenvalues of the matrix $f(A)$ are $f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots$, $f\left(\lambda_{n}\right)$.
932. Let X be an eigenvector of the matrix A corresponding to the eigenvalue λ.

Then

$$
\begin{gathered}
E X=X, \\
A X=\lambda X, \\
A^{2} X=\lambda^{2} X, \\
\cdots \cdots \cdots \\
A^{m} X=\lambda^{m} X .
\end{gathered}
$$

Multiplying these vector equations by arbitrary coefficients and combining, we get for any polynomial f

$$
f(A) X=f(\lambda) X
$$

i.e., \dot{X} is the eigenvector of $f(A)$ corresponding to the eigenvalue $f(\lambda)$.
933. The eigenvalues of A^{2} are n and $-n$ of multiplicities $\frac{n+1}{2}$ and $\frac{n-1}{2}$ respectively. Hence, the eigenvalues of A are $+\sqrt{ } \bar{n},-\sqrt{n},+\sqrt{n} \bar{i}$ and $-\sqrt{n i}$. Let us denote their multiplicities by a, b, c, d. Then $a+b=\frac{n+1}{2}$, $c+d=\frac{n-1}{2}$. The sum of the eigenvalues of a matrix is equal to the sum of the elements of the principal diagonal.

Hence

$$
[a-b+(c-d) i] V^{-}=1+\varepsilon+\varepsilon^{4}+\ldots+\varepsilon^{(n-1)^{2}} .
$$

The modulus of the right side of this equation is equal to \sqrt{n} (Problem 126). Consequently

$$
(a-b)^{2}+(c-d)^{2}=1 .
$$

Since the numbers $c-d$ and $c+d$ are of the same parity, we conclude that

$$
a-b=0, c-d= \pm 1 \text { if } \frac{n-1}{2} \text { is odd }
$$

and

$$
a-b= \pm 1, c-d=0 \text { if } \frac{n-1}{2} \text { is even. }
$$

Hence, for $n=1+4 k$

$$
c=d=k, \quad a=k+1, \quad b=k \text { or } a=k, \quad b=k+1
$$

for $n=3+4 k$

$$
a=b=k+1, \quad c=k+1, \quad d=k \text { or } c=k, \quad d=k+1 .
$$

Thus, the eigenvalues are determined to within sign. To determine the sign, take advantage of the fact that the product of the eigenvalues is equal to the determinant of the matrix. Using the result of Problem $£ \subseteq 9$, it is cisy to find that for $n=1+4 k$
for $n=3+4 k$

$$
\begin{array}{ll}
a=k+1, & b=k, \\
c=k+1, & d=k .
\end{array}
$$

Thus, the eigenvalues are completely determined.

$$
\text { 934. } \begin{aligned}
&\left.1+\varepsilon+\varepsilon^{4}+\ldots+\varepsilon^{(n-1}\right)^{2}=+\sqrt{n} \text { for } n=4 k+1, \\
& 1+\varepsilon+\varepsilon^{4}+\ldots+\varepsilon^{(n-1)^{2}}=+i V / n \text { for } n=4 k+3 .
\end{aligned}
$$

935. (a) Put $\frac{x}{y}=\alpha^{n}$. Then

$$
\lambda_{k}=y \frac{\alpha \varepsilon_{k}-\alpha^{n}}{1-\alpha \varepsilon_{\kappa}}
$$

where $\varepsilon_{k}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0,1, \ldots, n-1$.
(b) $\lambda_{k}=a_{1}+a_{2} \varepsilon_{k}+a_{3} \varepsilon_{k}^{2}+\ldots+a_{n} \varepsilon_{k}^{n-1}$.
(c) $\lambda_{k}=2 i \cos \frac{k \pi}{n+1}, k=1,2, \ldots, n$.
936.

$$
A \times B-\lambda E_{m n}=\left(\begin{array}{cccc}
a_{11} B-\lambda E_{m} & a_{12} B & & a_{1 n} B \\
a_{21} B & a_{22} B-\lambda E_{m} & \ldots & a_{2 n} B \\
\cdots \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

whence it follows, by the result of Problem 537, that

$$
\left|A \times B-\lambda E_{m n}\right|=|\varphi(B)|
$$

where

$$
\varphi(x)=\left|A x-\lambda E_{n}\right|=\prod_{i=1}^{n}\left(\alpha_{i} x-\lambda\right) .
$$

By the result of Problem 930,

$$
|\varphi(B)|=\prod_{k=1}^{m} \varphi\left(\beta_{k}\right)=\prod_{i=1}^{n} \prod_{k=1}^{m}\left(\alpha_{i} \beta_{k}-\lambda\right)
$$

Thus, the eigenvalues of $A \times B$ are the numbers $\alpha_{i} \beta_{k}$, where α_{i} are the eigenvalues of A, and β_{k} are the eigenvalues of B.
937. If A is a nonsingular matrix, then

$$
|B A-\lambda E|=\left|A^{-1}(A B-\lambda E) A\right|=\left|A^{-1}\right| \cdot|A B-\lambda E| \cdot|A|=|A B-\lambda E|
$$

It is possible to get rid of the assumption that A is nonsingular by passing to the limit or by using the theorem on the identity of polynomials in many variables.

It is also possible, using the theorem on the multiplication of rectangular matrices, to compute directly the coefficients of the polynomials

$$
|A B-\lambda E| \text { and }|B A-\lambda E|
$$

and satisfy yourself that they are equal.
938. Complete the matrices A and B to the square matrices A^{\prime} and B^{\prime} of order n by adjoining to $A n-m$ rows and to $B n-m$ columns made up of zeros. Then $B A=B^{\prime} A^{\prime}$ and $A^{\prime} B^{\prime}$ is obtained from $A B$ by bordering with zeros. Using the result of the preceding problem yields what we set out to prove.

The solutions of the Problems 939, 940, 941 are not unique. The answers given below correspond to a transformation that least of all deviates from the "triangular".
939. (a) $x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2}$,
(b) $-x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2}$,

$$
x_{1}^{\prime}=x_{1}+x_{2}
$$

$$
x_{1}^{\prime}=x_{1}
$$

$$
x_{2}^{\prime}=x_{2}+2 x_{3}
$$

$$
x_{2}^{\prime}=x_{1}-2 x_{2}
$$

$$
x_{3}^{\prime}=\quad x_{\mathrm{a}}
$$

$$
x_{9}^{\prime}=x_{1} \quad+x_{3}
$$

> (c) $x_{1}^{\prime 2}-x_{2}{ }^{2}-x_{3}^{\prime 2}$,
> (d) $x_{1}^{\prime 2}+x_{2}^{\prime 2}-x_{3}^{\prime 2}$,
> $x_{1}^{\prime}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+x_{3}$,
> $x_{1}^{\prime}=x_{1}-x_{2}+x_{3}-x_{4}$,
> $x_{2}^{\prime}=\frac{1}{2} x_{1}-\frac{1}{2} x_{2} . \quad x_{2}^{\prime}=x_{2}+x_{3}+x_{1}$,
> $x_{3}^{\prime}=\quad x_{3}$,
> $x_{3}^{\prime}=x_{2}-x_{3}+2 x_{4}$,
> $x_{4}^{\prime}=\quad x_{4}$,
(e) $x_{1}^{\prime 2}-x_{2}^{\prime 2}+x_{3}^{\prime 2}-x_{4}^{\prime 2}$,
$x_{1}^{\prime}=x_{1}+\frac{1}{2} x_{2}$,
$x_{2}^{\prime}=\frac{1}{2} x_{2}$,
$x_{3}^{\prime}=\frac{1}{2} x_{3}+\frac{1}{2} x_{4}$,
$x_{4}^{\prime}=\frac{1}{2} x_{3}-\frac{1}{2} x_{4}$.
940. $x_{1}^{\prime 2}+\frac{3}{4} x_{2}^{\prime 2}+\frac{4}{6} x_{3}^{\prime 2}+\ldots+\frac{n+1}{2 n} x_{n}^{\prime 2}$.

The variables $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ are expressed linearly in terms of x_{1}, x_{2}, \ldots, x_{n} with the matrix

$$
\left|\begin{array}{cccccc}
1 & \frac{1}{2} & & \frac{1}{2} & \cdots & \frac{1}{2} \\
0 & 1 & & \frac{1}{3} & \cdots & \frac{1}{3} \\
0 & 0 & 1 & \frac{1}{4} & \cdots & \frac{1}{4} \\
\cdots & \cdots & \cdots & \cdots & \cdots & 1 \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right| .
$$

941. $\left(\frac{x_{1}+x_{2}}{2}+x_{3}+x_{4}+\ldots+x_{n}\right)^{2}-\left(\frac{x_{1}-x_{2}}{2}\right)^{2}$

$$
\begin{aligned}
& -\left(x_{3}+\frac{1}{2} x_{4}+\ldots+\frac{1}{2} x_{n}\right)^{2} \\
- & \frac{3}{4}\left(x_{4}+\frac{1}{3} x_{5}+\ldots+\frac{1}{3} x_{n}\right)^{2}-\ldots-\frac{n-1}{2(n-2)} x_{n}^{2} .
\end{aligned}
$$

942. The matrix of a positive quadratic form is equal to $\bar{A} A$, where A is a nonsingular real matrix carrying the sum of squares to the given form.

The positivity of the minors follows from the result of Problem 510 .
943. Let $f=a_{11} x_{1}^{2}+\ldots+a_{1 n} x_{1} x_{n}$

$$
+a_{n 1} x_{n} x_{1}+\ldots+a_{n n} x_{n}^{2}
$$

be a quadratic form. We denote

$$
\begin{gathered}
f(k)=a_{11} x_{1}^{2}+\ldots+a_{1 k} x_{1} x_{k} \\
\ldots \ldots+a_{k 1} x_{k} x_{1}+\ldots++a_{k k} x_{k}^{2} \\
\Delta_{k}=\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\cdots & \ldots & \cdots \\
a_{k 1} & \ldots & a_{k k}
\end{array}\right|, r \text { is the rank of the form } f .
\end{gathered}
$$

Let

$$
f=\alpha_{1} x_{1}^{\prime 2}+\alpha_{2} x_{2}^{\prime 2}+\ldots+\alpha_{n} x_{n}^{\prime 2},
$$

where

$$
\begin{aligned}
& x_{1}=x_{1}+b_{12} x_{2}+\ldots+b_{1 n} x_{n}, \\
& x_{2}^{\prime}= \\
& \cdots \cdots+b_{2 n} x_{n}, \\
& x_{n}^{\prime}=
\end{aligned}
$$

Since the determinant of a triangular transformation is equal to $1, D_{f}=$ $=\Delta_{n}=\alpha_{1} \alpha_{2} \ldots \alpha_{n}$. Putting

$$
x_{k+1}=\ldots=x_{n}=0
$$

we get

$$
f^{(k)}=\alpha_{1} x_{1}^{(k)^{2}}+\alpha_{2} x_{2}^{(k)^{2}}+\ldots+\alpha_{k} x_{k}^{(k)^{2}}
$$

where

$$
\begin{aligned}
& x_{1}^{(k)}=x_{1}+b_{12} x_{2}+\ldots+b_{1 k} x_{k}, \\
& x_{2}^{(k)}=\quad x_{2}+\ldots+b_{2 k} x_{k}, \\
& x_{k}^{(k)}= \\
& x_{k} \text {. }
\end{aligned}
$$

Whence it follows that $\Delta_{k}=\alpha_{1} \alpha_{2} \ldots \alpha_{k}$ and that a necessary condition for the possibility of a triangular transformation to diagonal form is

$$
\Delta_{1} \neq 0, \Delta_{2} \neq 0, \ldots, \Delta_{r} \neq 0
$$

It is easy to verify that this condition is sufficient.
Furthermore, $\alpha_{k}=\frac{\Delta_{k}}{\Delta_{k-1}}$ for $k \leqslant r, \alpha_{k}=0$ for $k>r$.
The discriminant of the form

$$
\begin{aligned}
f_{k}\left(x_{k+1}, \ldots, x_{n}\right) & =f-\alpha_{1} x_{1}^{\prime 2}-\ldots-\alpha_{k} x_{k}^{\prime 2} \\
& =\alpha_{k+1} x_{k+1}^{\prime 2}+\ldots+\alpha_{n} x_{n}^{\prime 2}
\end{aligned}
$$

is equal to $\alpha_{k+1} \alpha_{k+2} \ldots \alpha_{n}=\frac{\Delta_{n}}{\Delta_{k}}$.
944. The necessity of the Sylvester conditions was proved in Problem 942. The sufficiency follows from the result of Problem 943.
945. Let l be a linear form in the variables $x_{1}, x_{2}, \ldots, x_{n}$. Transform the form f by means of a transformation with determinant unity, taking the form l for the last of the new variables. Then perform a triangular transformation of the form f to canonical form.

The form f becomes

$$
f=\alpha_{1} x_{1}^{\prime 2}+\alpha_{2} x_{2}^{\prime 2}+\ldots+\alpha_{n} x_{n}^{\prime 2}
$$

and $x_{n}^{\prime}=l$.
The discriminant of the form f is equal to $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$. The discriminant of the form $f+l^{2}$ is equal to $\alpha_{1} \alpha_{2} \ldots \alpha_{n-1}\left(\alpha_{n}+1\right)$. It is greater than the discriminant of the form f, since all the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n}$ are positive.
946. $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\begin{aligned}
& =a_{\mathrm{I} 1} x_{1}^{2}+2 a_{21} x_{1} x_{2}+\ldots+2 a_{n 1} x_{1} x_{n}+\varphi \\
& =a_{11}\left(x_{1}+\frac{a_{21}}{a_{11}} x_{2}+\ldots+\frac{a_{n 1}}{a_{11}} x_{n}\right)^{2}+f_{1}\left(x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

where

$$
f_{1}=\varphi-a_{11}\left(\frac{a_{21}}{a_{11}} x_{2}+\ldots+\frac{a_{n 1}}{a_{11}} x_{n}\right)^{2}
$$

The form f_{1} is positive and its discriminant is equal to $\frac{D_{f}}{a_{11}}$ where D_{f} is the discriminant of f. On the basis of the result of Problem 945, $D_{f_{1}} \geqslant \frac{D_{f}}{a_{11}}$, which completes the proof.
947. The proof is the same as for the law of inertia.
948. Form the linear forms

$$
l_{k}=u_{1}+u_{2} x_{k}+\ldots+u_{n} x_{k}^{n-1}, k=1,2, \ldots, n
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are roots of the given equation.
To equal roots will correspond equal forms, distinct roots are associated with linearly independent forms, real roots are associated with real forms, and conjugate complex roots are associated with conjugate complex forms.

The real and imaginary parts of the complex form $l_{k}=\lambda_{k}+\mu_{k} i$ will be linearly independent among themselves and also relative to all forms corresponding to roots distinct from x_{k} and x_{k}^{\prime}.

Form the quadratic form

$$
f\left(u_{1}, \ldots, u_{n}\right)=\sum_{k=1}^{n}\left(u_{1}+u_{2} x_{i}+\ldots+u_{n} x_{i}^{n-1}\right)^{2}
$$

The rank of this form is equal to the number of distinct roots of the given equation. The matrix of its coefficients is

$$
\left(\begin{array}{llll}
s_{0} & s_{1} & \ldots & s_{n-1} \\
s_{1} & s_{2} & \ldots & s_{n} \\
\ldots & \ldots & \ldots & \cdot \\
s_{n-1} & s_{n} & \ldots & s_{2 n-2}
\end{array}\right)
$$

The sum of squares of the conjugate complex linear forms $l_{k}=\lambda_{k}+$ $+i \mu_{k}$ and $l_{k}^{\prime}=\lambda_{k}-i \mu_{k}$ is equal to $2 \lambda_{k}^{2}-2 \mu_{k}^{2}$. Hence, the number of negative squares in any (by the law of inertia) canonical representation of the form f
is equal to the number of distinct pairs of conjugate complex roots of the given equation.
949. This follows from the results of Problems 948, 944.
950. The operation (f, φ) is obviously distributive. It is therefore sufficient to carry out the proof for the squares of the linear forms.

Let

$$
\begin{aligned}
& f=\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}\right)^{2}, \\
& \varphi=\left(\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n}\right)^{2} .
\end{aligned}
$$

It is then easy to see that

$$
(f \varphi)=\left(\alpha_{1} \beta_{1} x_{1}+\alpha_{2} \beta_{2} x_{2}+\ldots+\alpha_{n} \beta_{n} x_{n}\right)^{2} \geqslant 0 .
$$

951. (a) $4 x_{1}^{\prime 2}+x_{2}^{\prime 2}-2 x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{2}{3} x_{1}-\frac{2}{3} x_{2}+\frac{1}{3} x_{3}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{2}{3} x_{1}+\frac{1}{3} x_{2}-\frac{2}{3} x_{3}, \\
& x_{3}^{\prime}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2}+\frac{2}{3} x_{3},
\end{aligned}
$$

(b) $\quad 2 x_{1}^{\prime 2}-x_{2}^{\prime 2}+5 x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{2}{3} x_{1}-\frac{1}{3} x_{2}-\frac{2}{3} x_{3}$,

$$
x_{2}^{\prime}=\frac{2}{3} x_{1}+\frac{2}{3} x_{2}+\frac{1}{3} x_{3} .
$$

$$
x_{3}^{\prime}=\frac{1}{3} x_{1}-\frac{2}{3} x_{2}+\frac{2}{3} x_{3} ;
$$

(c) $\quad 7 x_{1}^{\prime 2}+4 x_{2}^{\prime 2}+x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2}-\frac{2}{3} x_{3}$,

$$
x_{2}^{\prime}=\frac{2}{3} x_{1}+\frac{1}{3} x_{2}+\frac{2}{3} x_{3},
$$

$$
x_{3}^{\prime}=-\frac{2}{3} x_{1}+\frac{2}{3} x_{2}+\frac{1}{3} x_{3} ;
$$

(d) $\quad 10 x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2}-\frac{2}{3} x_{3}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{2 \sqrt{5}}{5} x_{1}-\frac{\sqrt{5}}{5} x_{2}, \\
& x_{3}^{\prime}=\frac{2 l^{\prime} 5}{15} x_{1}+\frac{4 \sqrt{5}}{15} x_{2}+\frac{\sqrt{5}}{3} x_{3}:
\end{aligned}
$$

(e) $\quad-7 x_{1}^{\prime 2}+2 x_{2}^{\prime 2}+2 x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2}-\frac{2}{3} x_{3}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{2 \sqrt{5}}{5} x_{1}-\frac{\sqrt{5}}{5} x_{2} \\
& x_{3}^{\prime}=\frac{2 \sqrt{5}}{15} x_{1}+\frac{4 \frac{l^{\prime} 5}{15}}{5} x_{2}+\frac{\sqrt{5}}{3} x_{3}
\end{aligned}
$$

(f) $\quad 2 x_{1}^{\prime 2}+5 x_{2}^{\prime 2}+8 x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{2}{3} x_{1}+\frac{1}{3} x_{2}+\frac{2}{3} x_{3}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2}-\frac{2}{3} x_{3}, \\
& x_{3}^{\prime}=\frac{2}{3} x_{1}-\frac{2}{3} x_{2}-\frac{1}{3} x_{3} ;
\end{aligned}
$$

(g) $\quad 7 x_{1}^{\prime 2}-2 x_{2}^{\prime 2}+7 x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{\sqrt{2}}{2} x_{1}-\frac{\sqrt{2}}{2} x_{3}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{2}{3} x_{1}+\frac{1}{3} x_{2}+\frac{2}{3} x_{3}, \\
& x_{3}^{\prime}=\frac{\sqrt{2}}{6} x_{1}-\frac{2 \sqrt{2}}{3} x_{2}+\frac{\sqrt{2}}{6} x_{3} ;
\end{aligned}
$$

(h) $\quad 11 x_{1}^{\prime 2}+5 x_{2}^{\prime 2}-x_{3}^{\prime 2}, \quad x_{1}^{\prime}=\frac{2}{3} x_{1}-\frac{2}{3} x_{2}-\frac{1}{3} x_{3}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{2}{3} x_{1}+\frac{1}{3} x_{2}+\frac{2}{3} x_{3}, \\
& x_{3}^{\prime}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2}-\frac{2}{3} x_{3} ;
\end{aligned}
$$

(i) $\quad x_{1}^{\prime 2}-x_{2}^{\prime 2}+3 x_{3}^{\prime 2}+5 x_{4}^{\prime 2}, \quad x_{1}^{\prime}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}+\frac{1}{2} x_{1}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}, \\
& x_{3}^{\prime}=\frac{1}{2} x_{1}-\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{4}, \\
& x_{4}=\frac{1}{2} x_{1}-\frac{1}{2} x_{3}-\frac{1}{2} x_{3}+\frac{1}{2} x_{4} ;
\end{aligned}
$$

(j) $\quad x_{1}^{\prime 2}+x_{2}^{\prime 2}-x_{3}^{\prime 2}-x_{4}^{\prime 2}, \quad x_{1}^{\prime}=\frac{\sqrt{2}}{2} x_{1}+\frac{\sqrt{2}}{2} x_{2}$,

$$
\begin{aligned}
& x_{3}^{\prime}=\quad V_{\overline{2}}^{2} x_{3}+V_{2}^{2} x_{4} \text {, } \\
& x_{3}^{\prime}=\frac{\sqrt{2}}{2} x_{1}-\underset{2}{\sqrt{2}} x_{2}, \\
& x_{4}^{\prime}=\quad \frac{\sqrt{2}}{2} x_{3}-\sqrt{2} x_{2} ;
\end{aligned}
$$

(k) $x_{1}^{\prime 2}+x_{2}^{\prime 2}+3 x_{3}^{\prime 2}-x_{4}^{\prime 2}, \quad x_{1}^{\prime}=\frac{V}{2} x_{2} \quad+\frac{\sqrt{2}}{2} x_{4}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{\sqrt{2}}{2} x_{1}+\sqrt{2} x_{3} \\
& x_{3}^{\prime}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}, \\
& x_{4}^{\prime}=-\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{4}
\end{aligned}
$$

(1) $x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2}-3 x_{4}^{\prime 2}, \quad x_{1}^{\prime}=\frac{\sqrt[V]{2}}{2} x_{1}+\frac{\sqrt{2}}{2} x_{2}$,

$$
\begin{aligned}
& x_{2}^{\prime}= \\
& x_{3}^{\prime}=\frac{\sqrt{2}}{2} x_{3}+\frac{\sqrt{2}}{2} x_{4}, \\
& x_{1} \\
& x_{4}^{\prime}+\frac{1}{2} x_{3}-\frac{1}{2} x_{4}, \\
& x_{1}-\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{1}{2} x_{4}
\end{aligned}
$$

(m) $x_{1}^{\prime 2}-x_{2}^{\prime 2}+7 x_{3}^{2}-3 x_{4}^{\prime 2}, \quad x_{1}^{\prime}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}+\frac{1}{2} x_{4}$,

$$
\begin{aligned}
x_{2}^{\prime} & =\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{1}, \\
x_{3}^{\prime} & =\frac{1}{2} x_{1}-\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{4}, \\
x_{1}^{\prime} & =\frac{1}{2} x_{1}-\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{1}{2} x_{1}
\end{aligned}
$$

(n) $\overline{5} x_{1}^{\prime 2}-5 x_{2}^{\prime 2}+3 x_{3}^{\prime 2}-3 x_{4}^{\prime 2}, x_{1}^{\prime}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}+\frac{1}{2} x_{4}$,

$$
\begin{aligned}
& x_{2}^{\prime}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{1} \\
& x_{3}^{\prime}=\frac{1}{2} x_{1}-\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
& x_{4}^{\prime}=\frac{1}{2} x_{1}-\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{1}{2} x_{1}
\end{aligned}
$$

952. (a) $\stackrel{n+1}{2} x_{1}^{\prime 2}+\frac{1}{2}\left(x_{2}^{\prime 2}+x_{3}^{\prime 2}+\ldots+x_{n}^{\prime 2}\right)$;
(b) $\stackrel{n-1}{2}-x_{1}^{\prime 2}-\frac{1}{2}\left(x_{2}^{\prime 2}+x_{3}^{\prime 2}+\ldots+x_{n}^{\prime 2}\right)$
where

$$
\begin{aligned}
& x_{1}^{\prime}=\frac{1}{\sqrt{n}}\left(x_{1}+x_{2}+\ldots+x_{n}\right) \\
& x_{i}^{\prime}=\alpha_{i 1} x_{1}+\alpha_{i 2} x_{2}+\ldots+\alpha_{i n} x_{n}, i=2, \ldots, n
\end{aligned}
$$

where $\left(\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i n}\right)$ is any orthogonal and normalized fundamental system of solutions of the equation

$$
x_{1}+x_{2}+\ldots+x_{n}=0
$$

953. $x_{1}^{\prime 2} \cos \frac{\pi}{n+1}+x_{2}^{\prime 2} \cos \frac{2 \pi}{n+1}+\ldots+x_{n}^{\prime 2} \cos \frac{n \pi}{n+1}$.
954. If all the eigenvalues of the matrix A lie in the interval, $[a, b]$, then all the eigenvalues of the matrix $A-\lambda E$ are negative for $\lambda>b$ and positive for $\lambda<a$. Hence, a quadratic form with matrix $A-\lambda E$ is negative for $\lambda>b$ and positive for $\lambda<a$. Conversely, if the quadratic form $(A-\lambda E) X \cdot X$ is negative for $\lambda>b$ and positive for $\lambda<a$, then all the eigenvalues of the matrix $A-\lambda E$ are positive for $\lambda<a$ and negative for $\lambda>b$.

Consequently, all the eigenvalues of the matrix A lie in the interval $[a, b]$.
955. The following inequalities hold for any vector X :

$$
a X \cdot X \leqslant A X \cdot X \leqslant c X \cdot X, b X \cdot X \leqslant B X \cdot X \leqslant d X \cdot X
$$

whence $(a+b) X \cdot X \leqslant(A+B) X \cdot X \leqslant(c+d) X \cdot X$. Therefore, all the eigenvalues of the matrix $A+B$ lie in the interval $[a+c, b+d]$.
956. (a) This follows from the result of Problem 937.
(b) $|A X|^{2}=A X \cdot A X=X \cdot \bar{A} A X \leqslant|X|^{2} \cdot\|A\|^{2}$.

The equal sign occurs for the eigenvector of the matrix $\bar{A} A$ belonging to the eigenvalue $\|A\|^{2}$.
(c) $|(A+B) X| \leqslant|A X|+|B X| \leqslant(\|A\|+\|B\|)|X|$
for any vector X. But for some vector X_{0},

$$
\left|(A+B) X_{0}\right|=(\|A+B\|) \cdot\left|X_{0}\right|
$$

Consequently

$$
\|A+B\| \leqslant\|A\|+\|B\| .
$$

(d) $|A B X| \leqslant\|A\| \cdot|B X| \leqslant\|A\| \cdot\|B\| \cdot|X|$.

Applying this inequality to the vector X_{0}, for which

$$
\|A B\| \cdot\left|X_{0}\right|=\left|A B X_{0}\right|
$$

we get

$$
\|A B\| \leqslant\|A\| \cdot\|B\|
$$

(e) Let $\lambda=p+q i$ be an eigenvalue of the matrix $A, X=Y+i Z$ the corresponding eigenvector.

Then

$$
A Y=p Y-q Z, A Z=q Y+p Z
$$

whence

$$
\begin{aligned}
& |p Y-q Z|^{2} \leqslant\|A\|^{2}|Y|^{2} \\
& |q Y+p Z|^{2} \leqslant\|A\|^{2}|Z|^{2}
\end{aligned}
$$

Combining these inequalities, we get

$$
|\lambda|^{2}\left(|Y|^{2}+|Z|^{2}\right)=\left(p^{2}+q^{2}\right)\left(|Y|^{2}+|Z|^{2}\right) \leqslant\|A\|^{2}\left(|Y|^{2}+|Z|^{2}\right)
$$

and, hence,

$$
|\lambda| \leqslant\|A\| .
$$

957. Let A be a real nonsingular matrix; then $A A X \cdot X=|A X|^{2}$ is a positive quadratic form which can be brought to canonical form by a transformation of the variables with the triangular matrix B which has positive diagonal elements. Therefore, $\bar{A} A=\bar{B} B$, whence it follows that $\overline{A B^{-1}} \cdot A B^{-1}=$ $=E$, that is, $A B^{-1}=P$ is an orthogonal matrix. From this we have $A=P B$. Uniqueness follows from the uniqueness of the triangular transformation of a quadratic form to canonical form.
958. $A A$ is a symmetric matrix with positive eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Consequently,

$$
\bar{A} A=P^{-1}\left(\begin{array}{cccc}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \\
& & & \lambda_{n}
\end{array}\right) P
$$

We construct the matrix

$$
B=P^{-1}\left(\begin{array}{ccc}
\mu_{1} & & \\
& \mu_{2} & \\
& & \ddots \\
& & \\
\mu_{n}
\end{array}\right) P
$$

where μ_{i} is the positive square root of λ_{i}. It is obvious that B is again a symmetric matrix with positive eigenvalues and $B^{2}=A \bar{A}$. Whence it follows that $A B^{-1}=Q$ is an orthogonal matrix, $A=Q B$.
959. After carrying the coordinate origin to the centre of the surface, the surface must contain point - X along with point X, and, hence, the equation must not contain the running coordinates to first powers. After a parallel translation of the axes $X=X_{0}+X^{\prime}$, where X_{0} is the translation vector, the equation of the surface becomes

$$
A X^{\prime} \cdot X^{\prime}+2\left(A X_{0}+B\right) X^{\prime}+A X_{0} \cdot X_{0}+2 B X_{0}+C=0 .
$$

Therefore, for the existence of a centre, it is necessary and sufficient that the equation $A X_{0}+B$ be solvable with respect to the vector X_{0}, for which, in turn, it is necessary and sufficient that the rank of the matrix A be equal to the rank of the matrix (A, B).
960. After carrying the origin to the centre, the equation of the surface becomes

$$
A X \cdot X+\gamma=0 .
$$

If r is the rank of the matrix A and $\alpha_{1}, \ldots, \alpha_{r}$ are nonzero eigenvalues, then after an appropriate orthogonal transformation of the coordinates, the equation takes on the canonical form

$$
\alpha_{1} x_{1}^{2}+\ldots+\alpha_{r} x_{*}^{2}+\gamma=0
$$

961. The surface has no centre if the rank of $(A, 1 B)$ is greater than the rank of A, which is only possible if $r=$ rank $A<n$. Denote the whole space by R, the space $A R$ by P and the orthogonal complement of P by Q. Then for any $Y \in Q$ we will have $A Y=0$ because

$$
|A Y|^{2}=A Y \cdot A Y=Y \cdot A A Y=0
$$

since $A A Y \in P$. Let

$$
B=B_{1}+B_{2}, B_{1} \in P, B_{2} \in Q .
$$

Then $B_{2} \neq 0$, otherwise B would belong to P and the rank of (A, B) would be equal to r. Let $B_{1}=A X_{0}$. After the translation $X=X_{0}+X^{\prime}$, the equation of the surface becomes

$$
A X^{\prime} \cdot X^{\prime}+2 B_{2} X^{\prime}+c^{\prime}=0
$$

Make one more translation $X^{\prime}=a B_{2}+X^{\prime \prime}$. Then

$$
A X^{\prime} \cdot X^{\prime}=a^{2} A B_{2} \cdot B_{2}+2 a A B_{2} \cdot X^{\prime \prime}+A X^{\prime \prime} \cdot X^{\prime \prime}=A X^{\prime \prime} \cdot X^{\prime \prime}
$$

because $A B_{2}=0$ and, hence, the equation becomes

$$
A X^{\prime \prime} \cdot X^{\prime \prime}+2 B_{2} X^{\prime \prime}+2 a\left|B_{2}\right|^{2}+c^{\prime}=0
$$

Take

$$
a=-\frac{c^{4}}{2\left|B_{2}\right|^{2}} .
$$

Then the equation becomes

$$
A X^{\prime \prime} \cdot X^{\prime \prime}+2 B_{2} X^{\prime \prime}=0
$$

Now perform an orthogonal transformation of the coordinates, taking pairwise orthogonal unit eigenvectors of the matrix A for the basis of the space, including in them the unit vector that is collinear with the vector B_{2} and in the opposite direction. This can be done because B_{2} is an eigenvector of A. On this basis, the equation becomes

$$
\lambda_{1} x_{1}^{2}+\ldots+\lambda_{r} x_{r}^{2}-2 \beta_{2} x_{r+1}=0
$$

where $\beta_{2}=\left|B_{2}\right|$. It remains to divide by β_{2}.
962. Under a linear transformation with the matrix A, the space is mapped onto the subspace spanned by the vectors $A_{1}, A_{2}, \ldots, A_{n}$ whose coordinates form the columns of A. The required result follows immediately.
963. Let $e_{1}, e_{2}, \ldots, e_{7}$ be the basis of Q. Thin Q^{\prime} is a space spanned by $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{q}^{\prime}$, where $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{q}^{\prime}$ are the images of $e_{1}, e_{2}, \ldots, e_{f}$ under the linear transformation thus performed. Hence, $q^{\prime} \leqslant q$. Besides, it is obvious that $q^{\prime} \leqslant r$ because Q^{\prime} lies in R^{\prime}. Farthermore, let P^{\prime} be the complementary space of Q, of dimension $p=n-q$, and let p^{\prime} be its image under a linear transformation. Its dimension p^{\prime} does not exceed $n-q$. But $P^{\prime}+\varrho^{\prime}=R^{\prime}$, hence, $p^{\prime}+q^{\prime} \geqslant r$. From this,

$$
q^{\prime} \geqslant r-p^{\prime} \geqslant r+q-n .
$$

964. Let the rank of A be r_{1}, the rank of B be r_{2} and let $B R=Q$. The dimensionality of Q is equal to r_{2}. Then p, which is equal to the rank of $A B$, is the dimensionality of $A B R=A Q$. By virtue of the result of the preceding problem, $r_{1}+r_{2}-n \leqslant \rho \leqslant \min \left(r_{1}, r_{2}\right)$.
965. A double performance of the operation of projection is equivalent to a single performance. Indeed, in the first projection, all the vectors of the space R go into the vectors of the subspace P, which under the second projection remain fixed. Hence, $A^{2}=A$. Conversely, let $A^{2}=A$. Denote by P the set of all vectors $Y=A X$, by Q the set of vectors Z such that $A Z=0$. It is obvious that P and Q are linear spaces. Their intersection is the zero vector, because if $A X=Z$, then $A X=A^{2} X=A Z=0$. Furthermore, for any vector X we have the expansion $X=A X+(E-A) X$. It is obvious that $(E-A) X \in Q$ because $A(E-A) X=\left(A-A^{2}\right) X=0$. Therefore, $P+Q$ is the whole space, that is, P and Q are mutually complementary subspaces. The operation $A X$ is
a transition from the vector X to its component in P, that is, it is the operation of projection on P parallel to Q.
966. Let $P \perp Q$. Choose an orthonormal basis of the whole space by combining the orthonormal bases of P and Q. In this basis, the projection matrix will have the diagonal form

$$
A^{\prime}=\left|\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & 1 & & \\
& & & 0 & \\
& & & \ddots & \\
& & & & 0
\end{array}\right|
$$

In any other orthonormal basis, the projection matrix is equal to $A=$ $=B^{-1} A^{\prime} B$, where B is some orthogonal matrix. Obviously, A is symmetric.

Conversely, if A is a symmetric matrix and $A^{2}=A$, then the spaces $P=A R$ and $Q=(E-A) R$ are orthogonal, because

$$
A X(E-A) Y=X \cdot \bar{A}(E-A) Y=X\left(A-A^{2}\right) Y=0 .
$$

967. Let A be a skew-symmetric matrix. It is easy to see that $A X \cdot X=0$ for any real vector X, because

$$
A X \cdot X=X \cdot \tilde{A} X=X \cdot(-A X)=-A X \cdot X
$$

Let $\lambda=\alpha+\beta i$ be an eigenvalue of the matrix A and $U=X+Y i$ its corresponding eigenvector. Then

$$
A X=\alpha X-\beta Y, A Y=\beta X+\alpha Y
$$

From this it follows that $\alpha\left(|X|^{2}+|Y|^{2}\right)=A X \cdot X+A Y \cdot Y=0$ and $\alpha=0$. Furthermore, $\beta X \cdot Y+\alpha|Y|^{2}=A Y \cdot Y=0$, whence $X \cdot Y=0$ for $\beta \neq 0$. Finally, from the equality $\beta\left(|X|^{2}-|Y|^{2}\right)=A Y \cdot X+A X \cdot Y=A Y \cdot X-$ $-X \cdot A Y=0$ follows $|X|=|\boldsymbol{Y}|$.
968. Let

$$
A=\left(\begin{array}{cccc}
0 & a_{13} & \ldots & a_{1 n} \\
-a_{12} & 0 & \ldots & a_{2 n} \\
\cdots \cdots & \cdots & \cdots & 0 \\
-a_{1 n} & -a_{2 n} & \ldots & 0
\end{array}\right)
$$

be a skew-symmetric matrix. If all its eigenvalues are equal to zero, then $A=0$. Indeed, the sum of the products of all eigenvalues taken two at a time is equal to the sum of all principal minors of the second order $\sum_{i<k} a_{i k}^{2}$ and the fact that this sum is zero implies $a_{i k}=0$ for any i, k, that is, $A=0$.

Let A have a nonzero eigenvalue $\lambda_{1}=a_{1} i$. Normalize the real and imaginary parts of the eigenvector belonging to it. Because of the equality of their lengths, the normalizing factor will be the same, and the equations

$$
A X=-a_{1} Y, A Y=a_{1} X
$$

will hold for the resulting vectors.

Form an orthogonal matrix by putting the vectors X and Y in the first two columns. Then

$$
P^{-1} A P=\left(\begin{array}{ccc}
0 & a_{1} & \cdots \\
-a_{1} & 0 & \cdots \\
0 & 0 & \cdots \\
\cdots & \ldots & \cdots \\
0 & 0 & \ldots
\end{array}\right) .
$$

Since the matrix $P^{-1} A P$ is skew-symmetric, all nonindicated elements of the first two rows are zero, and the matrix of the elements of the 3rd, 4th, \ldots, nth row and the 3 rd, 4 th, \ldots, nth column will be skew-symmetric. Arguing in similar fashion, we isolate yet another submatrix $\left(\begin{array}{cc}0 & a_{2} \\ -a_{2} & 0\end{array}\right)$. The process is continued until the lower left corner has a matrix all eigenvalues of which are zero. But all the elements of such a matrix are zero. The problem is solved.
969. Let

$$
B=(E-A)(E+A)^{-1} .
$$

Then

$$
\bar{B}=(\overline{E+A})^{-1}(\overline{E-A})=(E-A)^{-1}(E+A)=B^{-1} .
$$

Furthermore

$$
B+E=(E-A)(E+A)^{-1}+(E+A)(E+A)^{-1}=2(E+A)^{-1}
$$

and, hence,

$$
|B+E| \neq 0 .
$$

Conversely, if

$$
\bar{B}=B^{-1} \text { and }|B+E| \neq 0
$$

then for A we can take $(E+B)^{-1}(E-B)$. It is easy to see that A is a skewsymmetric matrix.
970. Let A be an orthogonal matrix. Then

$$
A X \cdot A Y=X \cdot \bar{A} A Y=X \cdot Y
$$

for any real vectors X and Y. Let

$$
\lambda=\alpha+\beta i
$$

be an eigenvalue of the matrix A, and

$$
U=X+Y i
$$

a corresponding eigenvector. Then

$$
A X=\alpha X-\beta Y, A Y=\alpha Y+\beta X
$$

whence

$$
\begin{aligned}
& |X|^{2}=X \cdot X=A X \cdot A X=\alpha^{2}|X|^{2}+\beta^{2}|Y|^{2}-2 \alpha \beta X \cdot Y, \\
& |Y|^{2}=Y \cdot Y=A Y \cdot A Y=\alpha^{2}|Y|^{2}+\beta^{2}|X|^{2}+2 \alpha \beta X \cdot Y .
\end{aligned}
$$

Adding these equations, we get $\alpha^{2}+\beta^{2}=1$.
971. For $\beta \neq 0$, we get, from the last equations of the preceding problem,

$$
\beta\left(|X|^{2}-|Y|^{2}\right)+2 \alpha X \cdot Y=0 .
$$

On the other hand,

$$
X \cdot Y=A X \cdot A Y=\left(\alpha^{2}-\beta^{2}\right) X \cdot Y+\alpha \beta\left(|X|^{2}-|Y|^{2}\right)
$$

whence

$$
\alpha\left(|X|^{2}-|Y|^{2}\right)-2 \beta X \cdot Y=0 .
$$

Therefore

$$
X \cdot Y=|X|^{2}-|Y|^{2}=0
$$

972. 973. Let $\lambda=\alpha+\beta i=\cos \varphi+i \sin \varphi$ be a complex eigenvalue of the matrix. Form an orthogonal matrix A, the first two columns of which constitute the real and imaginary parts of an eigenvector belonging to λ. Then

$$
Q^{-1} A Q=\left(\begin{array}{ccc}
\cos \varphi & \sin \varphi & \ldots \\
-\sin \varphi & \cos \varphi & \ldots \\
0 & 0 & \ldots \\
0 & 0 & \ldots \\
\cdots & \ldots & \ldots \\
0 & 0 & \ldots
\end{array}\right)
$$

Because of the orthogonality of the matrix $Q^{-1} A Q$, the sum of the squares of the elements of each row is equal to 1 , and, hence, all nonindicated elements of the first two rows are equal to 0 .
2. Let $\lambda= \pm 1$ be a real eigenvalue of the matrix A, and let X be a normalized eigenvector belonging to λ.

Form an orthogonal matrix, the vector X constituting the first column. Then

$$
Q^{-1} A Q=\left(\begin{array}{cc}
\stackrel{\perp 1}{1} & \ldots \\
0 & \ldots \\
\cdots & \ldots \\
0 & \ldots
\end{array}\right)
$$

All nonindicated elements of the first row are zero since the sum of the squares of the elements of cach row of the orthogonal matrix $Q^{-1} A Q$ is equal to unity.

Applying the foregoing reasoning to the orthogonal matrices which remain in the lower left-hand corner, we get the required result.
973.
(a) $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right)$,
(b) $\left(\begin{array}{rrr}-2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
(c) $\left(\begin{array}{rrr}-3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$,
(d) $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1\end{array}\right)$,
(c) $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$,
(f) $\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(g) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(h) $\left(\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(i) $\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$,
(j) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$,
(k) $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$,
(l) $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i\end{array}\right)$,
(m) $\left(\begin{array}{ccr}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1\end{array}\right)$,
(n) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(0) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
974.
(a)
$\left(\begin{array}{lll}1 & 1 & \\ 0 & 1 & \\ & 1 & 1 \\ & 0 & 1\end{array}\right)$
(b)
$\left(\begin{array}{llll}1 & 1 & & \\ 0 & 1 & 1 & \\ & 0 & 1 & 1 \\ & & 0 & 1\end{array}\right)$
(c)
$\left(\begin{array}{llll}\varepsilon & & \\ & \varepsilon^{2} & & \\ & & \\ & & & \\ & & & \varepsilon^{n-1}\end{array}\right)$
where $\varepsilon=\cos \frac{2 \pi}{n}+l \sin \frac{2 \pi}{n}$.
975. The submatrix

$$
\left(\begin{array}{ccc}
\lambda_{i} & 1 & \\
& \lambda_{i} & 1 \\
& \ddots & \\
& & \ddots \\
\lambda_{i}
\end{array}\right)^{\text {cannot be periodic. }}
$$

Remark. The result is not valid in a field with nonzero characteristic. For example, in a field of characteristic 2 we have

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{2}=E
$$

976. Let A be a given matrix and let $B=C^{-1} A C$ be its reduction to Jordan canonical form. The canonical matrix B is of triangular form and its diagonal elements are equal to the eigenvalues of the matrix A, each one being repeated as many times as its multiplicity in the characteristic equation. Furthermore, $B_{m}^{\prime}=\left(C_{m}^{\prime}\right)^{-1} A_{m}^{\prime} C_{m}^{\prime}$ (Problem 531). Consequently, the characteristic polynomials of the matrices A_{m}^{\prime} and B_{m}^{\prime} coincide. Given an appropriate numbering of combinations, the matrix B_{m}^{\prime} has triangular form and, hence, its eigenvalues are $\epsilon q u a l$ to the diagenal elements. They are also, evidently, equal to all possible preducts of the eigenvalues of the matrix \boldsymbol{A} taken m at a time.
977. The matrices $A-\lambda E$ and $\bar{A}-\lambda E$ obviously have coincident elementary divisors. Therefore, A and \bar{A} are convertible to cne and the same canonical matrix and, hence, they are interconvertible.
978. If $A=C D$, where C, D are symmetric matrices and the natrix C is nonsingular, then $\bar{A}=D C$ and, hence, $\bar{A}=C^{-1} A C$. Thus, the matrix C should be sought among matrices that transform A into \vec{A}.

Let $A=S B S^{-1}$, where B is a canonical matrix:

$$
B=\left(\begin{array}{llll}
B_{1} & & & \\
& B_{2} & & \\
& & \ddots & \\
& & & B_{k}
\end{array}\right) \text { where } B_{i}=\left(\begin{array}{ccc}
\lambda_{i} & & \\
\lambda_{i} & 1 \\
& & \ddots \\
& & \\
& & \lambda_{i}{ }^{1}
\end{array}\right)
$$

Then $\bar{A}=\bar{S}^{-\overrightarrow{1} B} \bar{S}$. Denote by H_{i} the matrix

$$
\left(\begin{array}{llll}
& & & 1 \\
& & & 1 \\
& \cdot & \\
& \cdot & & \\
1 & &
\end{array}\right)
$$

It is easy to see that $\widetilde{B}_{i}=H_{i}{ }^{-1} B_{i} H_{i}$ and, therefore,

$$
\bar{B}=H^{-1} B H \text { where } H=\left(\begin{array}{cccc}
H_{1} & & & \\
& H_{2} & & \\
& & \ddots & \\
& & & H_{k}
\end{array}\right)
$$

Thus, $\bar{A}=\bar{S}^{-1} \quad H^{-1} \quad B H \bar{S}=\bar{S}^{-1} H^{-1} S^{-1} \quad A S H \bar{S}=C^{-1} A C$ where $C=S H \bar{S}$. The matrix C is obviously symmetric. Put $D=C^{-1} A$. Then $\bar{D}=\bar{A} C^{-1}=$ $=C^{-1} A C C^{-1}=D$. Thus, the matrix D is also symmetric and $A=C D$.
979. Let $|A-\lambda E|=(-1)^{n}\left(\lambda^{n}-c_{1} \lambda^{n-1}-c_{2} \lambda^{n-2}-\ldots-c_{n}\right)$.

It is obvious that $p_{1}=\operatorname{tr} A=c_{1}$. Suppose we have already proved that $p_{1}=$ $=c_{1}, p_{2}=c_{2}, \ldots, p_{k-1}=c_{k-1}$. Under this assumption, we shall prove that $p_{k}=c_{k ;}$ Ву construction, $A_{k}=A^{k}-p_{1} A^{k-1}-p_{2} A^{k-2}-\ldots-p_{k-1} A=A^{k}-$ $-c_{1} A^{k-1}-c_{2} A^{k-2}-\ldots-c_{k-1} A$. Hence
$\operatorname{tr} A_{k}=k p_{k}=\operatorname{tr} A^{k}-c_{1} \operatorname{tr} A^{k-1}-\ldots-c_{k-1} \operatorname{tr} A$

$$
=S_{k}-c_{1} S_{k-1}-\ldots-c_{k-1} S_{1}
$$

where $S_{1}, S_{2}, \ldots, S_{k}$ are powar sums of the eigenvalues of the matrix A. But by Newton's formulas, $S_{k}-c_{1} S_{k-1}-\ldots-c_{k-1} S_{1}=k c_{k}$. Consequently,

$$
p_{k}=c_{k}
$$

Next, $B_{n}=A^{n}-c_{1} A^{n-1}-\ldots-c_{n-1} A-c_{n} E=0$ by the Hamilton-Cayley relation. Finally,

$$
A B_{n-1}=A_{n}=c_{n} E
$$

whence

$$
B_{n-1}=c_{n} A^{-1}
$$

980. Let

$$
C=\left(\begin{array}{cccc}
0 & c_{12} & \ldots & c_{1 n} \\
c_{21} & 0 & \ldots & c_{2 n} \\
\cdots & \ldots & \cdots & 0 \\
c_{n 1} & c_{n 2} & \ldots & 0
\end{array}\right)
$$

We consider the diagonal matrix

$$
X=\left(\begin{array}{cccc}
\alpha_{1} & & & 0 \\
& \alpha_{2} & & \\
& & \ddots & \\
0 & & & \\
& & \alpha_{n}
\end{array}\right)
$$

the diagonal elements of which are arbitrary but pairwise distinct. Let us take

$$
Y=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{11} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\cdots & \cdots & \cdots & O_{n} \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right) .
$$

Then

$$
X Y-Y X=\left(\begin{array}{ccccc}
0 & b_{12}\left(\alpha_{2}-\alpha_{1}\right) & \ldots & b_{1 n}\left(\alpha_{n}-\alpha_{1}\right) \\
b_{21}\left(\alpha_{1}-\alpha_{2}\right) & 0 & \ldots & b_{2 n}\left(\alpha_{n}-\alpha_{2}\right) \\
\cdots \ldots \ldots & \ldots & \ldots & \ldots & \cdots \\
b_{n 1}\left(\alpha_{1}-\alpha_{n}\right) & b_{n 2}\left(\alpha_{2}-\alpha_{n}\right) & \ldots & 0
\end{array}\right)
$$

and, consequently, it suffices to take $b_{i k}=\frac{c_{i k}}{\alpha_{k}-\alpha_{i}}$ for $i \neq k$. Now, using mathematical induction, we establish that any matrix with trace zero is similar to a matrix all diagonal elements of which are zero. Since $\operatorname{tr} C=0, C \neq \mu E$ for $\mu \neq 0$, and, hence, there is a vector U such that $C U$ and U are linearly independent. Including the vectors U and $C U$ in the basis, we find that C is similar to the matrix

$$
C^{\prime}=\left(\begin{array}{ccccc}
0 & \gamma_{13} & \gamma_{13} & \ldots & \gamma_{1 n} \\
1 & \gamma_{22} & \gamma_{23} & \ldots & \gamma_{2 n} \\
\ldots & \cdots & \ldots & \ldots & . \\
0 & \gamma_{n 2} & \gamma_{n 3} & \ldots & \gamma_{n n}
\end{array}\right)=\left(\begin{array}{cc}
0 & P \\
Q & \Gamma
\end{array}\right) .
$$

It is obvious that $\operatorname{tr} \Gamma=\operatorname{tr} C=0$.
Hence, by the induction hypothesis, $\Gamma=S^{-1} \Gamma^{\prime} S$ where Γ^{\prime} is a matrix with zero diagonal elements. Then all the diagonal elements are zero in the matrix

$$
C^{\prime \prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & S
\end{array}\right)^{-1} C^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & S
\end{array}\right)=\left(\begin{array}{cc}
0 & P S \\
S^{-1} Q & S^{-1} \Gamma S
\end{array}\right)
$$

INDEX

Adjoint matrices 85
Algebra
higher, proof of fundamental theorem of 92 ff
linear 133 ff , 166 ff , 286ff of quaternions 208
Algorithm, Euclid's 97 ff
Alphabetical ordering 218
Approximation of roots of a polynomial 115
Arithmetic progression 97

Base field 288
Basis (of a vector space) 133
orthonormal 136
Bezout's method 124
Biquadratic equation 96
Bounds of roots of a polynomial 107ff
Bunyakovsky inequality 84,215 , 216

Cardan's formula 19
Cavalieri's principle 139, 293
Cayley (Hamilton-Cayley relation) 311
Characteristic polynomials 310
Chebyshev polynomial 128
Circular permutations 130ff, 285
Coefficients, method of undetermined 99
Cofactor 57
Complement, orthogonal 305
Complementary minors 85
Complex number(s) $11,151 \mathrm{ff}$, 168 ff
in trigonometric form 13
Condition, Sylvester's 142, 299
Coordinate space, n-dimensional 137
Coordinates, transformation of 133ff
Cramer's theorem 61
Criterion, Eisenstein 104, 239

Cubic equation 95, 118
Cyclic determinant 53, 56
Cyclotomic polynomial(s) 21, 95, 127
d'Alembert's lemma 92, 161
Decomposition into partial fractions 102, 259
de Moivre's formula 151, 171
Denominator, rationalization of 129 ff
Determinant(s)
basic properties of 29 ff
computation of 31 ff
cyclic 53,56
definition of 27,28
evaluation of $25 \mathrm{ff}, 153 \mathrm{ff}, 186 \mathrm{ff}$
expansion of 31
multiplication of 51 ff
order of 28
skew-cyclic 56
skew-symmetric 29, 56
Vandermonde $130,165,158,164$, $196,222,234,284$
Dimension (of a vector space) 133
Discriminant 19, 124ff
Distance, definition of 137

Eigenvalues 139ff, 295ff, 304ff
Eigenvectors 139ff
Eisenstein criterion 104, 239
Eisenstein theorem 162, 239
Elementary symmetric polynomials 116ff, $265 f f$
Equation(s)
biquadratic 96
cubic 95,118
generalized reciprocal 229
linear, systems of 61ff, 68, 196 ff
quadratic 121
quartic 95, 96
reciprocal, generalized 229
sextic 9 ?
systems of linear $61 \mathrm{ff}, 68$, 196 ff transformation of 123 ff
Euclidean space 133
elementary geometry of n-dimensional 135ff
Euclid's algorithm 97 ff
Euler formula 249, 250
Euler theorem 248
Euler's identity 214
Euler's resolvent 269
Evaluation of determinants 153 ff , 186ff

Factorization
into irreducible factors 93ff into linear factors 93 ff
Ferrari's method (solving the quartic equation) 20,106
Ferrari's resolvent 127, 269
Field, of reals 93
of residues modulo 288
Form(s)
Jordan canonical 146ff, 310
Jordan normal 148
linear, systems of 66 ff
quadratic 141ff
trigonometric, complex num:bers in 13
Formula(s)
binomial, Newton's 151
Cardan's 19
de Moivre's 171
Euler 249, 250
Lagrange 100, 161, 162
Lagrange interpolation 101, 161
Newton's 121, 267-268, 311
Newton's binomial 151
Taylor's 88, 91, 224-225
Fractional rational functions 100 ff
Fractions, partial, decomposition into 102, 259
Function(s)
fractional rational 100 ff monogenic symmetric 118 of one variable $88 \mathrm{ff}, 160,221 \mathrm{ff}$ Sturm 108
symmetric 116ff, 164ff, 261 ff
Fundamental system of solutions 74, 75
Fundamental theorem of higher algebra, proof of 92 ff

General solution of a system of equations 75
Generalized reciprocal equations 229

Hamilton-Cayley relation 311
Hermite method 124
Hermite polynomial(s) 110, 128, 267, 280
Higher algebra, proof of fundamental theorem of 92 ff
Horner's scheme 88, 89
Hypothesis, induction 220

Identity, Euler's 214
Induction hypothesis 220
Inequality, Bunyakovsky 84, 215, 216
Inertia, law of 300
Interpolation problem 100 ff
Inversions (in permutations) 26, 27
Irreducibility over the field of rationals 103 ff
Isomorphism 80, 207

Jordan canonical form $146 \mathrm{ff}, 310$
Jordan normal form 148

Kronecker product 86, 141, 219

Lagrange formula 100, 161, 162
Lagrange interpolation formula 101, 161
Lagrange's method of multipliers 165
Laguerre polynomial 110, 128
Laplace theorem 49, 159, 215, 216
Law of inertia 300
Legendre polynomial 111
Lemma, d'Alembert's 92, 161
Linear algebra 133ff, 166ff, 286ff
Linear equations, systems of 61 ff , 68, 196ff
Linear manifolds 133ff, 288
Linear transformations 146ff, 306
Linearly dependent solutions 74
Linearly independent solutions 74

Manifold(s)
linear 133ff, 288
one-dimensional 133
two-dimensional 133
Matrices (see matrix) 76ff, 159ff, $203 f f$
adjoint 84
postmultiplication of 81
premultiplication of 81
rectangular 83ff
symmetric 141 ff
unimodular 82, 211
Matrix (see matrices)
bordered 79
norm of 145
projection 307
rank of 64,65
skew-symmetric 307
triangular 86
Method
Bezout's 124
Ferrari's 20, 106
Hermite's 124
Lagrange's (of multipliers) 165
Newton's 100, 101
of undetermined coefficients 99 , 162, 165
Minors, complementary 85
Monogenic polynomials 116
Monogenic symmetric function 118
Multipliers, Lagrange's method of 165
n-dimensional parallelepiped 138
Newton's binomial formula 151
Newton's formulas 121, 267-268,311
Newton's method 100, 161
Norm of a matrix 145
Number(s)
complex 11, 151, 168ff in trigonometric form 13

One-dimensional manifolds 133
One-dimensional parallelepipeds 293
Ordering, alphabetical 218
Orthogonal complement 305
Orthogonal projection 147
Orthogonalization process 136
Orthonormal basis 136

Parallelepiped,
n-dimensional 139
one-dimensional 293
Partial fractions, decomposition into 102
Permutations 26, 27
circular 130ff, 285
Polygon, regular 14 -sided 22
Polynomial(s)
bounds of roots 107 ff
characteristic 310
Chebyshev 128
cyclotomic $21,95,127$
elementary symmetric 116 ff , 265 ff
Hermite 110, 128, 267, 280
Laguerre 110, 128
Legendre 111
monogenic 116
operations on 88 ff
rational roots of 103 ff
roots of, approximation of $115 f f$
roots of, distribution of, theorems on 111ff
Sturm 108, 246ff
symmetric 119
unchanged under circular permutations of variables 130 ff
unchanged under even permutations of variables 130 ff
Postmultiplication of matrices 81, 209
Power sums 121, 143
Premultiplications of matrices 81 , 208-209
Primitive roots 178 ff , 183 ff
Primitive roots of unity 21-24
Principle, Cavalieri's 139, 293
Projection 147
operation of 306
orthogonal 147
Projection matrix 307
Product, Kronecker 86, 141, 219
Progression, arithmetic 97

Quadratic equation 121
Quadratic forms 141 ff
Quartic equation 96
Quaternions, algebra of 208

Rank (of a matrix) 64-65
Rational roots of polynomials 103 ff
Rationalization of denominator 129 ff

Reals, field of 93
Reciprocal equations, generalized 229
Rectangular matrices 83ff
Recurrence relations 162
Reducibility over the field of rationals 103 ff
Regular simplex 136
Relation, Hamilton-Cayley 311
Relations, recurrence 162
Resolvent
Euler's 269
Ferrari's 127, 269
Resultant 124 ff
Rolle's theorem $162,251,253$
Roots
bounds of (of a polynomial) 107ff of a polynomial
approximation of 115 ff
distribution of, theorems on 111 ff
primitive 178 ff , 183 ff
rational (of polynomials) 103 ff
of unity 21 ff
primitive 21-24

Scheme, Horner's 88, 89
Sequence, Sturm 109, 110, 246
Sextic equation 97
Similarity transformation 293
Simplex, regular 136
Skew-cyclic determinant 56
Skew-symmetric determinant 29, 56
Skew-symmetric matrix 307
Solution(s)
fundamental system of 74,75
general (of a system of equations) 75
linearly dependent 74
linearly independent 74
system of, fundamental 74, 75
Space
coordinate, n-dimensional 137
Euclidean 133
elementary geometry of n dimensional 135 ff
vector 133
Sturm functions 109
Sturm polynomials 108, 246 ff
Sturm sequence 108, 109, 246ff
Sturm theorem 108ff, 248
Submatrices 86, 87
Subspaces 133 ff
Sums, power 121 ff, 143

Sylvester's condition 142, 299
Symmetric functions 116ff, 164ff 261 ff
Symmetric matrices l41ff
Symmetric polynomial 119
System(s)
of equations, general solution of 75
of linear equations 61 ff , 68, 196 ff
of linear forms 66 ff
of solutions, fundamental 74, 75

Taylor's formula 88, 91, 224-225
Theorem(s)
Cramer's 61
on distribution of roots of a polynomial 111ff
Eisenstein 162, 238
Euler 248
fundamental (of higher algebra) proof of 92 ff
Laplace 49, 159, 215, 216
Rolle's 162, 251, 253
Sturm's 108, 247
tr (see trace)
Trace of a matrix (tr) 150
Transformation
of coordinates 133ff
of equations 123 ff
linear 146ff, 306
similarity 293
triangular 142
Tschirnhausen 129ff, 284
Transpose (of a matrix) 83
Triangular matrix 86
Triangular transformation 142
Trigonometric form, complex numbers in 13
Tschirnhausen transformation 129ff, 284
Two-dimensional manifolds 133

Undetermined coefficients, method of 99, 162, 165
Unimodular matrices 82, 211
Unity, roots of 21 ff

Vandermonde determinant 130, 156, 158, 164ff, 196, 222, 234, 284
Vector space 133
Vectors 133

[^0]: *685. Prove that if a polynomial $a x^{2}+b x+1$ with integral coefficients is irreducible, then so is the polynomial $a[\varphi(x)]^{2}+$ $+b \varphi(x)+1$ where $\varphi(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$ for $n \geqslant 7$. Here, $a_{1}, a_{2}, \ldots, a_{n}$ are distinct integers.

